
Lecture 2: Amortized Analysis

October 11, 2019

Lecture 2: Amortized Analysis



What is amortized analysis?

It estimates the average cost (=running time) of an
operation as part of a sequence of operations on a
data-structure.
The goal is to show that the average cost of an operation is
small, if one averages over a sequence of operations, even
though a single operations within the sequence might be
expensive.

Lecture 2: Amortized Analysis



Common techniques for amortized analysis

The aggregate method: determines an upper bound T (n)
on the total cost of a sequence op1 op2 . . . opn of n
operations.

the amortized cost of each operation is T (n)/n; it is an
upper bound of the average cost per operation.

The accounting method:
Distinguishes different types of operations; operations of
different types may have different amortized costs.
Some ops. may be overcharged as “prepaid credit”/object
in the data structure, which is used later in the sequence to
pay for ops. that are charged less than they actually cost.

The potential method: determines the amortized cost of
each operation (like accounting method) and may
overcharge ops. early on to compensate for undercharges
later. The credit is maintained as potential energy of the
data structure instead of credit associated with individual
objects within the data structure.

Lecture 2: Amortized Analysis



Amortized analysis
Case studies

The 3 techniques for amortized analysis will be examined on 2
examples:

a stack with the additional operation MULTIPOP which pops
several object at once.
a binary counter which counts from 0 using only one
operation, INCREMENT.

Remark
for analysis purposes, some attributes, such as the charge
value x .credit may be assigned to an object x .These
attributes are for analysis purposes only, and should not
show up in the code.

Lecture 2: Amortized Analysis



1. The aggregate method

Computes the worst-case time T (n) needed to perform a
sequence of n operations in total.
The average cost, or amortized cost, per operation is
T (n)/n.
This cost applies to each operation, even if there are
several types of operations in the sequence.
The other two methods (accounting method and potential
method) may assign different amortized costs to different
types of operations.

Lecture 2: Amortized Analysis



The aggregate method for stack operations (1)

Fundamental stack operations:
PUSH(S, x): pushes object x onto stack S.
POP(S): pops the top of stack S and returns the popped
object.

Both operations run in O(1) time⇒ it is ok to assign cost 1
to both operations.

⇒ the total cost of a sequence of n PUSH and POP operations
is n⇒ the actual running time for n operations is Θ(n).

What happens if we extend stacks with the operation
MULTIPOP(S, k)? MULTIPOP(S, k) behaves as follows:

removes the k top objects of stack S, if S has ≥ k
elements
pops the entire stack S if it contains less than k elements.

Lecture 2: Amortized Analysis



The aggregate method for stack operations (1)

Fundamental stack operations:
PUSH(S, x): pushes object x onto stack S.
POP(S): pops the top of stack S and returns the popped
object.

Both operations run in O(1) time⇒ it is ok to assign cost 1
to both operations.

⇒ the total cost of a sequence of n PUSH and POP operations
is n⇒ the actual running time for n operations is Θ(n).

What happens if we extend stacks with the operation
MULTIPOP(S, k)? MULTIPOP(S, k) behaves as follows:

removes the k top objects of stack S, if S has ≥ k
elements
pops the entire stack S if it contains less than k elements.

Lecture 2: Amortized Analysis



The aggregate method for stack operations (2)
Assumption: STACKEMPTY(S) returns TRUE if S is an empty
stack, and FALSE otherwise.
MULTIPOP(S, k)
1 while not STACKEMPTY(S) and k 6= 0
2 POP(S)
3 k := k − 1

Total cost of MULTIPOP(S, k) on a stack S with s elems. is min(s, k).
⇒ the running time of this operation is a linear function of min(s, k).

Assume a sequence of n PUSH, POP, and MULTIPOP

operations on an initially empty stack.
The worst-case cost of a MULTIPOP operation in this
sequence is O(n), since the stack size is at most n.

⇒ the worst-case cost of any stack operation is O(n)
⇒ the worst-case cost of the sequence of n operations is

O(n2), since we may have O(n) MULTIPOP operations
costing O(n) each.
This bound is not tight; we shall do better.

Lecture 2: Amortized Analysis



The aggregate method for stack operations (2)

Each object can be popped at most once for each time it is
pushed⇒ the number of times that POP can be called on
a nonempty stack, including calls with MULTIPOP, is ≤ the
number of PUSH operations, which is at most n.

⇒ for any n, any sequence of n PUSH, POP, and MULTIPOP

operations takes O(n) time.
The amortized cost of an operation is the average
O(n)/n = O(1).

Remark. The amortized-case analysis did not use any
probabilistic argument. We actually showed a worst case bound
O(n) on a sequence of n operations. The amortized cost is the
average cost in such a sequence of n operations, that is, O(1).

