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Abstract

Research in the field of cloud identification, cloud advection, and solar

radiation is vast. This report presents and describes the state of the art

for the three respective study fields. The strengths and weaknesses of each

methods are accentuated to reveal improvement areas. The report draws

conclusions for each topic and states objectives for research focus.
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1 Introduction

Energy is crucial to human expansion and industrial development. It can be

harnessed from various sources using multiple methods. Some of the sources are

finite (coal) and will be consumed, others are renewable (wind, water, sunlight)

and can not be depleted. One of these sources of energy is sunlight which can be

captured by photovoltaic (PV) solar panels that transform exposure to sunlight

into electrical power by a physical and chemical phenomenon. This process

proved to be highly efficient and favored by power plants, the effect being that

a greater percent of energy is generated through photovoltaics year after year.

However powerful and inexhaustible this resource is, solar radiation is fluc-

tuating and can cause power grid instability which means there is an imbalance

between energy input and consumption. The main reason solar radiation is

inconsistent are transient clouds that obstruct sunlight from hitting PV pan-

els. Efforts to identify clouds and predict their position in time to help diminish

their impact on power output variation arose and many of them succeeded under

certain conditions.

The ramifications of transient clouds don’t apply just to PV systems, but to

remote sensing systems as well. Change monitoring is the process that involves

the analysis of spectral information from satellite snapshots of Earth with the

purpose to detect change in landscape features over time. Such activities are

hindered by the presence of clouds that block land information from reaching

the satellite’s sensor. Identification of cloud contaminated images and masking

of cloud and shadow pixels is an important preprocessing step for any remote

sensing activity.

In this report, I present and describe state of the art methods and tech-

niques in cloud detection and solar radiation variability estimation. In figure

1, the presented papers are grouped into four categories and ordered by year of

publishing, and are connected by arrows that reveal connection and relevancy

of each study. Each section begins with a brief description of the importance

of the topic, a table displaying succinct contributions of the studies included,

followed by a description of each method in chronological order of publishing,

and conclusions. Section 2 contains techniques and methods regarding detection
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of clouds in satellite and ground images. Section 3 examines the research that

went into identification of movement and estimation of cloud advection. Section

4 reviews approaches that correlate solar radiation with cloud movement. Then,

in section 5, a proposal of my objectives is stated, and the report is concluded

with section 6.
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Table 1: State of Art connections

Related Screening Motion Radiation

Panofsky-Brier;

Staniforth-Côté

Caselles; Unser

Markham

Gomez-Chora;

Vermote-Saleous;

Luo; Soille;

Wildt; Zhang

Daymond-

Shepherd;

Danaher;

Walthalt;

Hagolle; Jin

Hall

Pebay

Ju-Roy

Müller-Wilm

Stowe

Bosch

Liu; Sundaram

Peng; He-Sun;

Shusterman

TIPS

Wang

ACCA

ACCA

Mart́ınez

Fmask

Goodwin

Escrig

Mecikalski

Tmask

Fmask 3.2

Cheng

MFmask

CDI

ATSA

Nan Chen

Random

Forest

Fmask 4.0

Hamill

Farnebäck

Escrig

LCE

VOF

CBM

CSA & CCM

IPSI

Silva

Harty

CMAE

Mart́ınez

K.H.Kim

Cheng

Kriging

CIRACast

Luiz

CMAE
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2 Cloud Detection

2.1 Importance of Cloud Detection

Since the first satellite snapshots of Earth were made available by multi-spectral

sensors, people started to investigate them and identify features of interest. Re-

searchers started monitoring environment change such as biophysical trends,

rates of change, quantifying disturbance of fire events, attack of insects, the in-

fluence of human agricultural and/or industrial activities like forest harvesting,

urbanization and expansion. The problem imposed with using satellite imagery

was the contamination with aerosols and clouds. They are a great deal of trou-

ble because 2/3 of the Earth’s surface is covered in clouds, therefore information

about surface change is blocked by them. Clear pictures of Earth were neces-

sary for monitoring activities and the volume of data was growing larger at a

fast pace, but the manual, human observation process of tagging pictures with

clouds was slowing studies workflows. From the desire of automating the pro-

cess of removing cloud contamination, several cloud assessment techniques were

developed and improved to the point of drawing a contour over cloudy regions

and masking them out. Most representative techniques are shown in Table 2

and are described in subsection 2.2.

2.2 History of Cloud Detection

TIPS

In 1984, Su Jih-Jui [73] published a paper in which he described one of the earli-

est steps towards cloud screening, an algorithm that would automatically assess

cloud cover. It was incorporated into the Thematic Mapper Image Processing

System (TIPS), which was the ground system of the Thematic Mapper sensor

aboard Landsat 4 and Landsat 5 satellites. Due to the computing limitations at

the time of development, the algorithm was constrained and run under reduced

computational load. These hardware limitation made it be insensitive to warm

clouds, not be able to discriminate cloud from snow as expected, misclassify

bright features (like deserts) as clouds, and have difficulties when the sun was

at a low elevation.
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Table 2: Remote sensing timeline

1984 · · · •
The Thematic Mapper Image Processing System
incorporates an algorithm to detect presence of clouds
in a scene.

1999 · · · •
Bin Wang proposes a fusion technique to automatically
detect and remove clouds from Landsat images.

2000 · · · •
ACCA is developed to aid in distinguishing cloudy
images from clear scenes.

2006 · · · •
Richard Irish documents and validates ACCA’s
performance.

2011 · · · •
Mart́ınez-Chico makes a cloud classification based on
radiation data and sky images.

2011 · · · •
Fmask, an object-based method for screening clouds
and shadows, is introduced.

2013 · · · •
Goodwin developes and automated method for
screening cloud and cloud shadow.

2013 · · · • Escrig detects clouds by averaging surface albedo.

2013 · · · •
Mecikalski quantifies growing cumulus obscured by
cirrus clouds using properties derived from satellite
data.

2014 · · · •
Tmask is introduced as a variant of Fmask that uses
time series data.

2015 · · · •
Fmask 3.2 expands compatibility to Landsat 8 and
Sentinel 2 images.

2015 · · · •
Cheng develops a system to automatically classify
clouds and predict solar irradiance.

2017 · · · •
MFmask is launched to better detect cloud and cloud
shadow in mountainous areas.

2018 · · · •
David Frantz presents a Cloud Displacement Index to
separate clouds from bright surfaces.

2018 · · · •
ATSA is a new screening method for regions where
cloud-free observations are infrequent.

2018 · · · •
A machine learning-based masking algorithm is
presented by Nan Chen.

2018 · · · •
Nafiseh Ghasemian introduces two Random Forest
methods for cloud detection.

2019 · · · •
Fmask 4.0 is introduced and integrated different
versions into a single release.
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ACCA

Later, the Automatic Cloud Cover Assessment (ACCA) algorithm was improved

to use the more capable resolution and additional bands of the new Enhanced

Thematic Mapper Plus (ETM+) sensor found aboard the Landsat 7 satellite.

Richard Irish presented the improved algorithm in the year 2000, and validated

its performance in 2006 [29,30]. Landsat 7 was launched with the mission to pro-

vide cloud-free images on the Earth’s landmasses, and ACCA was implemented

to aid in distinguishing cloud-contaminated images and discard them. The new

version used more bands than it’s predecessor, specifically bands 2 through 5

converted to top of atmosphere (TOA) reflectances and band 6 converted to

at-sensor temperature [43], and processed an image in two passes:

1. The first pass applied 8 filters to determine a precise cloud signature to

isolate them from other elements in the scene. These included a Brightness

Threshold, Normalized Snow Difference Index, Temperature Threshold,

two Composites, and three Ratios between pairs of bands to filter out

pixels that are unambiguous.

