Logic Programming

Lists. Recursion

- Lists
- Recursion
- Accummulators

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer",

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

1. accept a sentence,

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

1. accept a sentence,
2. change "you" to "i",

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

1. accept a sentence,
2. change "you" to " i ",
3. change "are" to "am not",

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

1. accept a sentence,
2. change "you" to "i",
3. change "are" to "am not",
4. change "french" to "german",

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

1. accept a sentence,
2. change "you" to "i",
3. change "are" to "am not",
4. change "french" to "german",
5. change "do" to "no",

Recursive mapping

- Mapping: given 2 similar structures, change the first into the second, according to some rules.
- Example:
"you are a computer" maps to "i am not a computer", "do you speak french" maps to "i do not speak german".
- Mapping procedure:

1. accept a sentence,
2. change "you" to "i",
3. change "are" to "am not",
4. change "french" to "german",
5. change "do" to "no",

6 . leave everything else unchanged.

Recursive mapping (continued)

- The program:

```
change(you, i).
change(are, [am, not]).
change(french, german).
change(do, no).
change(X, X).
```

alter ([], []).
alter $([\mathrm{H} \mid \mathrm{T}],[\mathrm{X} \mid \mathrm{Y}]):-$
change (H, X),
alter (T, Y).

Recursive mapping (continued)

- The program:

$$
\begin{aligned}
& \text { change(you, i). } \\
& \text { change(are, [am, not }]) \text {. } \\
& \text { change(french, german }) . \\
& \text { change }(\text { do, no }) . \\
& \text { change }(X, X) . \\
& \text { alter }([],[]) . \\
& \text { alter }([H \mid T],[X \mid Y]):- \\
& \text { change }(H, X) \text {. } \\
& \text { alter }(T, Y) .
\end{aligned}
$$

- Note that this program is limited:

Recursive mapping (continued)

- The program:

$$
\begin{aligned}
& \text { change(you, i). } \\
& \text { change(are, [am, not }]) \text {. } \\
& \text { change(french, german }) . \\
& \text { change }(\text { do, no }) . \\
& \text { change }(X, X) . \\
& \text { alter }([],[]) . \\
& \text { alter }([H \mid T],[X \mid Y]):- \\
& \text { change }(H, X) \text {. } \\
& \text { alter }(T, Y) .
\end{aligned}
$$

- Note that this program is limited:
- it would change "i do like you" into "i no like i",

Recursive mapping (continued)

- The program:

$$
\begin{aligned}
& \text { change(you, i). } \\
& \text { change(are, [am, not }]) \text {. } \\
& \text { change(french, german }) . \\
& \text { change }(\text { do, no }) . \\
& \text { change }(X, X) . \\
& \text { alter }([],[]) . \\
& \text { alter }([H \mid T],[X \mid Y]):- \\
& \text { change }(H, X) \text {. } \\
& \quad \operatorname{alter}(T, Y) .
\end{aligned}
$$

- Note that this program is limited:
- it would change "i do like you" into "i no like i",
- new rules would have to be added to the program to deal with such situations.

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless / 2

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless /2

1. aless (book, bookbinder) succeeds.

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless /2

1. aless (book, bookbinder) succeeds.
2. aless (ele phant, elevator) succeeds.

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless /2

1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy, leather) is decided by aless (azy, eather).

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless /2

1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy, leather) is decided by aless (azy, eather).
4. aless (same, same) fails.

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless /2

1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy, leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic, alp) fails.

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless /2

1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy, leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic, alp) fails.

- Use the predicate name/2 which returns the name of a symbol:

$$
\begin{aligned}
& ?-\text { name }(X, \quad[97,108,112]) . \\
& X=\text { alp } .
\end{aligned}
$$

Comparing Structures

- Dictionary comparison (lexicographic comparison) of atoms: aless / 2

1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy, leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic, alp) fails.

- Use the predicate name/2 which returns the name of a symbol:

$$
\begin{aligned}
& ?-\text { name }(X, \quad[97,108,112]) . \\
& X=\text { alp }
\end{aligned}
$$

- The program:

```
aless(X, Y):-
            name(X, L), name(Y, M), alessx(L,M).
alessx([], [-| ]).
alessx([X|_], [Y|_]):- X< Y.
alessx([H|X], [H|Y]):- aless(X, Y).
```


Homework exercises for today. Questions?

- Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions
5. The concatenation of two lists.

Append

- We want to append two lists, i.e.
?-appendLists ([a,b,c], [3,2,1], [a,b,c,3,2,1]). true

This illustrate the use of appendLists/3 for testing that a list is the result of appending two other lists.