Lecture 2: Amortized Analysis



The aggregate method for a binary counter (1)

A k -bit binary counter counts upward from 0.
Is represented by an array A[0..k − 1] of bits, where
A.length = k .
The lowest-order bit is stored in A[0], and the highest-order
bit is stored in A[k − 1]. Thus, x =

∑k−1
i=0 A[i] · 2i .

Initially, x = 0, thus A[0] = A[1] = . . . = A[k − 1] = 0.
The following procedure adds 1 modulo 2k to the counter:

INCREMENT(A)
1 i := 0
2 while i < A.length and A[i] = 1
3 A[i] := 0
4 i := i + 1
5 if i < A.length
6 A[i] := 1

Lecture 2: Amortized Analysis



The aggregate method for a binary counter (2)

The cost of INCREMENT is linear in the number of bits flipped.

An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 INCREMENT

operations. Bits that flip to achieve the next value are shaded. The running cost for

flipping bits is shown at the right. Note that the total cost is never more than twice the

total number of INCREMENT operations.

Lecture 2: Amortized Analysis



The aggregate method for a binary counter (3)

A straightforward worst-case runtime analysis yields a bound
that is not tight

A single execution of INCREMENT takes time Θ(k) in the
worst case, when all elements of A are 1.
⇒ a sequence of n INCREMENT operations on an initially 0
counter takes time O(nk) in the worst case.

The analysis can be tightened if we notice that, in a sequence
of n INCREMENT operations, A[0] flips n times, A[1] flips bn/2c
times, . . . ,A[i] flips bn/2ic times, etc. For i > blog2 nc, bit A[i]
never flips. ⇒ the total number of flips in the sequence is

blog2 nc∑
i=0

⌊ n
2i

⌋
< n

∞∑
i=0

1
2i = 2 · n.

The worst time for the sequence is O(n)

⇒ the amortized cost is O(n)/n = O(1).

Lecture 2: Amortized Analysis



2. The accounting method

Main ideas
We assign different amortized costs to different operations.
Some operations have amortized cost more or less than they
actually cost.

When an operation’s amortized cost exceeds its actual cost, the
difference is assigned to specific objects in the data structure as
credit.
Credit can be used later on to help pay for operations whose
amortized cost is less than their actual cost. This is very different
from the aggregate method, where all operations have the same
amortized cost.

Total credit associated with the data structure := amount by
which total amortized cost incurred exceeds total actual cost
incurred.

Total amortized cost of a sequence of operations should be
always ≥ total actual cost⇔ total credit should be always ≥ 0.

Lecture 2: Amortized Analysis



The accounting method for stack operations (1)

Let’s assume the following amortized costs:

Operation Amortized cost Actual cost
PUSH 2 1
POP 0 1
MULTIPOP(k) 0 min(s, k)

where s is the number of elements stored in the stack.

We will show that we can pay for any sequence of stack
operations by charging the amortized costs.

Lecture 2: Amortized Analysis



The accounting method for stack operations (2)

Analogy: Stack↔ stack of plates with 1$ on top of each plate.
Actual cost of PUSH/POP operations = 1$.
Amortized cost of PUSH = 2$ = 1$ actual charge + 1$
credit on the plate being pushed.
Amortized cost of POP = 0$ = 1$ credit from the plate
being popped - 1$ actual cost charged.
By the same reasoning, the amortized cost of MULTIPOP

should be 0$.
Start with an empty stack.

For any sequence of n PUSH, POP, and MULTIPOP
operations, the total cost is ≤ total amortized cost.

Total amortized cost of n operations is ≤ 2 · n = O(n)
⇒ total cost is O(n)⇒ amortized cost is O(n)/n = O(1).

Lecture 2: Amortized Analysis



The accounting method for a binary counter (1)

Let’s study the cost of n INCREMENT operations of a binary
counter, starting from 0:

Running time = number of bits flipped⇒ we assign a unit of
cost (1$) to the flipping of a bit.

Let’s assume the following amortized costs:
Operation Amortized cost Actual cost
flip 0→ 1 2 1
flip 1→ 0 0 1

Intuition: At any point in time, every 1 in the counter has
1$ credit on it; to reset it to 0 we need not charge anything
because we pay with the credit on the bit.

The number of 1 bits in the counter is always ≥ 0⇒ the
total credit is always ≥ 0.
⇒ total amortized cost of n INCREMENT operations is ≤ 2n,
thus it is O(n).
The total actual cost is ≤ the total amortized cost⇒ total
actual cost is also O(n).

Lecture 2: Amortized Analysis



The potential method
How does it work? (1)

represents prepaid work as potential energy, or just
potential, that can be released to pay for future operations.
The potential is associated with the data structure as a
whole rather than with specific objects within the data
structure.

