
ADVANCED DATA STRUCTURES

Lectures 1 and 2

Introduction. Binary search trees and red-black trees.
Efficiency issues

Mircea Marin
mircea.marin@e-uvt.ro

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Organizatorial items

Lecturer and Teaching Assistant: Mircea Marin
email: mircea.marin@e-uvt.ro

Course objectives:
1 Become familiar with some of the advanced data structures

(ADS) and algorithms which underpin much of today’s
computer programming

2 Recognize the data structure and algorithms that are best
suited to model and solve your problem

3 Be able to perform a qualitative analysis of your algorithms
– time complexity analysis

Course webpage:
http://web.info.uvt.ro/˜mmarin/lectures/ADS
Handouts: will be posted on the webpage of the lecture
Grading: 40% final exam (written), 60% labwork
(mini-projects)
Attendance: required

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2

http://web.info.uvt.ro/~mmarin/lectures/ADS


Organizatorial items

Lab work: implementation in C++ of applications, using
data structures and algorithms presented in this lecture
Requirements:
B Be up-to-date with the presented material
B Prepare the programming assignments for the stated

deadlines
Prerequisites:

1 A good understanding of the data structures and related
algorithms, taught in the lecture DATA STRUCTURES.

2 Familiarity with the C++ programming language.
3 Recommended IDEs: Eclipse or Code::Blocks

Recommended textbook:
Cormen, Leiserson, Rivest. Introduction to Algorithms. MIT
Press.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Dynamic sets
Elements of a dynamic set

A dynamic set is a collection of objects that may grow, shrink,
or otherwise change over time.

Objects have fields.
A key is a field that uniquely identifies an object.
I In all implementations of dynamic sets presented in this

lecture, keys are assumed to be totally ordered.
Operations on a dynamic set are grouped into two
categories:

1 Queries: they simply return information about the set.
Typical examples: SEARCH, MINIMUM, MAXIMUM,
SUCCESSOR, PREDECESSOR

2 Modifying operations: INSERT, DELETE

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Operations on a dynamic set S

1 search(S, k): returns a pointer p to an element in S such that
p → key = k , or Nil if no such element exists.

2 minimum(S): returns a pointer to the element of S whose key is
minimum, or Nil is S has no elements.

3 maximum(S): returns a pointer to the element of S whose key is
maximum, or Nil is S has no elements.

4 successor(S, x): returns the next element larger than x in S, or
Nil if x is the maximum element.

5 predecessor(S, x): returns the next element smaller than x in S,
or Nil if x is the minimum element.

6 insert(S,p): augment S with the element pointed to by p.
If p is Nil, do nothing.

7 del(S,p): remove the element pointed to by p from S.
If p is Nil, do nothing.

Operations 1-5 are queries; operations 6-7 are modifying operations.
Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Dynamic sets
Implementation issues

I The complexity of operations of a dynamic set is measured
in terms of its size n = number of elements.

I Different implementations of dynamic sets vary by the
runtime complexity of their operations

The choice of an implementation depends on the
operations we perform most often.
Typical examples:

Binary search trees
Red-black trees
B-trees
Binomial heaps
Fibonacci heaps
. . .

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Dynamic sets for efficient search
1. Binary search trees (Recap)

Relevant information is stored in the nodes of a binary tree
I every non-leaf node has a left and a right child.

Every node has a unique key, that is used to identify a
node:
The finding of a node with a particular key must be fast
⇒ the keys are distributed in a special way:

For every node, its key is larger then the keys of the nodes
to its left, and smaller than the keys of the nodes to its right.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
C++ classes

struct Node {
int key; // key
Node *p; // pointer to parent
Node *left; // pointer to left child
Node *right; // pointer to right child
... // satellite data

};
struct BSTree {

Node *root; // pointer to node at root position
... // operations on trees

};

p:
key: k
left:
right:

p:
key: k`
left:...
right:...

p:
key: kr
left:...
right:...

