
Lecture 5: Binary heaps
Sorting algorithms: Heapsort and Quicksort

Lecture 5: Binary heaps

Binary heaps
What is a binary heap?

array A of objects with 2 special attributes: A.length and
A.heap_size.
it represents a complete binary tree with A.heap_size nodes

The tree is completely filled on all levels except possibly the
lowest, which is filled from left to right
A.length represents the maximum number of nodes of the
tree. Therefore, A.heap_size ≤ A.length

The index of the parent, left child, and right child of a node with
index i are computed as follows:

parent(i) :=

{
b(i − 1)/2c if i 6= 0
−1 if i = 0

left(i) := 2 · i + 1
right(i) := 2 · i + 2

The heap property must hold: A[parent(i)] ≥ A[i] for all i 6= 0.

Lecture 5: Binary heaps

Binary heaps: Example

16

14

8 7

2 4 1

10

9 3

0

1

3 4

7 8 9

2

5 6

(a)

0 1 2 3 4 5 6 7 8 9
16 14 10 8 7 9 3 2 4 1| | | | | | | | |

(b)

A heap viewed as (a) a binary tree and (b) an array. The number
within the circle at each node in the tree is the value stored at that
node. The number next to a node is the corresponding index in the
array.

AUXILIARY NOTIONS

height of a node in a tree := maximum number of edges from
that node to a leaf.
height of the tree := height of the root of the tree.

Lecture 5: Binary heaps

Remarks

The height of a binary heap is Θ(log2(n)) – obvious.
FIND / INSERT / REMOVE operations in binary heaps take
O(log2(n)) time – we shall prove this.
We are interested in the efficient implementation of:

1 HEAPIFY(A, i)
2 BUILDHEAP(A)
3 HEAPSORT(A)
4 EXTRACTMAX(A)
5 INSERT(A, key)

The purpose of these procedures will be explained later.

Lecture 5: Binary heaps

HEAPIFY(A, i)

Takes as input an array A and an index i , such that
the subtrees rooted at left(i) and right(i) are binary heaps.
The subtree rooted at i may not be a binary heap, because
A[i] is smaller than its children.

Rearranges the elements of A by letting A[i] "float down" so
that the subtree rooted at index i becomes a binary heap.

Thus, the purpose of HEAPIFY is to maintain the heap
property of an array of values.

Lecture 5: Binary heaps

HEAPIFY(A, i)

HEAPIFY(A, i)
1 l := left(i)
2 r := right(i)
3 if l < A.heap_size and A[l] > A[i]
4 largest := l
5 else largest := i
6 if r < A.heap_size and A[r] > A[largest]
7 largest := r
8 if largest 6= i
9 exchange A[i]↔ A[largest]

10 HEAPIFY(A, largest)

Lecture 5: Binary heaps

Example

The action of HEAPIFY(A, 1), where A.heap_size = 10. Configuration (a) lacks heap

property at index 1. The heap property for index 1 is restored in (b) by exchanging A[1]

with A[3], which destroys the heap property for index 3. There recursive call

HEAPIFY(A, 3) sets i = 3, swaps A[3] ↔ A[8] as shown in (c), and the recursive call

HEAPIFY(A, 8) yields no further change to the data structure.

16

4

14 7

2 8 1

10

9 3

0

1

3 4
i

7 8 9

2

5 6

(a)

16

14

4 7

2 8 1

10

9 3

0

1

3 4

i
7 8 9

2

5 6

(b)

16

14

8 7

2 4 1

10

9 3

0

1

3 4

i
7 8 9

2

5 6

(c)

Lecture 5: Binary heaps

Properties of HEAPIFY

The running time complexity of HEAPIFY(A, i) is O(h),
where h is the height of node with index i .
⇒ In general, the running time of HEAPIFY(A, i) is
O(log2(n)).
For a proof, check the references.

Lecture 5: Binary heaps

Building a binary heap
BUILDHEAP(A)

Rearranges the elements of an array A, to have the binary
heap property.
The rearrangement is achieved by successive runs of
HEAPIFY(A, i)

BUILDHEAP(A)
1 heap_size(A) := A.length
2 for i := b(A.length − 1)/2c downto 0
3 HEAPIFY(A, i)

Remarks
The order in which the nodes are processed guarantees that the
subtrees rooted at children of a node i are heaps before
HEAPIFY is run at that node.
There are O(n) calls of HEAPIFY(A, i), which has time
complexity O(log2 n)⇒ time complexity O(n log2 n).
Tighter bound of the total runtime of step 3: O(n) (see refs.)