Append

- We want to append two lists, i.e. ?-appendLists ([a,b,c], [3,2,1], [a,b,c,3,2,1]). true

This illustrate the use of appendLists/3 for testing that a list is the result of appending two other lists.

- Other uses of appendLists/3:

Append

- We want to append two lists, i.e. ?-appendLists ([a,b,c], [3,2,1], [a,b,c,3,2,1]). true

This illustrate the use of appendLists/3 for testing that a list is the result of appending two other lists.

- Other uses of appendLists/3:
- Total list computation:

$$
\text { ?-appendLists }([a, b, c],[3,2,1], X) \text {. }
$$

Append

- We want to append two lists, i.e.
?-appendLists ([a,b,c], [3,2,1], [a,b,c,3,2,1]). true

This illustrate the use of appendLists/3 for testing that a list is the result of appending two other lists.

- Other uses of appendLists/3:
- Total list computation:

$$
\text { ?-appendLists }([a, b, c],[3,2,1], X) \text {. }
$$

- Isolate:
?-appendLists(X, [2, 1], [a, b, c, 2, 1]).

Append

- We want to append two lists, i.e.
?-appendLists ([a,b,c], [3,2,1], [a,b,c,3,2,1]). true

This illustrate the use of appendLists/3 for testing that a list is the result of appending two other lists.

- Other uses of appendLists/3:
- Total list computation:

$$
\text { ?-appendLists }([a, b, c],[3,2,1], X)
$$

- Isolate:

$$
\text { ?-appendLists }(X,[2,1], \quad[a, b, c, 2,1])
$$

- Split:
?-appendLists (X, Y, [a, b, c, 3, 2, 1]).

> \% the boundary condition appendLists ([], L, L). \% recursion appendLists $([X \mid L 1], L 2, \quad[X \mid L 3]):-$ appendLists (L1, L2, L3).

Summary

- The recursive nature of structures (and in particular lists) gives a way to traverse them by recursive decomposition.

Summary

- The recursive nature of structures (and in particular lists) gives a way to traverse them by recursive decomposition.
- When the boundary is reached, the decomposition stops and the result is composed in a reverse of the decomposition process.

Summary

- The recursive nature of structures (and in particular lists) gives a way to traverse them by recursive decomposition.
- When the boundary is reached, the decomposition stops and the result is composed in a reverse of the decomposition process.
- This process can be made more efficient: introduce an extra variable in which the "result so far" is accumulated.

Summary

- The recursive nature of structures (and in particular lists) gives a way to traverse them by recursive decomposition.
- When the boundary is reached, the decomposition stops and the result is composed in a reverse of the decomposition process.
- This process can be made more efficient: introduce an extra variable in which the "result so far" is accumulated.
- When the boundary is reached this extra variable already contains the result, no need to go back and compose the final result.

Summary

- The recursive nature of structures (and in particular lists) gives a way to traverse them by recursive decomposition.
- When the boundary is reached, the decomposition stops and the result is composed in a reverse of the decomposition process.
- This process can be made more efficient: introduce an extra variable in which the "result so far" is accumulated.
- When the boundary is reached this extra variable already contains the result, no need to go back and compose the final result.
- This variable is called an accumulator.

Exercises

- Define predicates in Prolog (with accumulators) for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions

Example: List Length

- Without accumulator:

$$
\begin{aligned}
& \text { \% length of a list } \\
& \text { \% boundary condition } \\
& \text { listlen }([], 0) . \\
& \text { \% recursion } \\
& \text { listlen }([\mathrm{H} \mid \mathrm{T}], \mathrm{N}):- \\
& \text { listlen }(\mathrm{T}, \mathrm{~N} 1), \\
& \mathrm{N} \text { is } \mathrm{N} 1+1 .
\end{aligned}
$$

- With accumulator:
\% length of a list with accumulators \% call of the accumulator:
listlen $1(\mathrm{~L}, \mathrm{~N})$: -
lenacc (L, $0, N)$.
\% boundary condition for accumulator Ienacc ([], A, A).
\% recursion for the accumulator Ienacc ([H|T], A, N):-

A1 is $A+1$, Ienacc (T, A1, N).

- With accumulator:
\% length of a list with accumulators \% call of the accumulator:
listlen $1(\mathrm{~L}, \mathrm{~N})$: -
Ienacc (L, $0, N)$.
\% boundary condition for accumulator Ienacc ([], A, A).
\% recursion for the accumulator Ienacc $([\mathrm{H} \mid \mathrm{T}], \mathrm{A}, \mathrm{N}):-$

A1 is $A+1$,
Ienacc (T, A1, N).