2. Data too ambiguous to be determined as cloud or non-cloud features were

analyzed further in the second pass by looking at band 6’s thermal data.

Based on the presence of snow or desert areas in the scene, a new cloud

signature is determined and threshold comparisons are made.

Non-cloud pixels with more than 5 neighboring cloud pixels are labelled as

cloud to extend the cloud cover and reflect the extent of unusable data. The

output is a cloud cover percentage score determined by a grid overlay.

Wang

In 1999 Wang [80] proposed a scheme to automatically detect and remove cloud

and shadow information from Landsat images. It used an image fusion tech-

nique to remove cloud and shadow contamination and integrate complementary

information into a composite image of two separate snapshots. This enabled

the production of a cloud-free image for a given geographic location using two

relative closely captured snapshots. A pre-processing step was needed before
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detecting clouds because the brightness of the two images are likely to be in-

consistent due to the different solar irradiance and atmospheric effects. This

correction was possible to a degree assuming a linear relation [6] between the

two brightness values.

The study used a thresholding method to distinguish clouds from ground

regions, by isolating pixels above a threshold determined from the image’s his-

togram. To ensure the detection was correct, a second lower threshold was used

when comparing the brightness values for absolute brightness difference. This

outputs a binary map for cloudy regions that is to be used later in the fusion of

the two images.

Threshold values were sufficient for detecting clouds because their reflectance

greatly differs from that of the ground, but shadows have much closer brightness

values to the ground. In contrast, regions covered by shadow are much smoother

in brightness change than regions not covered in shadow. Therefore, a wavelet

transform can be used to detect shadows because its absolute coefficients cor-

responding to shadow regions are much lower than those of other regions. The

specific transformation used was a discrete wavelet frame (DWF) [77]. Lower

absolute values between the two images correspond to shadow regions and are

output to another binary map.

To make a composite of the two images, the algorithm decides which regions

to integrate by using the two binary decision maps. The result is a fused image

with as much of the cloud and shadow regions removed (except for the parts were

they are overlapping in both images), and because of the wavelet transformation

artifacts are invisible in the final result.

Mart́ınez

In 2011, Mart́ınez et al. [44] used an approach based on the ratio of direct

solar radiation incident in the surface to extraterrestrial radiation and ground

sky images from a whole-sky camera TSI-800 to classify sky conditions in over

96 000 images taken between August 2009 and July 2010.

Typically, when processing radiometric data, clouds are characterized by

measuring global radiation and using a dimensionless index such as the hourly

clearness index kt, defined as the ratio of global irradiance to the extraterrestrial
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irradiance. This study used a different beam transmittance kb index computed

as the ratio kb = Bn/I0n, where Bn is direct solar radiation, and I0n is extrater-

restrial radiation, high values indicating clear sky conditions and low values

signaling overcast skies or aerosols. Several attenuation groups were computed

from the ranges of the kb index values and clouds in each image were classi-

fied according to these attenuation levels instead of the more traditional cloud

classification by base-height. The images underwent a visual check to separate

clouds that are not blocking the sun disk and to extract representative cloud

features for each level of attenuation. The final output is a cloud classification

for different classes of sky conditions, each class having it’s specific features.

Fmask

The following year, 2012, a new object-based algorithm for screening clouds

and their shadows is introduced by Zhu and Woodcock [84]. It was named

Fmask and was built on earlier approaches and detected cloud and cloud shadow

for Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus

(ETM+). Currently this algorithm is the most widely known technique for

cloud screening.

Fmask is threshold-based and identifies layers of potential clouds, shadows,

and snow, then tries to match cloud objects to potential shadow based on the

similar shapes the two have.

1. The potential cloud layer is identified in two passes. The first pass includes

several spectral tests designed to isolate pixels that sometimes are cloudy

and sometimes are clear: an universal Basic Test similar to the one used in

the first pass of ACCA, which separates most of cloudy pixels from snow

and vegetation; a modified version of the Whiteness Test proposed by

Gomez-Chova et al. (2008) [22] to exclude pixels not white enough to be

clouds; a Haze Optimized Transformation (HOT) Test proposed by Zhang

et al. (2002) [82] to separate haze and thin cloud from clear-sky pixels; a

spectral test similar to one used in ACCA to separate most of bright rocks

from clouds; a Water Test that selects pixels in certain NDVI ranges based

on the land and water values observed by Vermote & Saleous (2007) [78]

to use for the calculations in pass two. Potential cloud pixels are identified
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as pixels captured by the first four tests in pass one. Only if all potential

cloud pixels represent less than 99.9% of the image, will the algorithm

run the second pass, otherwise it will use the pixels directly for the cloud

mask. The second pass consists of using the rest of the pixels to compute

cloud probability over land and water separately because of the variable

nature of the temperature distributions and the range of reflectances.

2. The potential cloud shadow layer is identified by looking for pixels that

exhibit a darkening effect relative to their surroundings in the NIR band

(Luo et al., 2008) [42]. A flood-fill morphological transformation (Soille,

1999; Soille et al., 2003) [68, 69], is applied to extract the difference of

the original Band 4 (NIR) reflectance and the filled Band 4 reflectance as

potential shadow area.

3. The potential snow layer is depicted by the use of several spectral test

borrowed from the MODIS snow mapping algorithm (Hall et al., 2001),

but with a lower NDSI threshold to include more pixels that are covered

in snow less than 50%, such as forest areas. This threshold was also tested

by Wildt et al., 2007 [81] for snow mapping in data from the Meteosat

Spinning Enhanced Visible Infra-Red Imager.

Clouds and cloud shadows are matched by taking a cloud object and calcu-

lating a projected direction of its shadow with the use of the satellite sensor’s

viewing angle, the solar zenith angle, and the solar azimuth angle. Because

cloud height is not known, iterations with increasing values for cloud height are

made while calculated shadow and potential shadow layer similarity increases

or stays over 98%. When the iteration stops, the cloud shadow is determined

to be identified.

Goodwin

Many studies detect clouds by using methods that involve analysis of a single

date image. Time series approaches differ from single date methods in that

they highlight changes in reflectivity over time. In 2013, Goodwin et al. [21]

developed a four-pass processing method for automatically screening clouds by

analyzing multiple satellite images spread over time. The images were sources
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from Landsat’s TM and ETM+ sensors that captured them between 1999 and

2012. Available snapshots counted as low as 4 images per year in the beginning

and amounted up to about 37 images per year. A few pre-processing steps are

necessary to reduce reflectance variation in time series images over time. These

correction steps include the use of a topographic correction [15] and a modified

bidirectional reflectance distribution function (BRDF) [13,79].

After pre-processing, the proposed four-pass framework can begin processing

the temporal image sequence. Each pass consists of three steps:

• Sample a reference pixel from the time series using running statistics.

Compare all pixels to the reference and identify potential cloud/shadow

related outliers (that exceed a change threshold). The set of outliers to-

gether with a layer of differences of each pixel and its reference form the

output.

• Consider the outliers are seeds and use them together with the difference

layer to enable the application of a flood-fill technique. This is applied

until a threshold is met to map the extent of cloud/shadow areas.

• Separate the cloud/shadow pixels from other possible land changes. A

filter ratio of bands 1 and 7 is used for cloud identification and a cloud-

shadow matching algorithm for shadows.

Identified regions were expanded slightly to incorporate cloudy pixels at the

edges of clouds and shadows. The four passes of the algorithm are as follows:

1. Pass one identifies most of the cloud affected pixels. It uses a window of

365 days for selection of the reference pixel.

2. Pass two refines the identification of cloudy pixels with lower magnitude

of change. It uses a window of 4 years for selection of the reference pixel.

3. Pass three identified most fo the shadow affected pixels It involved a similar

approach to classification as clouds, but located significant low reflectance

outliers instead of high reflectance.