Lecture 5: Binary heaps

Example

BUILDHEAP(A) for A={4,1,3,2,16,9,10,14,8,7}.

4

1 3

2 16 9 10

14 8 7

0

1

3 4

i
7 8 9

2

5 6

(a)

4

1 3

2 16 9 10

14 8 7

0

1

3 4

i
7 8 9

2

5 6

(b)

4

1 3

14 16 9 10

2 8 7

0

1

3 4
i

7 8 9

2

5 6

(c)

4

1 10

14 16 9 3

2 8 7

0

1

3 4
i

7 8 9

2

5 6

(d)

4

16 10

14 7 9 3

2 8 1

0

1

3 4

i

7 8 9

2

5 6

(e)

16

14 10

8 7 9 3

2 4 1

0

1

3 4

7 8 9

2

5 6

(f)

Lecture 5: Binary heaps

The Heapsort algorithm

HEAPSORT(A) rearranges the elements of an array A in
ascending order, using the following method:

1 Call BUILDHEAP(A)⇒ a heap on the elements of the array
A[0..n − 1]

2 A[0] is the maximum element of A
. exchange A[0]↔ A[n − 1], to place A[0] into its correct final

position.
3 Discard A[n − 1] from the heap by decrementing

A.heap_size. We still have to sort A[0..n − 2]

A[0..n − 2] is almost a binary heap: 0 is the only index that
may violate the heap property.
We run HEAPIFY(A,0) to rearrange A[0..n − 2] into binary
heap.
The Heapsort algorithm repeats this process for the heap of
size n − 1 down to a heap of size 2.

Lecture 5: Binary heaps

Heapsort

HEAPSORT(A)
1 BUILDHEAP(A)
2 for i := A.length − 1 downto 1
3 exchange A[0]↔ A[i]
4 A.heap_size := A.heap_size − 1
5 HEAPIFY(A,0)

TIME COMPLEXITY ANALYSIS

BUILDHEAP(A) takes O(n) time.
There are n − 1 calls to HEAPIFY(A,0), and each one
takes O(log2n) time.

⇒ HEAPSORT(A) takes O(n log2 n) time, where n = A.length.

Lecture 5: Binary heaps

Heapsort – running example

(a) The heap data structure just after it has been built by BUILDHEAP. (b)–(j) The heap

just after each call of HEAPIFY in line 5. The value of i at that time is shown. Only

lightly shaded nodes remain in the heap. (k) The resulting sorted array A.

Lecture 5: Binary heaps

Priority queues

A priority queue is a data structure for maintaining a set S of
elements, each with an associated value called a key. It is intended to
support efficient execution of the following operations:

INSERT(S, x): inserts the element x into a set S. We
denote this operation by S := S ∪ {x}.
MAXIMUM(S): returns the element of S with the largest key.
EXTRACTMAX(S): removes and returns the element of S
with the largest key.

Applications of priority queues
Job scheduling on a shared resource

The queue keeps track of jobs to be performed, and their
relative priorities.
When a job is finished or interrupted, the highest-priority job
is selected from the queue, using EXTRACTMAX
New jobs can be added at any time using INSERT

Event-driven simulation: time of event occurrence serves as its
key.

Lecture 5: Binary heaps

Priority queues

Can be implemented efficiently using binary heaps.

EXTRACTMAX(A)
1 if A.heap_size < 1
2 error "heap underflow"
3 max := A[0]
4 A[0] := A[A.heap_size − 1]
5 A.heap_size := A.heap_size − 1
6 HEAPIFY(A,0)
7 return max

Running time analysis
HEAPIFY(A,0) takes O(log2 n) time
⇒ EXTRACTMAX(A) takes O(log2 n) time.

Lecture 5: Binary heaps

Priority queues
INSERT(A, key)

INSERT(A, key) inserts a node into a binary heap A:
First, it expands the heap by adding a new leaf to the tree.
Then, it traverses a path from this leaf toward the root, to find a
proper place for the new element.

