Lecture 5: Binary heaps
Sorting algorithms: Heapsort and Quicksort

Binary heaps
What is a binary heap?

@ array A of objects with 2 special attributes: A./length and
A.heap_size.
@ it represents a complete binary tree with A.heap_size nodes
e The tree is completely filled on all levels except possibly the
lowest, which is filled from left to right
e A.length represents the maximum number of nodes of the
tree. Therefore, A.heap_size < A.length
@ The index of the parent, left child, and right child of a node with
index i are computed as follows:
N~ L—=1)/2] ifi#0
parent(i) := { 1 i 0
left(i) :=2-i+1
right(i):=2-i+2

@ The heap property must hold: A[parent(i)] > A[i] for all i # 0.

Binary heaps: Example

01 2 3 4 5 6 7 8 9
[I6114[110[81 71 9l 31 21 4l 1]

(b)

A heap viewed as (a) a binary tree and (b) an array. The number
within the circle at each node in the tree is the value stored at that
node. The number next to a node is the corresponding index in the
array.

AUXILIARY NOTIONS

@ height of a node in a tree := maximum number of edges from
that node to a leaf.

@ height of the tree := height of the root of the tree.

: Binary heaps

@ The height of a binary heap is ©(log,(n)) — obvious.

@ FIND/INSERT / REMOVE operations in binary heaps take

O(log,(n)) time — we shall prove this.
@ We are interested in the efficient implementation of:

@ HEAPIFY(A,)

@ BUILDHEAP(A)

© HEAPSORT(A)

© EXTRACTMAX(A)

© INSERT(A, key)

The purpose of these procedures will be explained later.

Binary heaps

HEAPIFY(A, /)

@ Takes as input an array A and an index i, such that
e the subtrees rooted at left(i) and right(i) are binary heaps.
e The subtree rooted at i may not be a binary heap, because
A[i] is smaller than its children.
@ Rearranges the elements of A by letting A[i] "float down" so
that the subtree rooted at index i becomes a binary heap.

Thus, the purpose of HEAPIFY is to maintain the heap
property of an array of values.

Lecture 5: Binary heaps

HEAPIFY(A, /)

HEAPIFY(A,)
11:= left(i)
2 r := right(i)
3if | < A.heap_size and A[l] > A[i]
4 largest =1
5 else largest .= i
6 if r < A.heap_size and A[r] > Allargest]
7 largest :=r
8 if largest # i
9 exchange A[i] <> Allargest]
10 HEAPIFY(A, largest)

The action of HEAPIFY(A, 1), where A.heap_size = 10. Configuration (a) lacks heap
property at index 1. The heap property for index 1 is restored in (b) by exchanging A[1]
with A[3], which destroys the heap property for index 3. There recursive call
HEAPIFY(A, 3) sets i = 3, swaps A[3] <> A[8] as shown in (c), and the recursive call
HEAPIFY(A, 8) yields no further change to the data structure.

Properties of HEAPIFY

@ The running time complexity of HEAPIFY(A, i) is O(h),
where h is the height of node with index i.

@ = In general, the running time of HEAPIFY(A, i) is
O(logy(n))-
@ For a proof, check the references.

Building a binary heap

BUILDHEAP(A)

@ Rearranges the elements of an array A, to have the binary
heap property.

@ The rearrangement is achieved by successive runs of
HEAPIFY(A, i)

BUILDHEAP(A)
1 heap_size(A) .= A.length
2 fori:= [(A.length—1)/2] downto 0O
3 HEAPIFY(A,)

Remarks
@ The order in which the nodes are processed guarantees that the
subtrees rooted at children of a node i are heaps before
HEAPIFY is run at that node.
@ There are O(n) calls of HEAPIFY(A, i), which has time
complexity O(log, n) = time complexity O(nlog, n).
@ Tighter bound of the total runtime of step 3: O(n) (see refs.)

: Binary heaps

{4,1,3,2,16,9,10,14,8,7}.