4. Pass four attributed shadow layers to their respective clouds using a sim-

plified adaptation of Fmask’s matching method [84].
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A question regarding interpretation of data arose from the cases where a

pixel as flagged as both cloud and shadow. As noted by Zhu & Woodcock [84],

the shadow of a high altitude cloud might fall on a cloud underneath it, so there

is need for a standard definition for what is to be considered a cloud pixel and

a shadow pixel. The study lead by Goodwin decided to categorize such a pixel

as cloud.

Escrig

Many studies used multispectral tests [9,14,36,62,63] to discriminate cloud from

land and water by using threshold values to separate pixels into groups, but in

2013 Escrig et al. [17] developed an algorithm to detect clouds using several

multispectral tests with one key difference being the use of variable thresholds

instead of fixed ones. These new thresholds for infrared and visible tests were

based on monthly averaged values determined from the analysis of mean min-

imum surface temperature and surface albedo [47]. Surface temperature data

was obtained from the Satellite Application Facility on support to Nowcasting

(SAFNWC) database for sea pixels and from the Spanish Meteorological State

Agency (AEMET) stations for land pixels, and surface albedo was synthesized

from two years of satellite image data.

Several tests were performed using the new threshold values and identified

clouds were classified by their top height – low, medium, or high altitude – and

opacity. This, together with the determination of motion vectors by binary cross

correlation, is done for forecasting purposes as power plants can highly benefit

from prediction of solar radiation over short-term periods.

The results of the multispectral tests were compared with data captured by

a whole-sky camera TSI-800 (same one as used by Mart́ınez) and they showed

the algorithm is reliably detecting clouds.

Mecikalski

As observed by others [10,17,21,46] clouds are not necessarily at the same alti-

tude, but are separated on different layers of altitude. A consequence of this is

that satellite images may contain overlapping clouds which impede the infrared

observations of low level clouds when the view is blocked by higher altitude
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clouds, thus making cloud monitoring difficult. Escrig et al. [17] categorized

clouds into low, medium, and high altitudes using sounding air measurements,

but did not address the overlapping issue. However, in 2013 Mecikalski et al. [45]

developed a method to quantify growing cumulus clouds beneath higher cirrus

clouds.

The proposed technique would use cloud derived parameters to detect cumu-

lus blocked by cirrus clouds in pre-convective environment. Convective initia-

tion is the development of convective clouds before a thunderstorm. To do this,

they retrieved the visible optical depth, emittance, liquid water path, and effec-

tive particle size cloud-derived parameters from the Geostationary Operational

Environmental Satellite (GOES) and began categorizing convective initiation

events into several visible optical depth (τ) 10-increment bins from 1 to 51+ (0

meaning cirrus free sky, 51 and over meaning sky is heavily blocked by cirrus).

After analyzing the time rates of change for the derived parameters, results

showed the following:

• when τ < 31 at least some of the information from the underlaying clouds

pass through cirrus.

• some parameters can be monitored for values reaching up to τ = 30 be-

cause of linear τ changes, while other only up to τ = 10, and some only

in the range 11 < τ < 20.

• for values τ < 20 over 90% of information is available as compared to clear-

sky situations. Cloud parameters for values bigger than this are invariant

and more noisy.

• in situations of τ > 40 cumulus is largely obscured by thick cirrus and no

information can be reliably captured.

Tmask

Most multi-temporal algorithms for detecting clouds assume that no land cover

change is taking place during the span of time series images so the referenced

image and the observed image are very similar ground-wise [21,23,33,80]. If the

two images are close in time, this is a reasonable assumption, but if the acquisi-

tion dates are distant, then land cover change due to agricultural or industrial
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development is causing problems in analysis of temporal images. Another as-

sumption is that no snow is present in the scene [21,80]. To address these issues

and to improve the Fmask algorithm [84], Zhu & Woodcock developed a new

algorithm called Tmask (multiTemporal mask) [85] that achieves more accu-

rate detection, takes land cover change into consideration, and better separates

clouds and snow.

Before running the masking steps, pre-processing is done on the time series

to extract TOA reflectances from the original Digital Number (DN) values.

To detect clouds and snow, Tmask uses the green band (Band 2) instead of the

traditionally used blue band (Band 1) for cloud and snow detection because it is

less sensitive to atmospheric influences. The thermal band was not used because

it is sensitive to non cloud-related phenomena and could produce commission

errors.

The first step in Tmask is to retrieve an initial cloud, cloud shadow, and

snow mask using the Fmask algorithm on each image in the time series. If for

any pixel the number of cloud-free observations is less than 15, Tmask will use

a backup algorithm to substitute Fmask for that pixel time series.

Based on the results of the previous step, Tmask is applied to the time

series to estimate TOA reflectances and identify pixels that differ dramatically

from the estimation. It will iterate up to five times create the estimations

and even if Fmask made at most five consecutive mistakes in the first step,

the calculations will not be influenced. Then the observed-to-estimated value

difference is assessed and pixels are identified as cloud or snow if difference is

higher than a threshold, and labelled as shadow if lower. To separate snow,

Tmask uses a modified version of the NLR algorithm [1] to generate a new

threshold that discriminates cloud from snow in Band 5 TOA.

This algorithm will better identify cloud shadows, and better separates cloud

and snow.

Fmask 3.2

In 2015, Zhu & Woodcock [83] improved and expanded on the original Fmask

[84] algorithm. Major improvements were made to cloud detection, cloud detec-

tion over water, potential shadow detection, cloud shadow detection, and snow
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detection. Expansion of the algorithm was made to include support for the

Landsat 8 and Sentinel 2 images.

The criterion used to label a pixel as cloud if probability was higher than

99% was removed to prevent overestimation of the cloud layer. The fixed thresh-

old for cloud detection over water is replaced with a dynamic threshold derived

statistically to improve detection over turbid or highly sediment-concentrated

water. The flood-fill transformation used for the Near Infrared (NIR) is also

applied on the Short Wave Infrared (SWIR) band to better extract potential

cloud shadows in areas with many dark objects. The cloud and shadow match-

ing iterations would stop if similarity reached 98% of the maximum measured

similarity. It was observed that premature stops would course matching errors,

so the stopping condition was decreased to 95%. The temperature threshold

used for snow detection was increased from 277 K to 283 K according to Riggs

and Hall’s revised MODIS snow algorithm [61]. Also, as pixels surrounding

clouds and cloud shadows can be influenced by thin edges, surrounding pixels of

snow covered areas can be problematic for remote sensing activities, therefore

the snow mark is dilated to include those pixels.

The algorithm was also expanded to offer support for cloud, cloud shadow,

and snow masking for images captured by Landsat 8 and Sentinel 2. Landsat

8 includes a new cirrus band that the improved Fmask algorithm will use to

generate the potential cloud layer by applying a simple cirrus test to identify

potential cloud pixels. The calculation of cloud probability will also use the

cirrus band to identify cirrus clouds. Sentinel 2 has no thermal band, so many

tests used on Landsat images can not be applied here. However, it has an extra

cirrus band that can be used with the same cirrus test that was developed for

Landsat 8’s cirrus band to detect clouds. Cloud shadows locations are predicted

from cloud object matching, but as no thermal band is available to determine

cloud height range and three-dimensional size, the clouds height is considered

fixed and objects are considered flat. Despite the absence of the thermal band,

the algorithm can still identify cloud, cloud shadow, and snow pixels.

14



MFmask

Because Fmask did not perform very well on images from mountainous regions,

a new algorithm was developed by Qiu et al. (2017) [58] to better detect clouds

and especially cloud shadows in mountainous terrain. Together with TOA re-

flectance and BT, MFmask uses Digital Elevation Model (DEM) data extracted

from the Advanced Spaceborne Thermal Emission and Reflection Radiometer

(ASTER).

