Labworks 1: Binary Search Trees and Red-Black
trees

October 2018

Deadline for these labworks: in 2 weeks (October 11, resp. October 18)
How?

e Make an archive with the source files of your implementation, and send it
by email to mircea.marin@e-uvt.ro

Binary search trees

Overview:
e Data structures that support many dynamic-set operations.
e Basic operations take time proportional to the height of the tree.

— For complete binary tree with n nodes: worst case O(log n).

— For tree degenerated into a chain of n nodes: worst case O(n)

e Different kinds of search trees include binary search trees, red-black trees,
and B-trees.

Objectives of this labwork
1. remember the data structure for binary search trees
2. write C++ implementations for some of its operations
Objective of Lecture 1

e Learn a new data structure: red-black trees, which can be used to perform
more efficiently (faster!) some dynamic-set operations.



What are binary search trees?

An important data structure for dynamic sets:

e Accomplish many dynamic-set operations in O(h) time, where h = height
of tree.

e We represent a binary search tree as an instance of the class

struct BSTree {
Node* root; // pointer to root node of the tree

3

and every node of the tree as an instance of the class

struct Node {
int key; // key
Node *p; // pointer to parent
Node xleft; // pointer to left child
Node *right; // pointer to right child

3

Note: the only node of a binary search tree without a parent is the root
node. (root->p == 0)

e Stored keys must satisfy the binary-search-tree property:

— if x is a node in the tree with left child y then y.key < z.key
— if x is a node in the tree with right child y then x.key < y.key

Remark:

The binary-search-tree property allows us to print keys in a binary search tree
in order, recursively, using an algorithm called an inorder tree walk. The ele-
ments of a binary search tree with root node x are printed in the monotonically
increasing order of their key:

e Check to make sure that x is not NIL.

e Recursively, print the keys of the nodes in x’s left subtree.
e Print 2’s key.

e Recursively, print the keys of the nodes in x’s right subtree.

The method void display(Node* x, int indent) from the file Node.h in
archive BSTree.zip implements this algorithm.



Labwork related to binary search trees

The archive BSTree.zip contains an incomplete implementation in C++ of an
application which performs all the basic dynamic set operations on a binary
search tree. Complete the missing implementations for the following methods
of class BSTree:

1. Node* predecessor(Node* x) which returns a pointer to the node that
precedes node x in an inorder walk of this tree, and NIL if x has no
predecessor.

2. int depth(Node* n) which returns the depth of the tree whose root is
pointed to by n. If n is NIL, the depth should be -1.

3. Node* maximum(Node* n) returns a pointer to the node with maximum
key in the binary search tree with root *n. If n is NIL, return NIL.

Note: the missing implementations should be added to the file Node.h

Red-black trees

Overview:

e A red-black tree is a binary search tree with one extra field per node: an
attribute color, which is either red or black.

In C++, nodes can be represented as instances of

struct RBNode {

int key; // key

RBNode *p; // pointer to parent
RBNode *left; // pointer to left child
RBNode *right; // pointer to right child
enum color { RED, BLACK };

color col;

b

e All leaves are empty (they do not contain elements with keys) and are
colored black. In object-oriented implementations, there are two choices
to represent leaves:

1. with the null pointer Nil, which is assumed implicitly to be black.

2. with a single sentinel node Nil, which is also an instance of class
RBNode. This sentinel node is also the root’s parent.

In graphic representations, we usually do not draw the empty leaves.

e A red-black tree must fulfil the following red-black properties:



Every node is either red or black.
The root is black
Every leaf is black

Ll

If a node is red, then both its children are black. (Hence no two reds
in a row on a simple path from the root to a leaf.)

5. For each node, all paths from the node to descendant leaves contain
the same number of black nodes.

6. Consider the following C++ classes to represent balanced red-black
trees:

It can be shown that red-black trees are balanced: their height is O(log, 1)
where n is the number of nodes. Therefore, all operations will take O(logy 1)
time in the worst case.

Example

A red-black tree with number of nodes n = 7.

We won’t bother with drawing Nil any more.

e Remarkable property: the dynamic set operations
minimum, maximum, successor, predecessor, search, insert, del

can be implemented with worst-case time complexity O(logyn) on red-
black trees with n nodes.



Objectives of this labwork

1. Familiarization with the red-black properties of RB-trees.
2. Understand the functionality of the tree operations
minimum, maximum, successor, predecessor, and search
on red-black trees.

3. Efficient implementation of some operations on RB-trees, which make use
of the red-black properties.

e RBInsert and RBDelete

as described in the lecture notes, to run with worst-time complexity O(log, 1)
on red-black trees with n nodes.

Note that these operations are based on the auxiliary operations LeftRotate,
RightRotate, and RBDeleteFixup, which must be implemented too.

Labwork related to Red-Black trees

The archive RBTree.zip contains an incomplete implementation in C++ of an
application which performs all the basic dynamic set operations on a red-black
tree, as described in the lecture notes.

1. Complete the missing implementations for the following methods of class
RBTree:
(a) int bh() which returns the black height the red-black tree.

(b) int maxBlackKey() which returns the maximum key of black nodes
in the red-black tree. If the red-black tree is empty, the method
should return the value -1000.

(c) int maxRedKey() which returns the maximum key of red nodes in
the red-black tree. If the red-black tree has no red nodes, the method
should return the value -1000.

We assume that all nodes in the red-black tree have keys which are non-
negative integers.

Note: the missing implementations should be added to the file RBNode .h
For the next seminar/lab, prepare answer to the following questions:

1. What are the worst case runtime complexities of the methods
bh (), maxBlackKey (), and maxRedKey ()

implemented by you, if the red-black tree has n nodes?



. What are the minimum and maximum number of red nodes in a red-black
tree with black height 27

. Draw a red-black tree with minimum number of nodes and black height
2.

. Draw a red-black tree with maximum number of nodes and black height
2.

. Consider the red-black tree

(a
(b
(c
(d

What is the height of this red-black tree?
What is the black height of this red-black tree?
Draw the result or deleting the node with key 7.

— — —

Draw the result of inserting the node with key 11.