Leaf nodes are empty: they contain no data

Requirement: k` ≤ k ≤ kr

If n is the root node then n.p == 0.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
C++ classes

struct Node {
int key; // key
Node *p; // pointer to parent
Node *left; // pointer to left child
Node *right; // pointer to right child
... // satellite data

};
struct BSTree {

Node *root; // pointer to node at root position
... // operations on trees

};

p:
key: k
left:
right:

p:
key: k`
left:...
right:...

p:
key: kr
left:...
right:...

Leaf nodes are empty: they contain no data

Requirement: k` ≤ k ≤ kr

If n is the root node then n.p == 0.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
C++ classes

struct Node {
int key; // key
Node *p; // pointer to parent
Node *left; // pointer to left child
Node *right; // pointer to right child
... // satellite data

};
struct BSTree {

Node *root; // pointer to node at root position
... // operations on trees

};

p:
key: k
left:
right:

p:
key: k`
left:...
right:...

p:
key: kr
left:...
right:...

Leaf nodes are empty: they contain no data

Requirement: k` ≤ k ≤ kr

If n is the root node then n.p == 0.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
Implementation issues and diagrammatic representations

In OOP (e.g., C++), there are two ways to represent leaf nodes:

1 with the null pointer
2 with a single sentinel node NIL, which is also the root’s

parent.

Example (Diagrammatic representations)

26

17 41

30

38

47

50

Nil

or

26

17 41

30

38

47

50

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
Time complexity of operations

ASSUMPTION: S is an instance of BSTree, which represents a
binary search tree with n nodes.

operation average case worst case
S.search(k) O(log2 n) O(n)
S.minimum() O(log2 n) O(n)
S.maximum() O(log2 n) O(n)
S.successor(x) O(log2 n) O(n)
S.predecessor(x) O(log2 n) O(n)
S.insert(x) O(log2 n) O(n)
S.del(x) O(log2 n) O(n)

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees

Average case time complexity is O(log n) for all operations.
Worst case time complexity is O(n) for all operations.

Question: Can we improve the worst case time complexity of
binary search trees without many changes?

Answer: Yes; Red-black trees

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary Search trees versus Red-Black trees
Node structures

Binary search tree fields Red-black tree fields

key key

left,right: pointers to
children

left,right: pointers to
children

p: pointer to parent p: pointer to parent

color: RED or BLACK

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary Search trees versus Red-Black trees
Tree structures

Similarities: both kinds of trees satisfy the binary search
tree property:

if x is a node with left child y then y .key ≤ x .key
if x is a node with right child y then x .key ≤ y .key

Properties specific to red-black trees (the red-black
properties)

1 Every node is either red or black
2 The root is black
3 Every leaf NIL is black.
4 The children of a red node are black.
5 Every path from a node to a descendant leaf contains the

same number of black nodes.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Leaf nodes

For binary-search tress, no memory needs to be allocated
for leaf nodes. All pointers to a leaf node are assumed to
be Nil, which is 0.
For Red-black trees, it is convenient to represent all leaves
with a black sentinel node NIL:

The left child, right child, and parent of NIL are NIL.
Also, the parent of the root node of a red-black tree is
assumed to be NIL.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Red-black trees
Important notions and derived properties

NOTIONS:
Height h(n) of a node n = number of edges in a longest

path from n to a leaf.
Black height bh(n) of a node n = number of black nodes

(including NIL) on the path from n to a leaf, not
counting n.

DERIVED PROPERTIES:
1 bh(n) ≥ h(n)/2 for every node n.
2 The subtree rooted at any node x contains ≥ 2bh(x) − 1

internal nodes.
3 A red-black tree with n internal nodes has height
≤ 2 log2(n + 1).

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees and Red-black trees
Graphical representation

h = 3
6

3 7

2 5 8
(a) Binary search tree

h = 3, bh = 2

6
h = 2, bh = 2

3
h = 2, bh = 1

7

2 5
h = 1, bh = 1

8
(b) Red-Black tree

Nodes are represented by circles with the key value written inside.