Water detection is done to enable detection of clouds over land and wa-

ter separately, but the original Fmask algorithm sometimes identified terrain

shadows as water. This lead to misclassification of water and terrain pixels in

mountainous areas. To remove false positive water pixels from the water mask,

MFmask integrates a 10º slope threshold into the Water Test because bodies

of water usually have a lower slope, compared with higher slopes for terrain

shadows.

A dynamic threshold values is used by Fmask to detect clouds based on the

temperature probability derived from an entire image’s pixels’ BT. The prob-

lem with this is that the same threshold is used within the entire scene, but

in mountainous regions elevation changes greatly impact environment temper-

ature, meaning that clear-sky land pixels on top of mountains are cooler than

pixels at low elevations. MFmask builds a linear lapse rate model for the en-

vironmental temperature and normalizes BT based on the DEM, assuming the

elevation linearly affects temperature.

Cloud shadow is detected using a double projection technique that projects

a cloud shadow on a reference plane, then back projects the reference shadow

along the sunlight direction onto the DEM map. This will result in the cloud

shape as viewed from above. Then the shadow location is found by iterating

cloud height and matching clouds with their shadows. MFmask employs a to-

pographic correction model and an estimation of neighboring clouds base height

to eliminate terrain shadow, lakes, wetlands, and other dark features that might

confuse the search for the NIR and SWIR bands.
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Cloud Displacement Index

Fmask is susceptible to miss low altitude clouds in Sentinel 2 imagery, because

they are hard to catch using any of the available bands. The cirrus band can eas-

ily detect high altitude cirrus clouds, but other clouds are indistinctive. More-

over, artificial materials (man-made structures) are included in the potential

cloud pixel layer and cannot be separated from actual clouds. Thus, industrial

and residential areas might result in an abundance of false positives, as artificial

materials can be bright in the complete spectrum of Sentinel 2’s bands.

David Frantz (2018) [19] proposed a new Cloud Displacement Index (CDI)

that exploits Sentinel 2’s sensor configuration and by relying on viewing angle

effects, the CDI approach is demonstrated to be superior to the probabilistic

approach used in Fmask. Because of the sensor configuration, Band 7, 8, and

8A are highly correlated, but also a parallax effect can be seen for them (objects

at high altitudes are shifted in relative to the ground).

There are two ratios computed for Band 8 and 8A (similar for land sur-

faces): R8A,8, and Band 7 and 8A (similar for cloud tops): R8A,7. These ratios

are highly indicative of cloud locations because land surface is spatially smooth

in R8A,8, but granular in R8A,7, and clouds are opposite, granular in R8A,8, but

smooth in R8A,7. To highlight image contrast, a 1-pass variance filter [50] is ap-

plied on each ratio (V8A,7 and R8A,8), which shows clouds as highly contrasted

in V8A,8, but having much lower contrast in R8A,7. The CDI is computed from

a normalized differenced variance ratio of the two textures, and easily separates

low to mid clouds from artificial materials. He proposed this index to be imple-

ment into existing Fmask algorithm replacing the cloud probability module for

Sentinel 2 processing.

ATSA

Despite the improved accuracy of using multi-temporal images in cloud detec-

tion, these methods rely on several cloud-free observations, which are hard to

obtain in tropical and subtropical regions [34] where the persistence of cloud

cover greatly reduces the frequency of clear observations. In an attempt to

improve cloud and shadow detection in areas of persistent cloud cover, the Au-

tomatic Time-Series Analysis (ATSA) method was developed in 2018, that does
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not need as many parameters, nor as many bands as other methods.

ATSA runs in five main steps:

1. Calculate a cloud and shadow index from image bands. The cloud index is

calculated separately over land and water using two HOT transformations

specifically optimized for each scenario, then combined into a single cloud

index map. The shadow index is calculated using the NIR and SWIR

bands over land, and Bands 1 and 2 over water.

2. Detect initial cloud mask by running an unsupervised k-means classifier

to pixel samples. The classifier separates the samples into three classes:

clear surfaces, thin clouds, and thick clouds.

3. Remove non-cloud bright pixels and find very thin cloud pixels. This

is done by analyzing the cloud index time series for variations that are

influenced by clouds, but not by changes in land cover.

4. Estimate potential shadow by matching them to clouds using the geo-

metric relationship between cloud height, shadow location, and the sun’s

position. However, because estimating cloud height from a thermal sen-

sor is not possible on historical images without such a band, a range of

possible heights is used instead to estimate a cloud’s shadow location.

5. Detect shadow by predicting potential shadow zones using an inverse dis-

tance weighted interpolator. The darkness of the predicted pixels are

estimated as the difference between the calculated shadow index and the

predicted values. After that, a k-means classifier is used to separate pixels

into clear observations and cloud shadow. A time series analysis is applied

to refine the initial shadow mask.

Compared to Fmask [84], ATSA can deliver robust cloud and cloud shadow

masks in areas of persistent cloud cover. A limitation of ATSA is that it struggles

in snow covered regions, were it would classify snow as cloud, but this is rare in

tropical and subtropical images for which the algorithm was designed.
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SCM

Threshold based methods for detecting clouds are susceptible to misclassify

cloud and snow pixels due to similar optical properties in visible and near in-

frared bands. These methods become increasingly complicated with many satel-

lite bands to achieve snow-cloud separation. Chen et al. (2018) [8] developed

a machine learning algorithm to combat the problem of discriminating clouds

and snow.

The algorithm is a multilayer perceptron neural network with one hidden

layer that was trained using 20 million samples generated from radiative trans-

fer simulations. The TOA reflectance is simulated using a DISORT radiative

transfer model [38,70,75]. The advantages of using simulations to produce train-

ing data are: saving human effort in identifying images, availability of as much

data as needed, having a full range of climate possibilities, and fast adaptability

of the algorithm for new satellite sensors.

The Snow-ice Cloud Mask (SCM) algorithm is able to classify pixels after

training using fewer satellite bands than other methods. It has low misclassifi-

cation rates of clear-sky pixels and performs similar to the MODIS cloud mask

over vegetation images.

Random Forest

Another method for detecting clouds is using Random Forest (RF) based meth-

ods. Ghasemian and Akhoondzadeh (2018) [20] proposed two such methods that

take into consideration spectral characteristics as well as textural. Spectral fea-

tures are the TOA reflectance and BT values of Terra MODIS and Landsat 8

sensors. Textural features represent the spatial distribution of spectral informa-

tion. Clouds are variable, but their texture is different from ground and snow

cover texture due to influence of terrain, vegetation, and human activity. The

type of textural feature used by Ghasemian is Gray Level Co-occurrence Matrix

(GLCM) [7,65,76]. The spectral and textural features are used as input data.

The two proposed methods for classification are:

• The Feature Level Fusion Random Forest (FLFRF) algorithm which fuses

visible, infrared, and thermal features (both spectral and textural) into a
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single set, adjusts RF parameters, and identifies clouds, snow and ice, and

background pixels by classification using RF.

• The Decision Level Fusion Random Forest (DLFRF) algorithm which sep-

arates visible, infrared, and thermal features intro three sets, runs them

through the RF algorithm sequentially, adjusts each RF classifier, and

predicts the classification map using a voting matrix.

They also added Robust Extended Local Binary Pattern (RELBP) descrip-

tors to input features to assist the algorithms if the input set is incomplete.

This will enable them to improve cloud detection and more precisely identify

snow and ice pixels. In the absence of infrared data, adding RELBP helps

substantially.

FLFRF is more accurate than DLFRF, but not as efficient when the set of

input features is large. Compared to traditional methods, the two methods pro-

duce good results and does not overestimate cloud pixels, nor needs a threshold

to be set.

Fmask 4.0

The single date Fmask algorithm processes an image with no prior knowledge of

the scene. Inclusion of auxiliary data could make the algorithm produce better

results by relying on ground truth instead of generating intermediary masks.