(A) for A=

BUILDHEAP

The Heapsort algorithm

HEAPSORT(A) rearranges the elements of an array A in
ascending order, using the following method:

@ Call BUiLDHEAP(A) = a heap on the elements of the array
A[0..n—1]
@ A[0] is the maximum element of A
> exchange A[0] <+ A[n — 1], to place A[0] into its correct final
position.
© Discard A[n — 1] from the heap by decrementing
A.heap_size. We still have to sort A[0..n — 2]
e A[0..n— 2] is almost a binary heap: 0 is the only index that
may violate the heap property.
e We run HEAPIFY(A, 0) to rearrange A[0..n — 2] into binary
heap.
e The Heapsort algorithm repeats this process for the heap of
size n — 1 down to a heap of size 2.

Lecture 5: Binary heaps

HEAPSORT(A)

1 BUILDHEAP(A)

2 fori:= Alength— 1 downto 1

3 exchange A[0] « A[i]

4 A.heap_size := A.heap_size — 1
5 HEAPIFY(A,0)

TIME COMPLEXITY ANALYSIS

@ BUILDHEAP(A) takes O(n) time.

@ There are n— 1 calls to HEAPIFY(A, 0), and each one
takes O(logon) time.

= HEAPSORT(A) takes O(n log, n) time, where n = A.length.

Heapsort — running example
(gsgj? g} 8% a 9)\(i>
: : (a) ..\CI
8 ’ 7‘/®\® 4 ,(71\“\

°0® 000 (XY

n

(XKQYJ @/lm mﬁ)o

2® O ® 0® O ® 00 o

))

s 000 oo
® (b (i)
®

;
e o
’

® 00 o R——

®00
(0] (k)

(a) The heap data structure just after it has been built by BUILDHEAP. (b)—(j) The heap
just after each call of HEAPIFY in line 5. The value of i at that time is shown. Only

lightly shaded nodes remain in the heap. (k) The resulting sorted array A.

Priority queues

A priority queue is a data structure for maintaining a set S of
elements, each with an associated value called a key. It is intended to
support efficient execution of the following operations:

@ INSERT(S, x): inserts the element x into a set S. We
denote this operation by S := SuU {x}.
@ MAxIMUM(S): returns the element of S with the largest key.
@ EXTRACTMAX(S): removes and returns the element of S
with the largest key.
Applications of priority queues
@ Job scheduling on a shared resource
e The queue keeps track of jobs to be performed, and their
relative priorities.
e When a job is finished or interrupted, the highest-priority job
is selected from the queue, using EXTRACTMAX
o New jobs can be added at any time using INSERT
@ Event-driven simulation: time of event occurrence serves as its
key.

Lecture 5: Binary heaps

Priority queues

Can be implemented efficiently using binary heaps.

EXTRACTMAX(A)

if A.heap_size < 1

2 error "heap underflow"

3 max = A[0]

4 A[0] := A[A.heap_size — 1]
5

6

7

—

A.heap_size := A.heap_size — 1
HEAPIFY(A,0)
return max

Running time analysis
@ HEAPIFY(A,0) takes O(log, n) time
= EXTRACTMAX(A) takes O(log, n) time.

Priority queues

INSERT(A, key)

INSERT(A, key) inserts a node into a binary heap A:
@ First, it expands the heap by adding a new leaf to the tree.
@ Then, it traverses a path from this leaf toward the root, to find a
proper place for the new element.

INSERT(A, key)

A.heap_size := A.heap_size + 1

i == A.heap_size — 1

while / > 0 and A[parent(i)] < key
Ali] := Alparent(i)]
i := parent(i)

Ali] := key

OO~ WN =

Running time analysis
@ The path traced from the new leaf to the root has length
O(log, n) = HEAPINSERT(A, key) takes O(log, n) time, where
n = A.heap_size.