Nodes may contain more data, not shown in the graphical representation.
For Red-Black trees, the circles are colored with the node colour.

Thick lines between nodes are the pointers from parent to children.

Dashed arrows are pointers from node to parent. They are usually not drawn.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Tree representations of a dynamic set S
Encodings in C++

As a binary search tree:
class Node { class BSTree {
public: public:

int key; Node* root; // pointer to root
Node* left; BSTree() { root = 0; }
Node* right; ...
Node* p; }
// constructors
...

}

As a red-black tree:
class RBNode { class RBTree {
public: public:

int key; RBNode* root; // pointer to root
RBNode* left; RBTree() { root = 0; }
RBNode* right; ...
RBNode* p; }
enum Color {RED, BLACK};
Color color;
// constructors
...

}

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Operations on Red-black trees

ASSUMPTION: S is an instance of RBTree, which represents a
red-black search tree with n nodes.

operation average case worst case
S.search(k) O(log2 n) O(log2 n)
S.minimum() O(log2 n) O(log2 n)
S.maximum() O(log2 n) O(log2 n)
S.successor(x) O(log2 n) O(log2 n)
S.predecessor(x) O(log2 n) O(log2 n)

These are query operations, implemented the same way
as for binary search trees.
The modifying operations insert and del must be
redesigned carefully, to guarantee that the newly produced
tree has the red-black properties.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Insertion in binary search trees
T .insert(z) where

T : binary search tree
z : pointer to node with z->key = v ,
z->left = z->right = Nil .

Effect: T and z are modified such that z is inserted at the right
position in T .

insert(Node∗ z) // method of class BSTree
1 y = Nil
2 x =root
3 while x 6= Nil
4 y = x
5 if z->key < x->key
6 x = x->left
7 else x = x->right
8 z->p = y
9 if y == Nil

10 root = z
11 else if (z->key < y->key)
12 y->left = z
13 else y->right = z

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Deletion from binary search trees

T .del(z) deletes node z from the binary search tree T

del(Node∗ z) // method of class BSTree
1 if z->left == 0 or z->right == 0
2 y := z
3 else y =successor(z)
4 if y->left 6= 0
5 x = y->left
6 else x = y->right
7 if x 6= 0
8 x->p = y->p
9 if y->p == 0

10 root = x
11 else if y == y->p->left
12 y->p->left = x
13 else y->p->right = x
14 if y 6= z
15 z->key = y->key
16 if y has other fields, copy them to z too
17 return y

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
Case 1: Deletion of a node z without children

Example

15

5 16

20

18 23

3 12

10 13 z

6

7

del(z)

15

5 16

20

18 23

3 12

10

6

7

Node with key 13 has no children
⇒ we simply remove it from the binary search tree.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
Case 2: Deletion of a node z with one child

Example

15

5 16 z

20

18 23

3 12

10 13

6

7

del(z)

15

5

20

18 23

3 12

10 13

6

7

Node z with key 16 has only one child
⇒ the child of z becomes the child of the parent of z

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Binary search trees
Case 2: Deletion of a node z with two children

15

5z 16

20

18 23

3 12

10 13

y 6

7

del(z)

successor
of z

156

5

y

z 16

20

18 23

3 12

10 13

7

7

15

6 16

20

18 23

3 12

10 13

7

7

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Red-Black trees
Example

26

17
14

10
7

3
Nil Nil

Nil

12
Nil Nil

16
Nil Nil

21
19

Nil 20
Nil Nil

23
Nil Nil

41
47

Nil Nil

30
28

Nil Nil

38
35

Nil Nil

39
Nil Nil

Figure: A balanced RB-tree with black-height 3

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Insertion and deletion in red-black trees
Remarks

The operations insert and del for binary search trees
can be run on red-black trees with n keys
⇒ they take O(log2(n)) time.
⇒ they may destroy the red-black properties of the tree:

insert of RED node might violate property 4; of
BLACK node might violate property 5.

del of RED node: no property violations; of
BLACK node might violate properties 2, 4, 5.