Qiu et al. (2019) presented version 4 of Fmask [59] which tackles problems

that could be solved by knowing the geography of a scene, omission error in

cloud detection for Sentinel 2 images because of the lack of a thermal band, and

confusion with built-up objects and clouds.

While the cloud shadow detection module of Fmask 4.0 is brought directly

from MFmask [58], the cloud detection module is developed and calibrated

using the afore mentioned auxiliary data. They include the Global Surface Wa-

ter Occurrence (GSWO) dataset which provides pixel-level water occurrence in

percentages from no water to permanent water. This is great for better sepa-

rating land and water surfaces as cloud detection is done separately over each

surface. Previously only several spectral tests discriminated land from water,

which could have been erroneously done. The DEM Version 2 dataset from Ad-

vanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has

19



global availability and is accurate enough to generate terrain slope and aspect

data. It is useful for normalizing the cirrus band in Landsat 8 and Sentinel 2

and attenuate elevation impact on this band.

The cloud probability for pixels over land has been improved from the pre-

vious version of FMask by adding a contrast test for the NIR and SWIR bands

which greatly reduces cloud commission errors over built-up areas. To replace

the temperature probability for Sentinel 2, a new cloud probability that calcu-

lates based on a new HOT transformation is invented. The weights that favored

cirrus cloud probability had been adjusted because previously it sometimes dom-

inated the entire cloud detection. Also, calibration is done to update the global

optimal cloud probability thresholds to include more sensors.

To not confuse clouds with snow, ice, and urban areas, this version of the

algorithm combines spectral and contextual information to better separate snow

and ice pixels from cloud. Because clouds and snow have different textures, a

new Spectral-Contextual Snow Index (SCSI) is computed from Band 2 Stan-

dard Deviation and NDSI to distinguish smooth homogenous snow from clouds.

Commission errors caused be urban areas and snow/ice present in mountainous

regions are removed by applying a morphology method that uses simple spectral

tests to identify potential false positive cloud pixels. The elimination process for

these pixels involves an erosion and dilation method that will remove isolated

pixels associated to built-up and recover cloud shapes.

Fmask 4.0 demonstrated that it is more accurate then the previous version

of Fmask and also achieved higher accuracies for Sentinel 2 imagery than the

Sen2Cor algorithm by Müller-Wilm et al. (2018) [48].

2.3 Conclusions

Remote sensing activities such as monitoring land change and human influence

are having an important boost because of cloud screening schemes. Numerous

workflows based on multiple techniques have been developed to identify cloudy

pixels and mask out contaminated information. Both satellite and ground im-

ages are useful in the field of cloud detection and a great amount of research was

done to develop new methods and is ongoing to further improve upon current

approaches.
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The strength of the techniques described in this section is their adaptability

to an abundance of sensor configurations with different spectral ranges. Algo-

rithm will compensate even for the lack of a thermal band by using ratios of the

remaining bands. Auxiliary data inputs such as sun-cloud-satellite geometric

relationship, global constructed water masks, and DEMs have a strong posi-

tive impact on the ability to accurately isolate clouds and their shadow from

other land features. The collections of satellite imagery are larger than ever and

are growing constantly with data from newer higher resolution sensors. This

data can be used to train and test algorithm and even simulate different sensor

configurations before launch.

The issues that still exist in this field are the difficulties these algorithms have

in detecting cloud shadow. The most prevalent assumption is that shadows have

a similar shape to the clouds that cast them, which is not invariably true. Slope

angles and terrain shadow can confuse algorithms into producing errors.

Algorithms trained on simulations are broad, but not localized to specific

sites. They could be better suited for certain locations if trained on simulations

using local measurements as parameters.

Time series analysis is well suited for images from geostationary satellites,

but not from orbiting satellites. These can not capture relatively frequent snap-

shots of the same location because of their orbital trajectory. Geostationary

satellites do capture frequent snapshots of the same area, but the output is at a

low spatial resolution compared to satellites in orbit and such their applicability

to a confined area is limited.
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3 Cloud Motion

3.1 Importance of Cloud Motion

The sun is an unfailing source of energy and solar harvesting is growing in use

as fossil fuel resources are shrinking and public opinion is in favor of power

generated using renewable resources. However, sun radiation is not constant,

but is varying place-to-place, month-to-month, and day-to-day due to geogra-

phy, change in seasonality, and weather conditions. Moreover, formation and

dissipation of clouds, the passing of clouds advected by winds, cause a variabil-

ity of solar irradiance observable in a minute-to-minute window. Photovoltaic

(PV) power plants are hard to integrate into grid due to solar irradiance vari-

ability because power output is affected by transient clouds. Storage systems

such as molten salts (for heat production and batteries), backup generators, and

scheduling tables can be used to reduce the effect of inconstant output into the

grid, but they need an accurate prediction of when power output will decline

or increase. As clouds are the main cause of irradiance variability, cloud mo-

tion estimation to predict variability is vital for power plants, especially small-

scale grids that don’t have the capacity needed to absorb power fluctuations.

Many techniques were proposed to detect motion and predict cloud movement

as shown in Table 3. They range from using numerical weather forecast models

to employing machine learning algorithms, from capturing data from ground

sensors and sky cameras to incorporating satellite imagery with cloud screening

procedures, and from cross-correlation with solar radiation to detecting speed

and direction using block matching techniques. In subsection 3.2 several tech-

niques are presented to show their individual strengths and weaknesses.

3.2 History of Cloud Motion

Hamill

In 1993, Hamill and Nehrkorn developed a scheme for short-term cloud forecast

that skillfully output cloud advection [24]. Their technique was based on lag

cross correlations [49] and generated displacement vectors looking at differences

in two consecutive satellite images. A subset of pixels in the first image is

22



Table 3: Motion detection timeline

1993 · · · •
Hamill described a short-term cloud
forecast scheme using cross correlations and
creating displacement vectors.

2003 · · · •
Farnebäck presented a two-frame motion
estimation algorithm based on polynomial
expansion.

2013 · · · •
Escrig employed binary cross correlations to
determine motion vectors for cloud sectors.

2013 · · · •
Bosch and Kleissl used a network of ground
sensors to detect cloud speed using time
delays.

2015 · · · •

Variational optical flow is used by Chi Wai
Chow to estimate cloud motion and
stability, and forecast intra-hour cloud
locations.

2016 · · · •
Zhenzhou Peng proposes a hybrid approach
between block matching and optical flow
models to estimate complex cloud motion.

2018 · · · •
Mohammad Jamaly estimates cloud motion
from irradiance data using two methods:
CSA & CCM.

2018 · · · •

Fei Wang proposed a image phase shift
invariance based calculation method using
Fourier phase correlation theory to
determine cloud motion vectors.

2018 · · · •
Silva builds a cloud dynamics model
simulation.

2019 · · · •
Travis Harty forecasted cloud index by
assimilating data from a 2D advection
model with cloud motion vectors.

2020 · · · •
The CMAE method is introduced to
estimate cloud motion from small-scale
irradiance sensor networks.
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chosen and correlations are made to find the same subset of pixels at a different

location in the second image. The centers of the two subset locations define a

displacement vector. Through quality control, inaccurate displacement vectors

generated because of analysis areas that are too small are eliminated.

Cloud free images will generate null displacement vectors that affect pre-

diction by slowing down advective vectors (correctly generated displacement

vectors) at cloud edges,so null displacement vectors are removed to avoid this

issue. With the assumption that all clouds are on one single layer and cloud

deformation is not severe, their cross-correlations scheme produces reliable dis-

placement vectors even knowing higher winds advect clouds faster than lower

winds.