- Inside Prolog, for the query ? - listlen1 ([a, b, c], N):

$$
\begin{aligned}
& \text { Ienacc }([a, b, c], 0, N) . \\
& \text { Ienacc }([b, c], 1, N) . \\
& \text { lenacc }([c], 2, N) . \\
& \text { Ienacc }([], 3, N)
\end{aligned}
$$

The return variable is shared by every goal in the trace.

Example: Reverse

- Without accumulators:

```
%% reverse
% boundary condition
    reverse1([],[]).
% recursion
    reverse1([X|TX], L):-
    reverse1(TX, NL),
    appendLists(NL, [X], L).
```

- With accumulators:
\% \% reverse with accumulators
\% call the accumulator
reverse2 (L, R):reverseAcc (L, [], R).
\% boundary condition for the accumulator reverseAcc ([], R, R).
\% recursion for the accumulator reverseAcc ([H|T], A, R):reverseAcc (T, [H|A], R).

Summary

- Accumulators provide a technique to keep trace of the "result so far" (in the accumulator variable) at each step of computation, such that when the structure is traversed the accumulator contains "the final result", which is then passed to the "output variable".

Summary

- Accumulators provide a technique to keep trace of the "result so far" (in the accumulator variable) at each step of computation, such that when the structure is traversed the accumulator contains "the final result", which is then passed to the "output variable".
- Now we consider a technique where we use a variable to hold "the final result" and the second to indicate a "hole in the final result", where more things can be inserted.

Summary

- Accumulators provide a technique to keep trace of the "result so far" (in the accumulator variable) at each step of computation, such that when the structure is traversed the accumulator contains "the final result", which is then passed to the "output variable".
- Now we consider a technique where we use a variable to hold "the final result" and the second to indicate a "hole in the final result", where more things can be inserted.
- Consider [a, b, c|X] - we know that this structure is a list up to a point (up to X). We call this an open list (a list with a "hole").

Summary

- Accumulators provide a technique to keep trace of the "result so far" (in the accumulator variable) at each step of computation, such that when the structure is traversed the accumulator contains "the final result", which is then passed to the "output variable".
- Now we consider a technique where we use a variable to hold "the final result" and the second to indicate a "hole in the final result", where more things can be inserted.
- Consider [a, b, c|X] - we know that this structure is a list up to a point (up to X). We call this an open list (a list with a "hole").

Using open lists

- Consider

$$
\begin{aligned}
?-X= & {[a, b, c \mid L], L=[d, e, f, g] . } \\
& X=[a, b, c, d, e, f, g] \\
& L=[d, e, f, f]
\end{aligned}
$$

Using open lists

- Consider

$$
\begin{aligned}
?-X= & {[a, b, c \mid L], L=[d, e, f, g] } \\
& X=[a, b, c, d, e, f, g] \\
& L=[d, e, f, g]
\end{aligned}
$$

- the result is the concatenation of the beginning of X (the list before the "hole") with L,

Using open lists

- Consider

$$
\begin{aligned}
?-X= & {[a, b, c \mid L], L=[d, e, f, g] } \\
& X=[a, b, c, d, e, f, g] \\
& L=[d, e, f, g]
\end{aligned}
$$

- the result is the concatenation of the beginning of X (the list before the "hole") with L,
- i.e. we filled the "hole",

Using open lists

- Consider

$$
\begin{aligned}
?-X= & {[a, b, c \mid L], L=[d, e, f, g] } \\
& X=[a, b, c, d, e, f, g] \\
& L=[d, e, f, g]
\end{aligned}
$$

- the result is the concatenation of the beginning of X (the list before the "hole") with L,
- i.e. we filled the "hole",
- and this is done in one step!

Using open lists

- Consider

$$
\begin{aligned}
?-X= & {[a, b, c \mid L], L=[d, e, f, g] } \\
& X=[a, b, c, d, e, f, g] \\
& L=[d, e, f, g]
\end{aligned}
$$

- the result is the concatenation of the beginning of X (the list before the "hole") with L,
- i.e. we filled the "hole",
- and this is done in one step!
- Now fill the hole with an open list:

$$
\begin{aligned}
?-X & =[a, b, \quad c \mid L], L=[d, e \mid L 1] . \\
& X=[a, b, c, d, e \mid L 1] \\
& L=[d, e \mid L 1] .
\end{aligned}
$$

Using open lists

- Consider

$$
\begin{aligned}
?-X= & {[a, b, c \mid L], L=[d, e, f, g] } \\
& X=[a, b, c, d, e, f, g] \\
& L=[d, e, f, g]
\end{aligned}
$$

- the result is the concatenation of the beginning of X (the list before the "hole") with L,
- i.e. we filled the "hole",
- and this is done in one step!
- Now fill the hole with an open list:

$$
\begin{aligned}
?-X & =[a, b, c \mid L], L=[d, e \mid L 1] . \\
X & =[a, b, c, d, e \mid L 1] \\
& L=[d, e \mid L 1]
\end{aligned}
$$