⇒ the red-black properties must be restored:
I Some nodes must change color
I Some pointers must be changed

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



LeftRotate and RightRotate

y
x γ

α β

x
yα

β γ

T .RightRotate(y)

T .LeftRotate(x)

The rotation operations on a binary search tree.
T .RightRotate(x) transforms the configuration of the two nodes on
the left into the configuration on the right by changing a constant
number of pointers.
The configuration on the right can be transformed into the
configuration on the left by the inverse operation T .LeftRotate(y).
The two nodes may appear anywhere in a binary search tree T . The
letters α, β, and γ represent binary subtrees.

A rotation operation preserves the inorder ordering of keys: the keys
in α precede x->key, which precedes the keys in β, which precede
y->key, which precedes the keys in γ.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



LeftRotate and RightRotate

y
x γ

α β

x
yα

β γ

T .RightRotate(y)

T .LeftRotate(x)

The rotation operations on a binary search tree.
T .RightRotate(x) transforms the configuration of the two nodes on
the left into the configuration on the right by changing a constant
number of pointers.
The configuration on the right can be transformed into the
configuration on the left by the inverse operation T .LeftRotate(y).
The two nodes may appear anywhere in a binary search tree T . The
letters α, β, and γ represent binary subtrees.
A rotation operation preserves the inorder ordering of keys: the keys
in α precede x->key, which precedes the keys in β, which precede
y->key, which precedes the keys in γ.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



LeftRotate and RightRotate

Assumption: x->right 6=NIL.

LeftRotate(Node∗ x) // method of class BSTree
1 y = x->right
2 x->right = y->left
3 if y->left 6= Nil
4 y->left->p = x
5 y->p = x->p
6 if x->p == Nil
7 root = y
8 else if x == x->p->left
9 x->p->left = y
10 else x->p->right = y
11 y->left = x
12 x->p = y

The code for RightRotate is similar.
Both LeftRotate and RightRotate run in O(1) time.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



LEFTROTATE illustrated

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Insertion
Main idea

To insert a node x in a red-black tree T , proceed as follows:
Perform insertion of x in T , as if T were a binary search
tree.
Color x to be RED.
Adjust the color of the modified tree, by recoloring nodes
and performing rotations.
These ideas are implemented in the RBInsert procedure.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RB-trees
Insertion

RBInsert(Node∗ z) // method of class RBNode
1 y = NIL
2 x = root
3 while x 6= Nil
4 y = x
5 if z->key < x->key
6 then x = x->left
7 else x = x->right
8 z->p = y
9 if y == NIL

10 then root = z
11 else if z->key < y->key
12 then y->left = z
13 else y->right = z
14 z->left = NIL
15 z->right = NIL
16 z->color = RED
17 RBInsertFixup(z)

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Analysis of RBInsert

RBInsert ends by coloring the new node z red.
Then it calls RBInsertFixup because we could have
violated some red-black properties:

The red-black properties 1, 3, and 5 are not violated.
Property 2 is violated if z is the root.
Property 4 is violated if z->p is RED, because both z and
z->p are RED.

These violations are removed by calling RBInsertFixup.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Analysis of RBInsert

RBInsert ends by coloring the new node z red.
Then it calls RBInsertFixup because we could have
violated some red-black properties:

The red-black properties 1, 3, and 5 are not violated.
Property 2 is violated if z is the root.
Property 4 is violated if z->p is RED, because both z and
z->p are RED.