An objective analysis is done to create a displacement vector for every pixel,

which will results in a continuous flow pattern by applying multiple successive

corrections. Before producing forecasts, the vectors are modified by a semi-

Lagrangian displacement scheme [71] to better forecast trajectory in a curved

flow. The scheme derives a compromise vector that advects cloud pixels to

forecast location.

All pixel locations are forecast by a bilinear interpolation method. This

scheme produced good displacement vectors for at least the first hour of forecast,

which is sufficient for nowcasting small cloud features.

Escrig

Numerical weather forecast models use cloud motion vectors as parameters for

predicting weather phenomena. Short-term solar radiation forecast can also

benefit from generated cloud motion vectors. Escrig et al. (2013) [17] used

a maximum cross-correlation method to identify motion vectors and estimate

cloud movement by tracking them.

Winds have different directions at different altitudes and Escrig addressed

the aspect of vertical wind layering by splitting motion vectors into three heights,

after the classification of clouds as high, medium, and low altitude by applying

Stowe’s latitude criterion [72] on sounding air measurements data. At the spatial

resolution the MSG imagery is provided, wind is observed to have horizontal

variability. To account for that, the images are segmented into five horizontal
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sectors: four sectors are obtained by dividing the image by its two bisections,

and the fifth sector is the same size as the other, but centered on the image such

that it overlaps equally on each of the other sectors’ corners.

For each sector at each height, maximum cross-correlations are performed

on the motion vectors of three consecutive images. Cross-correlations are also

done for non height layered images and and non sector split images to avoid

influence of clouds that occupy more than one layer and clouds that are exiting

the scene. After all vectors are tested to be coherent, six quality tests are used

to pick the most suitable cloud tracking vector for each height and sector.

This technique proved to determine good tracking vectors for more than 86%

of the generated vectors and could be useful for predicting solar radiation. A

TSI-800 whole-sky camera was used to visually check that the motion vectors

the algorithm produced were correct and cloud tracking error was determined

to be around 10% after discarding rejected vectors (which could be replaced

with the last calculated vector in real time applications).

LCE

Another method to detect cloud speed and direction, and generate CMVs is

tested by Bosch and Kleissl in 2013 [3]. Their method involves a network of

ground sensors located on the site of a PV power plant. Using time delays be-

tween cloud edge passes over pairs of sensors, CMVs are generated and evaluated

to assess cloud movement.

The PV power plant where tests were conducted has almost one million

panels. Five of those were used as reference cells that combined represented two

triplets of sensors (an origin and two more sensors). Assuming a linear cloud

edge (LCE), a pair of sensors (excluding the origin) parallel to the cloud edge

will be affected by the cloud’s shadow at the same time. If the cloud moves in

a direction that is parallel to the sensor pair, and the shadow is over the origin,

it will never touch the other two sensors. To obtain a CMV, two cloud edge

passes need to occur over the triplet.

Time lags are determined from measured local maxima (right before or after

a shading event) and minima (cloud center) of measured irradiance. Preprocess-

ing similar to Bosch et al. (2013) [4] is applied on the measurements to discard
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noise induced by high frequency of data acquisition. The CMV is is determined

by selecting the most frequent CMV in the last 60 minutes.

CCM is used to validate the LCE method starting from the assumption that

pairs of sensors aligned with the CMV will be highly correlated when a time

lag is applied to account for the distance. To obtain the speed of movement,

a pair of inverters aligned with the direction of movement is selected from all

the 4560 possible pairs of inverters. The CCM method is used to find the speed

of the cloud.LCE is reliable for producing CMVs when the number of available

sensors is reduced.

VOF

Chi Wai Chow et al. (2015) [12] proposed a variational optical flow (VOF) tech-

nique to determine CMVs from sky images. VOF identifies cloud deformations

that happen in the span of a few minutes, which often are dismissed in cloud

advection forecast models, and quantifies the stability of cloud formations.

The data used is comprised of snapshots from a sky camera located at UC

San Diego that captures the sky every 30 seconds. The optical flow constraint

(OFC) equation is a brightness constancy equation linearized by a first order

Taylor expansion. However, this is not enough to recover specific motion as

additional constraints are needed. Therefore, a simple, low computational algo-

rithm proposed by Liu (2009) [39] that is flexible in parameters is used by the

study. Inverse mapping is used to find a correct input pixel from the source im-

age for each pixel in the output image. As opposed to forward mapping, where

the output image could have holes and overlapped pixels, inverse mapping is

guaranteed to map each output pixel, leaving no holes and making no overlaps.

Point trajectories are used to quantify cloud stability. An optical flow tracker

based on Sundaram et al. (2010) [74] initializes tracking points across the entire

first frame of an image (discarding points over hard to track homogenous areas).

A point is tracked until one in three conditions is met:

• Point has moved out of the frame and can no longer be tracked.

• Forward and backward optical flow are inconsistent with each other.
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• Point is no longer easily found due to loss of structure in neighboring

pixels.

If too many tracking points were terminated in an area, new points are

initialized in the next frame. The average time duration of terminated points

for the current frame is a measure of cloud stability. Short tracking points (less

than 1 minute) and those very close to the frame edge are not considered for

the average.

The VOF method is compared with CCM forecasts by shifting cloud map

pixels according to the motion vectors generated by the VOF method. This map

is overlaid with the actual cloud map and a forecast error can be computed.

The method demonstrated accurate cloud motion forecast is impossible with

unstable clouds and averaged an error reduction of 39% to 19% for 0 to 15

minute forecasts compared to CCM.

Zhenzhou Peng

VOF [12] and block matching [24] techniques have their strengths in specific

scenarios, but also weaknesses, such as image noise and brightness variation

sensitivity, neglecting multiple cloud layers, and block segmentation sensitivity

that can lead to inaccurate results. In an effort to address such issues, Peng et

al. (2016) [52] described a new hybrid model that combines the two techniques

such that the VOF model’s output is refined by the block matching method.

They use the Cloud-block matching (CBM) technique [51] to determine and

match cloud blocks dynamically. A binary classifier based on Support Vector

Machines (SVM) is implemented to identify cloud pixels and generate a cloud

mask. The mask is divided into homogeneous blocks using quad-tree struc-

ture decomposition method [67] which successfully groups color, texture, and

structure to aid block-wise motion tracking.

The motion vectors obtained from block matching are refined to remove

falsely estimated vectors due to image noise by utilizing histogram statistics to

extract the most frequent motion [25]. Small -scale vectors are also removed

to ignore sky pixels and slow clouds that affect dominant motion calculation.

Usually there are no more than three cloud layers, so the three most common

dominant motion vectors are picked to represent the dominant motion for each
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cloud layer.

Filters are applied to remove outliers that cause noise in the motion field, find

dominant motion patterns, and utilize as much cloud information as possible.

The dense flow field is optimized by an iterative algorithm. A velocity threshold

is used to identify clear sky pixels and eliminate small motion. Outliers to the

dominant motion patterns are identified by another filter that greatly refines

the motion field and a weighted median filter smooths and removes the noise of

the motion field. Repeating the whole process up to three times best balances

accuracy and computational cost.

The hybrid method extracts dominant motion patterns from block-wise mo-

tion tracking and estimates a dense motion field through the use of refinement

filters. Results show a reduction of 30% of the angular error compared to other

models [2, 5, 26,27,40,51] and a 10% lower MAE.

CSA & CCM

CMV estimation using the methods described are not efficient and lack granu-

larity, except for local ground measurements [4]. In 2018, Jamaly and Kleissl,

motivated by the increasing availability of dense PV power output observations,

proposed two new methods: cross-spectral analysis (CSA) and cross-correlation

method (CCM) [32].

Engerer and Mills, 2014 [16] demonstrated that PV power output can be

converted into clear sky index, meaning that PV systems could be used as a

large irradiance sensor to detect cloud motion. CSA estimates cloud speed

and direction by cross-spectral analyzing observations at given site locations.