How does it work?
It starts with an initial data structure D0 on which n
operations are performed.
For each 1 ≤ i ≤ n, let ci be the actual cost of the i-th
operation, and Di the data structure resulted after the i-th
operation.
We assume given a potential function Φ that maps any
data structure Di to a value Φ(Di) ∈ R, called the potential
associated with Di .

Lecture 2: Amortized Analysis



The potential method
How does it work? (2)

The amortized cost of the i-th operation w.r.t. Φ is

ĉi := ci + Φ(Di)− Φ(Di−1),

that is, the actual cost of the i-th operation plus the
increase in potential due to the operation.
The total amortized cost of a sequence of n operations is

n∑
i=1

ĉi =
n∑

i=1

(ci + Φ(Di)− Φ(Di−1))

=
n∑

i=1

ci + Φ(Dn)− Φ(D0).

⇒ if we define Φ such that Φ(Dn) ≥ Φ(D0), then the total
amortized cost

∑n
i=1 ĉi is ≥ total actual cost

∑n
i=1 ci .

Lecture 2: Amortized Analysis



The potential method
How does it work? (3)

In practice, we don’t know n, therefore we define Φ such that
Φ(Di) ≥ Φ(D0) for all i .

This condition guarantees that every performed operation
can be payed in advance.

It is often convenient to define Φ(D0) = 0 and then show that
Φ(Di) ≥ 0 for all i .

Intuition:
If Φ(Di )− Φ(Di−1) > 0 then the amortized cost ĉi
represents an overcharge to the i-th operation⇒ the
potential of the data structure increases.
If Φ(Di )− Φ(Di−1) > 0 then the amortized cost ĉi
represents an undercharge to the i-th operation⇒ the
actual cost of the operation is payed by the decrease in the
potential.

Lecture 2: Amortized Analysis



The potential method for stack operations

Consider again stacks with PUSH, POP and MULTIPOP

operations, and let D0 be the empty stack.
Define Φ(Di ) :=number of elements in Di . Then Φ(D0) = 0 and
Φ(Di ) ≥ 0 for all i ⇒ total actual cost ≤ total amortized cost.
We recall that the actual cost of every stack operation is 1,
thus ci = 1 for all i .
Consider Di−1 has s elements.

If the i-th operation is PUSH then
Φ(Di )− Φ(Di−1) = (s + 1)− s = 1, therefore the amortized
cost of the i-th operation is
ĉi = ci + Φ(Di )− Φ(Di−1) = 1 + 1 = 2.

If the i-th operation is MULTIPOP and k ′ = min(k , s), then
Φ(Di )− Φ(Di−1) = −k ′, therefore in this case
ĉi = ci − k ′ = k ′ − k ′ = 0.
Similarly, the amortized cost for POP at step i is ĉi = 0.

⇒ total amortized cost of the sequence of n ops. is ≤ 2 · n, thus
O(n), hence total actual cost is also O(n).

Lecture 2: Amortized Analysis



The potential method for a binary counter

Define Φ(Di) := bi := the number of 1s in counter Di .
If the i-th operation resets ti bits to 0, then

the actual cost of this operation is ci ≤ ti + 1 because, in
addition to resetting ti bits to 0, INCREMENT sets at most
one bit to a 1.
⇒ the potential difference is

Φ(Di )− Φ(Di−1) ≤ (bi−1 − ti + 1)− bi−1 = 1− ti .

⇒ the amortized cost is

ĉi = ci + Φ(Di )− Φ(Di−1) ≤ 1 + ti + (1− ti ) = 2.

If the sequence of n INCREMENTs starts at zero, then
Φ(D0) = 0. Since Φ(Di) ≥ 0 for all i , we have

n∑
i=1

ci ≤
n∑

i=1

ĉi ≤ 2 n

⇒ worst-case cost is O(n).

Lecture 2: Amortized Analysis



Exercises

1. If a MULTIPUSH operation were included in the set of stack
operations, would the O(1) bound on the amortized cost of
stack operations continue to hold?

2. A sequence of n operations is performed on a data
structure. The i-th operation costs i if i is an exact power of
2, and 1 otherwise. Use an aggregate method of analysis
to determine the amortized cost per operation.

3. Suppose we wish not only to increment a counter but also
to reset it to zero (that is, set all its bits to 0). Show how to
implement a counter as a bit vector so that any sequence
of n INCREMENT and RESET operations takes time O(n) on
an initially zero counter. (HINT: Keep a pointer to the
high-order 1.)

4. Redo Exercise 2 using a potential method of analysis.

Lecture 2: Amortized Analysis



Exercises

5. Show that if a DECREMENT operation were included in the
k -bit counter example, then n operations could cost as
much as Θ(nk) time.

Lecture 2: Amortized Analysis



References

Chapter 18: Amortized Analysis of
T. H. Cormen, C. E. Leiserson. R. L. Rivest. Introduction to
Algorithms. The MIT Press, 2000.

Lecture 2: Amortized Analysis