: Binary heaps

Priority queues
INSERT(A, key) illustrated

(a) The heap before we insert a node with key 15. (b) A new leaf is added to the tree.
(¢) Values on the path from the new leaf to the root are copied down until a place for
the key 15 is found. (d) Key 15 is inserted into the tree.

Quicksort
Properties

@ Sorting algorithm with worst-case running time ©(n?) on
an input array of n numbers.

@ Very efficient on average: ©(nlog n)

@ Often, the best practical choice for sorting

Quicksort
Description of the algorithm

3-step divide-and-conquer algorithm for sorting a subarray
Alp..r]
Divide: The subarray A[p..r] is partitioned (rearranged)
into two nonempty subarrays A[p..q], Alq + 1..r]
such that
@ The elements of A[p..q| are smaller than the
elements of Al[q + 1..r]

The index q is computed as part of this partitioning
procedure.

Conquer: The subarrays A[p..q] and A[q + 1..r] are sorted
by recursive calls to quicksort.
Combine: Since the subarrays are sorted in place, no work is

needed to combine them: the entire array A[p..r] is
now sorted.

Lecture 5: Binary heaps

Quicksort
Pseudocode

QUICKSORT(A, p, r)
1.ifp<r

2. g+ PARTITION(A,p,r)
3. QUICKSORT(A,p, q)

4. QUICKSORT(A,g+1,r)

Partitioning the array

PARTITION(A, p, r)

1 x — Alp]
2 i—p-1
3 je=r+1

4 while TRUE
5 do repeat j « j - |

6 until A[j] < x

7 repeat [«— [+ |

8 until A[i] > x

9 ifi<y

0 then exchange A[i] «+ A[/]
1

|
1 else return j

Quicksort
How does PARTITION work?

>

Element x = A[p] from A[p..r] is selected as pivot around which
to partition A[p..r].

The while loop grows two regions A[p..i] and AJj..r] from the top
and bottom of A[p..r], respectively, such that

@ Every elementin A[p..i] is less than or equal to x.
@ Every elementin A[j..r] is greater than or equal to x.

Initially, i = p—1 and j = r + 1, so the two regions are empty.
Within the while loop, index j is decremented and index i is
incremented, in lines 5-8, until A[/] > x > A[j].

@ By exchanging A[i] and A[j], the two regions can be extended.
The while loop repeats until i > j, at which point the entire array
Alp..r] has been partitioned into two subarrays A[p..q] and

Alg + 1..r] where p < g < r, such that all elements in A[p..q] are
smaller than or equal to any element in A[q + 1..r].

The value g = j is returned at the end of the procedure.

Lecture 5: Binary heaps

Quicksort
Example of how PARTITION works

Quicksort
Example of how PARTITION works

Alp..1}
5]3]2]6[4]1]3]7]
4 4
¢ (a) J

Quicksort
Example of how PARTITION works

El [5]7]

i (b) J i © J

Quicksort
Example of how PARTITION works

[5]7]

Quicksort
Example of how PARTITION works

[5[7]
(c) J
3[3]2] [5]7]
i J
Alp..q] Alg+l..r]
—

BEROESE

return j i

Quicksort
Complexity analysis

@ The running time of PARTITION on an array A[p..r] is
o(r—p+1).

@ Worst case behavior happens when the partitioning alway
produces one partition with 1 element, and the other with all the
rest. In this case:

e Partitioning an array of size n takes ©(n) time and
T(1)=06(1).
e The recurrence relationis T(n)=T(n—1)+6(n—-1) =
- = ke O(k) = O(X kg k) = O(rP).
= in the worst case, the running time is ©(n?).

@ Best case is when the partitioning produces regions of equal
size = the recurrence relation T(n) =2 T(n/2) + ©(n).

= T(n)=0©(nlogn)
(Cf. the Master Theorem)

References

Chapters 7 (Heapsort) and 8 (Quicksort) from the book

@ Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest. Introduction to Algorithms. McGraw Hill, 2000.

Lecture 5: Binary heaps