Instead of using the classical CSA [28,66], cloud movement speed is detected as

the median of velocities in the direction where the minimum time delay variation

moment occurs.

Quality control to exclude particular sites and data makes CSA more ac-

curate. This step excludes low quality data by removing conditions with low

variability, pairs of sites that are too distant, and sites that are less correlated.

Restriction of point selection to specific geographic regions reduces the compu-

tational costs, while still achieving same results.

The CCM method is applied to ground measured data, and finds the best
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matches for any given subset of pixels in two images. It is applied to the whole

domain, but also to smaller subsets to improve accuracy. A three-step search

proposed by Li et al. (1994) [60] is used to reduce computational cost compared

to a more traditional full search block matching algorithm.

Quality control is a step that also benefits the CCM method. By removing

vectors that differ from the local average enough to pass a threshold, the re-

sults are more consistent. Several quality control parameters along with specific

thresholds and local consistency make CCM produce more accurate results. The

final velocity field is obtained by successive corrections as Hamill and Nehrkorn

did [24].

Results show that the modified CCM method provides reliable cloud motion

speed up to a horizon of 50 seconds. CSA has reduced computational costs

because of restricted number of sites, but keeps the save level of accuracy. Its

results are reliable in scenarios of low cloud cover fractions. Changes in cloud

speed or direction will degrade CSA accuracy if they are often occurring, making

CSA estimates best for short time intervals.

3.3 Conclusions

Displacement was observed since interest in motion emerged to detect move-

ment and predict it. Cloud motion was estimated to produce forecasts of cloud

advection, and compute motion vectors to use as input to numerical weather

forecast models. Motion vectors that describe displacement of the cloud field

can be generated using various techniques that rely on sky or satellite imagery,

ground sensors, statistical methods, time lag correlations, etc.

The advantage is that displacement vectors can be computed relatively

straightforward from two frames if the background is stable and the motion

is sufficiently ample to be observable. An array of mathematical techniques can

be used to match cloud blocks, track points, and cross-correlate sectors of an

image to generate motion vectors. Options in detection are abundant as mo-

tion vectors can be detected using data from geostationary satellites and from

ground irradiation sensors, and even PV modules power outputs.

Despite the data available for research, images from high spatial resolution

sensors onboard orbiting satellites can not be used for motion estimation because
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of the sporadic captures of confined areas of interests. For these areas, the best

alternative is to use sky cameras or ground sensors as rich data sources.

Discussed research assumes no clouds are forming or dissipating when pre-

dicting motion. In reality clouds are not only changing locations and modifying

their shape, but new clouds appear seemingly out of thin air and wind can break

clouds into smaller parts that easily disappear. This issue should be addressed

to have reliable prediction of future clouds.
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Table 4: Solar radiation timeline

2011 · · · •
Mart́ınez-Chico classified clouds based on
solar radiation.

2014 · · · •

Kee Han Kim cross correlated solar stations
data with information from NCDC &
NOAA to evaluate best method for
estimating hourly global solar radiation.

2015 · · · •
Cheng used automatic cloud classification
to predict short-term solar irradiance.

2017 · · · •
Jamaly and Kleissl use Kriging method to
forecast irradiance data at an arbitrary
point.

2018 · · · •

CIRACast introduced as a solar forcasting
system that leverages satellite imagery,
wind field data, and radiative transfer
calculations.

2018 · · · •
Luiz evaluated solar irradiance variability
using satellite imagery for three sites in
Brazil..

2020 · · · •
CMAE is a new method for estimating
cloud motion using small-scale irradiance
sensors networks..

4 Solar Radiation

4.1 Importance of Solar Radiation

Solar radiation is an great resource of energy and photovoltaic (PV) power

plants are increasingly used to generate electric power as they are environmental

friendly and public opinion is viewing them as a better alternative to fossil fuel

energy generation. Buildings that have HVAC systems could reduce operating

costs significantly if the level of solar radiation hitting the building is known a

priori. Cold air flow could start cooling before an increase of indoor temperature

is detected and heating elements could start and stop depending on short-term

prediction of irradiance levels. In Table 4 several studies that estimate or predict

solar radiation levels are shown. They are described in subsection 4.2 and

advantages and disadvantages of each method is discussed.
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4.2 History of Solar Radiation

Multi-model prediction

In 2015, Cheng and Yu proposed a new multi-model technique to predict solar

irradiance based on the type of clouds present in ground-based all sky images

[10]. Three local pattern descriptors (LBP, LTP, and LDP) are used to extract

texture characteristics from images divided into blocks. Those extraction, along

with classical statistical features form a feature vector that a trained SVM

classifier will get as input and then classify images into six classes depending on

the observed cloud types.

Based on the classification results, multiple solar irradiance prediction mod-

els are constructed to accommodate the different weather conditions. The num-

ber of prediction models range from 3 to 6, where three classes consists of clear

sky (model A), cirrus, cirrostratus, scattered cumulus, and altocumulus cloud

types (model B), and cumulus, cumulonimbus, stratus cloud types (model C).

Cases with more prediction models separate cloud types from models B and C

into multiple, more specialized classes. Clear sky conditions, cirrus, and cirro-

stratus clouds correspond to low irradiance variation; medium to high irradiance

changes can be detected from scattered cumulus and altocumulus clouds; and

cumulus, cumulonimbus, and stratus cloud conditions manifest the highest ir-

radiance variation.

Rather than predicting global horizontal irradiance directly, a scheme that

converts irradiance into clearness index yields better forecast accuracy [11]. Ir-

radiance is computed from the predicted clearness index using the Perez con-

version model [56] with parameters that can be determined for a location at a

specified time.

The proposed multi-model shows higher prediction accuracy for irradiance

than other methods that are blind to cloud types. It was validated using a

dataset with very high irradiance variation.

Kriging

Another method to forecast irradiance data is using Kriging to interpolate spa-

tial and temporal data at locations with no observing sensors. Because ground
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solar measurement sensors are sparse and satellite-derived data is of low tem-

poral resolution, interpolation is required to produce data at arbitrary points

in space and time where no observations were made. Kriging is a stochastic in-

terpolation method that is superior to other techniques. It preserves irradiance

data properties and can be applied to ground measurements and satellite data

alike. Of the various Kriging methods available [55], Jamaly and Kleissl used

the spatial and spatiotemporal ordinary Kriging method to make estimations of

solar irradiance [31].

Passing clouds determine spatiotemporal variability in irradiance data. To

model such events, it is required to use an anisotropic covariance function.

This study proposed a new non-separable anisotropic covariance function that

is based on Schlather’s Lagrangian covariance function [64]. Assuming constant

cloud motion speed, the proposed anisotropic spatiotemporal Kriging method

accurately produces results for steady and slow varying cloud motion cases. For

long time series where cloud motion is not constant, but has moderate to high

variability, it can split the series into shorter intervals to provide better results.

An important function in the ordinary Kriging method is the semivariogram

function that describes the dependence of solar radiation to space and time

in degrees. It is the variance of two (spatiotemporally separate) observation

points’ solar irradiation difference. The empirical semivariogram is deducted

from observed irradiance and pairs are grouped into bins. Then it is modeled

with a parametric function which’s coefficients are computed using a weighted

least squares method and minimizing the empirical and parametric difference.

Cloud motion effects (estimated by CSA or CCM [32]) are considered to fit the

semivariogram function. Using the parametric spatiotemporal semivariogram

function, irradiance can be estimated at arbitrary locations and times.