INSERT(A, key)
1 A.heap_size := A.heap_size + 1
2 i := A.heap_size − 1
3 while i > 0 and A[parent(i)] < key
4 A[i] := A[parent(i)]
5 i := parent(i)
6 A[i] := key

Running time analysis
The path traced from the new leaf to the root has length
O(log2 n)⇒ HEAPINSERT(A, key) takes O(log2 n) time, where
n = A.heap_size.

Lecture 5: Binary heaps

Priority queues
INSERT(A, key) illustrated

16

14 10

8 7 9 3

2 4 1
(a)

16

14 10

8 7 9 3

2 4 1 1
(b)

16

1 10

8 14 9 3

2 4 1 7
(c)

16

15 10

8 14 9 3

2 4 1 7
(d)

(a) The heap before we insert a node with key 15. (b) A new leaf is added to the tree.

(c) Values on the path from the new leaf to the root are copied down until a place for

the key 15 is found. (d) Key 15 is inserted into the tree.

Lecture 5: Binary heaps

Quicksort
Properties

Sorting algorithm with worst-case running time Θ(n2) on
an input array of n numbers.
Very efficient on average: Θ(n log n)

Often, the best practical choice for sorting

Lecture 5: Binary heaps

Quicksort
Description of the algorithm

3-step divide-and-conquer algorithm for sorting a subarray
A[p..r]

Divide: The subarray A[p..r] is partitioned (rearranged)
into two nonempty subarrays A[p..q], A[q + 1..r]
such that

The elements of A[p..q] are smaller than the
elements of A[q + 1..r]

The index q is computed as part of this partitioning
procedure.

Conquer: The subarrays A[p..q] and A[q + 1..r] are sorted
by recursive calls to quicksort.

Combine: Since the subarrays are sorted in place, no work is
needed to combine them: the entire array A[p..r] is
now sorted.

Lecture 5: Binary heaps

Quicksort
Pseudocode

QUICKSORT(A,p, r)
1. if p < r
2. q ← PARTITION(A,p, r)
3. QUICKSORT(A,p,q)

4. QUICKSORT(A,q + 1, r)

Partitioning the array

Lecture 5: Binary heaps

Quicksort
How does PARTITION work?

I Element x = A[p] from A[p..r] is selected as pivot around which
to partition A[p..r].

I The while loop grows two regions A[p..i] and A[j ..r] from the top
and bottom of A[p..r], respectively, such that

Every element in A[p..i] is less than or equal to x .
Every element in A[j..r] is greater than or equal to x .

Initially, i = p − 1 and j = r + 1, so the two regions are empty.

I Within the while loop, index j is decremented and index i is
incremented, in lines 5-8, until A[i] ≥ x ≥ A[j].

By exchanging A[i] and A[j], the two regions can be extended.

I The while loop repeats until i ≥ j , at which point the entire array
A[p..r] has been partitioned into two subarrays A[p..q] and
A[q + 1..r] where p ≤ q < r , such that all elements in A[p..q] are
smaller than or equal to any element in A[q + 1..r].

I The value q = j is returned at the end of the procedure.

Lecture 5: Binary heaps

Quicksort
Example of how PARTITION works

Lecture 5: Binary heaps

Quicksort
Example of how PARTITION works

Lecture 5: Binary heaps

Quicksort
Example of how PARTITION works

Lecture 5: Binary heaps

Quicksort
Example of how PARTITION works

Lecture 5: Binary heaps

Quicksort
Example of how PARTITION works

Lecture 5: Binary heaps

Quicksort
Complexity analysis

The running time of PARTITION on an array A[p..r] is
Θ(r − p + 1).

Worst case behavior happens when the partitioning alway
produces one partition with 1 element, and the other with all the
rest. In this case:

Partitioning an array of size n takes Θ(n) time and
T (1) = Θ(1).
The recurrence relation is T (n) = T (n − 1) + Θ(n − 1) =
. . . =

∑n
k=1 Θ(k) = Θ(

∑n
k=1 k) = Θ(n2).

⇒ in the worst case, the running time is Θ(n2).

Best case is when the partitioning produces regions of equal
size⇒ the recurrence relation T (n) = 2 T (n/2) + Θ(n).

⇒ T (n) = Θ(n log n)
(Cf. the Master Theorem)

Lecture 5: Binary heaps

References

Chapters 7 (Heapsort) and 8 (Quicksort) from the book
Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest. Introduction to Algorithms. McGraw Hill, 2000.

Lecture 5: Binary heaps