These violations are removed by calling RBInsertFixup.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBInsertFixup

RBInsertFixup(Node∗ z) // method of class RBNode
1 while z->p->color == RED
2 if z->p == z->p->p->left
3 then y = z->p->p->right
4 if y->color == RED
5 then z->p->color = BLACK // Case 1
6 y->color = BLACK // Case 1
7 z->p->p->color = RED // Case 1
8 z = z->p->p // Case 1
9 else if z == z->p->right

10 then z = z->p // Case 2
11 LeftRotate(z) // Case 2
12 z->p->color = BLACK // Case 3
13 z->p->p->color = RED // Case 3
14 RightRotate(z->p->p) // Case 3
15 else
16 (same as t

¯
hen clause with right and left exchanged)

17 root->color = BLACK

Remark: The following loop invariant holds at the start of each while loop:
1 z is RED

2 There is at most one red-black violation: z is RED (property 2), or z and z->p
are both RED

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBInsertFixup

RBInsertFixup(Node∗ z) // method of class RBNode
1 while z->p->color == RED
2 if z->p == z->p->p->left
3 then y = z->p->p->right
4 if y->color == RED
5 then z->p->color = BLACK // Case 1
6 y->color = BLACK // Case 1
7 z->p->p->color = RED // Case 1
8 z = z->p->p // Case 1
9 else if z == z->p->right

10 then z = z->p // Case 2
11 LeftRotate(z) // Case 2
12 z->p->color = BLACK // Case 3
13 z->p->p->color = RED // Case 3
14 RightRotate(z->p->p) // Case 3
15 else
16 (same as t

¯
hen clause with right and left exchanged)

17 root->color = BLACK

Remark: The following loop invariant holds at the start of each while loop:
1 z is RED

2 There is at most one red-black violation: z is RED (property 2), or z and z->p
are both RED

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBInsertFixup(z)
Diagrammatic description

The new node z is RED, and inserted at the bottom of tree T . If
the parent of z is red, we must fix T .

Case 1: parent and uncle of z are RED

x
x x

xz
y recolor

x
x x

x

z
. . .RBInsertFixup(z)

x
x x

xz
y recolor

x
x x

x

z
. . .RBInsertFixup(z)

Case 2: z is right child, and its uncle is BLACK

x
x x

xα

β γ

z
y LEFTROTATE

x
x x

x
α β

γ

. . .Case 3

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBInsertFixup(z)
Diagrammatic description (continued)

Case 3: z is left child, and its uncle is BLACK

x
x x

xz
α β

γ δ ε

recolor
x

x x
xz

α β

γ δ ε

RIGHTROTATE

x
x

x x
x

z
α β

δ

γ

ε

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



Deletion

We will present a procedure T .RBDelete(x) that performs
deletion of node x from RB-tree T in O(log2(n)) time.

T .RBDelete(x) is a subtle adjustment of the deletion
procedure for binary search trees. After splicing out a
node, it calls an auxiliary procedure RBDeleteFixup(x)
that changes colors and performs rotations to restore the
red-black properties.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDelete versus del

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
RBDelete(z) DEL(z)

1 if z->left == Nil or z->right == Nil 1 if z->left == Nil or z->right == Nil
2 y := z 2 y := z
3 else y =successor(z) 3 else y =successor(z)
4 if y->left 6= Nil 4 if y->left 6= Nil
5 x = y->left 5. x = y->left
6 else x = y->right 6 else x = y->right
7 x->p = y->p 7 if x 6= Nil
8 if y->p = Nil 8 x->p = y->p
9 root = x 9 if y->p = Nil

10 else if y == y->p->left 10 root = x
11 y->p->left = x 11 else if y == y->p->left
12 else y->p->right = x 12 y->p->left = x
13 if y 6= z 13 else y->p->right = x
14 z->key = y->key 14 if y 6= z
15 if y has other fields, 15 z->key = y->key

copy them to z too 16 if y has other fields,
16 if y->color = BLACK copy them to z too
17 RBDeleteFixup(x) 17 return y
18 return y

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDelete(z)
Implementation analysis

T .RBDelete(z) returns node y which is spliced out from T .
. If y is red, the tree without y is red-black.
. Otherwise, y is black and the tree without y may violate the

following red-black properties:
property 2: when y is the root, and y has only one child,
which is red.
property 4: when x and y->p (which becomes x->p) are
both red.
property 5: all paths that previously contained y have one
fewer black nodes.