Validation of the Kriging method showed improvement over a persistence

model. Parameter shrinkage was applied to obtain a 99.86% reduction in com-

putational costs. The shrinkage was justified by the dismissible data in un-

correlated zones. Accurate estimation of cloud motion is necessary for reliable

irradiance forecast, therefore shorter time intervals produce better results than

long unstable time series with variate cloud speeds. This method is promising

for satellite data, but is most fitted for use with ground data.
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CIRACast

While the Kriging method used by Jamaly and Kleissl [31] is best suited for

use with ground measured data, satellite-based solar forecasting is tackled by

Miller et al. (2018) with a satellite/model coupling scheme [46]. CIRACast is

a scheme that includes cloud properties, steering winds, and radiative transfers

to compute surface radiation.

Cloud properties such as cloud-top height/pressure, optical depth, effective

particle radius, and liquid/ice phase are obtained from NOAA’s CLAVR-x code

package and a NWP model uses these properties to model winds at multiple

levels. This model also provides total column ozone and precipitable water to

send as input to code responsible with radiative transfer calculations.

After advecting the cloud field according to the winds generated by the

NWP, surface irradiance is determined for new cloud shadow locations. For

this, Pinker’s Satellite Algorithm for Shortwave Radiation Budget (SASRAB)

radiative transfer code [57] is used in forecast mode. At each time step, surface

irradiance is computed from cloud properties, reflectance in the visible spectrum,

precipitable water, ozone, solar/satellite geometry, and surface reflectance. A

mask is produced from composites of the second-darkest GOES VIS band re-

flectance over a two-week period to hide snow and other land features that could

be picked up as false cloud.

This coupling of operational geostationary satellite imagery with a numerical

model, produces short term solar irradiance ramp forecasting.

TODO: read methodology and conclusions for CIRACast – I think this sub-

section is too vague

Luiz

In 2018, Luiz et al. evaluated the variability of intra-day solar irradiance using

three ground based solar irradiance measurement sites in Brazil and described a

new method to evaluate surface solar irradiance using only satellite imagery [41].

At the three sites in Brazil, global irradiance data was captured for a one

year period starting with July 2016 with a minute temporal resolution. Using

this data, the clearness index (kt) was calculated and empirically corrected to

remove the diurnal and seasonal cycles, and the air mass effect [54]. Kleissl’s
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moving average approach [35] was used to diminish different time steps’ influence

over the evaluation of ramp rates for temporal resolutions of 30, 5, and 1 minute.

Using satellite imagery, the effective cloud cover coefficient can be computed

for each pixel as the ratio Ceff = (Lr − Lclr)/(Lcld − Lclr), where Lr is the

radiance measured in the visible satellite channel, Lclr and Lcld are the clear

sky and overcast radiances for a compositing of one month of satellite images.

Usually, Lclr/Lcld is the lowest/highest radiance level for each pixel during the

one month duration. The ramp rates based on Ceff are produced at a temporal

resolution of 30 minutes.

To understand the behavior of ramp rates, they use Lave’s proposal of a

Variability Score [37] that takes the largest value of the product of a ramp rate

for a certain temporal resolution multiplied by its probability, and scales it by

100. It is well correlated with a transformer’s number of tap changes. A larger

variability score means more variability in the solar irradiance.

By comparing both satellite observations and ground measurements for all

three locations, it was observed that there is a linear variability relationship

between the two methods. Cloud coverage variability can represent k′t variabil-

ity. Satellite observations proved to be a relative simple method for evaluating

solar irradiance variability without requiring large computational resources and

a good provider of information necessary for PV power grid balancing.

4.3 Conclusions

Irradiance data is used as input in many fields of research and getting accurate

predictions of solar activity is the difference between having efficient systems and

increased operational costs. Solar activity has great impact buildings’ energy

consumption and public health, but the greatest impact is on PV power plants.

Therefore, much attention is concentrated towards collecting radiation data and

predicting hourly irradiation forecasts for PV sites.

Irradiance data can be captured using ground sensors and irradiance at loca-

tions where no observations are made can be estimated by applying interpolation

methods to two neighboring sites that do have active ground sensors. Geosta-

tionary satellites can also be used with radiative transfer calculations to advect

the cloud field and estimate solar irradiance for new shadow locations.
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Calculations using simulated irradiance data or information from typical year

weather constructs are possible, but in order to accurately make predictions

on solar activity, data collection is needed, which means additional costs for

installing and maintaining irradiance sensors or sky cameras.
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5 Objectives

Cloud detection algorithms are practically sufficiently many and further research

should be focused on improving current methods by tackling niche cases were

cloud screening accuracy is not as high as desired.

In [53] I trained a feed forward back propagation neural network on motion

vector fields generated by applying Farnebäck’s variant of Optical Flow [18] on

sequential geostationary satellite images. My findings show that motion vectors

can be predicted using neural networks and are sufficiently reliable to forecast

future cloud locations. As concluded in 3.3, cloud advection prediction tech-

niques assume no clouds are forming or dissipating during the forecast period,

but rather just translate positions and change shapes slightly. It should be inter-

esting to analyze when and where new clouds are forming in satellite images and

observe how cloud shapes are evolving according to the estimated motion vector

field. This could give prediction algorithms (including my own) increased accu-

racy by allowing not only forecast of cloud advection in the scene, but also the

emergence of new clouds and breaking apart other clouds where this behavior

is expected.

Geostationary satellites are locked in space relative to the Earth’s rotation,

but don’t capture high spatial resolution images as well as low-orbit satellites

do. However, orbiting satellites don’t capture the same scene continuously and

can not be used for motion estimation of clouds. A single frame is frozen in

time and is void of any movement information. A workaround to this fact could

be taking advantage of the sensor configuration and time delays between the

acquisition timestamps of each sensor. Because clouds are visible in more than

one spectral band, the acquisition time delay, coupled with the geometry of the

sensor, could be sufficient information for motion estimation on fast moving

clouds.

Solar irradiance is predictable from sky images that were correlated with

ground sensors, but satellite imagery was correlated with computed solar ir-

radiance rather than observed solar irradiance, which is objectively inferior to

true data. Correlations between clouds detected in satellite imagery and so-

lar irradiance levels recorded by ground sensors should be valuable information
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for establishing if solar radiation can be predicted from satellite imagery alone

making use of cloud type classifications.

Taking into consideration all of the above, I state my objectives as follow:

1. I shall correlate cloud types over city of Timis,oara with solar radiation

recorded by sensor on the premise of West University of Timis,oara. This

correlation will generate radiation brackets that could be used to train

a neural network to predict radiation from satellite imagery alone.

2. I will proceed to analyze when and where are clouds forming and dis-

sipating in satellite imagery. Observing this and taking into account a

corresponding vector field, can result in improving my algorithm to better

advect clouds and reflect real world scenarios by deforming, dissipating,

and forming new clouds in the scene.

3. I will also investigate using a different technique to predict cloud movement

based on the Boids Flocking Behavior algorithm. It will be receiving

as input the detected clouds at their current position and a time series of

the corresponding motion vector field.

4. I will try to extract cloud motion information from orbiting satellite sen-

sors by taking advantage of the time delay between acquisitions of differ-

ent bands. Because of the configuration of satellite sensors, not all bands

are capturing simultaneously. The time difference between two bands

could be sufficient to detect large movement of clouds because clouds are

visible in more than one single spectral band.

5. My final goal is to create a cloud platform that delivers cloud masking

abilities, motion estimation, and solar radiation predictions. Users of the

system will be able to choose or plug in their own methods for detection of

clouds, estimation of motion, essentially making the platform customizable

to fit the specific needs of each use case.
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6 Conclusions

This report presented the state of the art in cloud screening techniques (Sec-

tion 2), motion estimation methods (Section 3), and solar irradiance research

(Section 4). The study areas are vast and new findings that try do deal with

each of the three topics are frequently published. The merits of each study are

acknowledged and put forward.

Limitations of these methods still impose obstacles that need to be overcome.

They are detailed in the conclusions of each section and my objectives are set

out in Section 5.
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