To restore the red-black properties, we call RBDeleteFixup(x)
where x is either

the sole child of y , before y was spliced out, or
the sentinel node Nil

Note: In both cases, x->p = y->p

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDELETEFIXUP(x )

RBDeleteFixup(x)
1 while x 6= root and x->color == BLACK
2 if x == x->p->left
3 w = x->p->right
4 if w->color = REDxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
5 w->color = BLACK Case 1
6 x->p->color = RED Case 1
7 LeftRotate(x->p) Case 1
8 w = x->p->right Case 1
9 if w->left->color == BLACK and w->right->color == BLACK

10 w->color = RED Case 2
11 x = x->p Case 2
12 else if w->right->color == BLACK
13 w->left->color = BLACK Case 3
14 w->color = RED Case 3
15 RightRotate(w) Case 3
16 w = x->p->right Case 3
17 w->color = x->p->color Case 4
18 x->p->color = BLACK Case 4
19 w->right->color = BLACK Case 4
20 LeftRotate(x->p) Case 4
21 x = root Case 4
22 else (same as then clause, with right and left exchanged)
23 x->color = BLACK

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDeleteFixup(x)
Implementation analysis

. Lines 1-22 are intended to move the extra black up the tree
until either

1 x points to a red node⇒ we will color the node black (line
23)

2 x points to the root⇒ the extra black can be simply
"removed"

3 Suitable rotations and recolorings can be performed.

. In lines 1-22, x always points to a non-root black node that
has the extra black, and w is set to point to the sibling of x .
The while loop distinguishes 4 cases. See figure on next
slide, where:

Darkened nodes are black, heavily shaded nodes are red,
and lightly shaded nodes can be either red or black.
Small Greek letters represent arbitrary subtrees.
A node pointed to by x has an extra black.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDeleteFixup(x)
Implementation analysis

. Lines 1-22 are intended to move the extra black up the tree
until either

1 x points to a red node⇒ we will color the node black (line
23)

2 x points to the root⇒ the extra black can be simply
"removed"

3 Suitable rotations and recolorings can be performed.
. In lines 1-22, x always points to a non-root black node that

has the extra black, and w is set to point to the sibling of x .
The while loop distinguishes 4 cases. See figure on next
slide, where:

Darkened nodes are black, heavily shaded nodes are red,
and lightly shaded nodes can be either red or black.
Small Greek letters represent arbitrary subtrees.
A node pointed to by x has an extra black.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDeleteFixup(x)
Implementation analysis

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDeleteFixup(x)
Implementation analysis

The four cases in the while loop:
The only case that can cause the loop to repeat is case 2.

(a) Case 1 is transformed into case 2,3, or 4 by exchanging colors
of nodes B and D and performing a left rotation.

(b) In case 2, the extra black represented by the pointer x is moved
up the tree by coloring node D red and setting x to point to B. If
we enter case 2 through case 1, the while loop terminates,
since the color c is red.

(c) Case 3 is transformed to case 4 by exchanging the colors
of nodes C and D and performing a right rotation.

(d) In case 4, the extra black represented by x can be removed
by changing some colors and performing a left rotation.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



RBDelete
Time complexity analysis

The height of the RB-tree is O(log2(n))⇒ the total cost of
the procedure without the call to RBDeleteFixup is
O(log2(n)).
Within the RBDeleteFixup call, cases 1, 3, 4 each
terminate after a constant number of color changes and
≤ 3 rotations. Case 2 is the only case in which the while
loop can be repeated, and then the pointer x moves
upward at most O(log2(n)) times, and no rotations are
performed. Thus
⇒ RBDeleteFixup(x) takes O(log2(n)) time and performs at

most 3 rotations.

⇒ The overall time of RBDelete(x) is also O(log2(n)).

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2



References

Chapters 13 (Binary Search Trees), 14 (Red-Black trees),
and Section 5.5 from the book

Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest. Introduction to Algorithms. McGraw Hill, 2000.

Mircea Marin ADVANCED DATA STRUCTURES Lectures 1 and 2