- the hole was filled partially.
- Now express this as a Prolog predicate:

$$
\begin{aligned}
& \text { diff_append1(OpenList, Hole, L):- } \\
& \text { Hole=L. }
\end{aligned}
$$

- Now express this as a Prolog predicate:

$$
\begin{aligned}
& \text { diff_append1 (OpenList, Hole, L):- } \\
& \text { Hole=L. }
\end{aligned}
$$

i.e. we have an open list (OpenList), with a hole (Hole) is filled with a list (L):

$$
\begin{aligned}
& ?-X=[a, b, c, d \quad \mid \text { Hole }], \\
& \quad \text { diff_append1 }(X, \text { Hole, }[d, e]) . \\
& X=[a, b, c, d, d, e], \\
& \\
& \text { Hole }=[d, e] .
\end{aligned}
$$

- Note that when we work with open lists we need to have information (i.e. a variable) both for the open list and its hole.
- Note that when we work with open lists we need to have information (i.e. a variable) both for the open list and its hole.
- A list can be represented as the the difference between an open list and its hole.
- Note that when we work with open lists we need to have information (i.e. a variable) both for the open list and its hole.
- A list can be represented as the the difference between an open list and its hole.
- Notation: OpenList-Hole
- Note that when we work with open lists we need to have information (i.e. a variable) both for the open list and its hole.
- A list can be represented as the the difference between an open list and its hole.
- Notation: OpenList-Hole
- here the difference operator - has no interpretation,
- Note that when we work with open lists we need to have information (i.e. a variable) both for the open list and its hole.
- A list can be represented as the the difference between an open list and its hole.
- Notation: OpenList-Hole
- here the difference operator - has no interpretation,
- in fact other operators could be used instead.
- Now modify the append predicate to use difference list notation:

$$
\begin{gathered}
\text { diff_append2 }(\text { OpenList-Hole, } L):- \\
\text { Hole }=L .
\end{gathered}
$$

- Now modify the append predicate to use difference list notation:

$$
\begin{gathered}
\text { diff_append2 }(\text { OpenList-Hole, } L):- \\
\text { Hole }=L .
\end{gathered}
$$

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }] \text {-Hole, } \\
& \quad \text { diff_append2 }(X,[d, e]) . \\
& X=[a, b, c, d, d, e]-[d, e] \\
& \\
& \text { Hole }=[d, e] .
\end{aligned}
$$

- Now modify the append predicate to use difference list notation:

$$
\begin{gathered}
\text { diff_append } 2(\text { OpenList-Hole, } L):- \\
\text { Hole }=L .
\end{gathered}
$$

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }]-\text { Hole }, \\
& \text { diff } \quad \text { append2 }(X,[d, e]) . \\
& X=[a, b, c, d, d, e]-[d, e] \\
& \text { Hole }=[d, e] .
\end{aligned}
$$

- Perhaps the fact that the answer is given as a difference list is not convenient.
- A new version that returns a(n open) list (with the hole filled) as the answer:

$$
\begin{array}{r}
\text { diff_append3(OpenList-Hole, } L, \quad \text { OpenList):- } \\
\text { Hole }=L .
\end{array}
$$

- A new version that returns a(n open) list (with the hole filled) as the answer:

diff_append3(OpenList-Hole, L, OpenList):Hole $=\mathrm{L}$.

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }] \text {-Hole, } \\
& \text { diff_append }(X,[d, e], \text { Ans }) . \\
& \\
& X=[a, b, c, d, d, e]-[d, e], \\
& \\
& \text { Hole }=[d, e], \\
& \\
& \text { Ans }=[a, b, c, d, d, e] .
\end{aligned}
$$

- A new version that returns a(n open) list (with the hole filled) as the answer:

$$
\begin{array}{r}
\text { diff_append3(OpenList-Hole, } L, \quad \text { OpenList):- } \\
\text { Hole }=L .
\end{array}
$$

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }] \text {-Hole, } \\
& \text { } d i f f \text { append }(X,[d, e], \text { Ans }) . \\
& \\
& X=[a, b, c, d, d, e]-[d, e], \\
& \text { Hole }=[d, e], \\
& \text { Ans }=[a, b, c, d, d, e] .
\end{aligned}
$$

- diff_append3 has
- A new version that returns a(n open) list (with the hole filled) as the answer:

$$
\begin{array}{r}
\text { diff_append3(OpenList-Hole, } L, \quad \text { OpenList):- } \\
\text { Hole }=L .
\end{array}
$$

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }] \text {-Hole, } \\
& \text { diffappend3 }(X,[d, e], \text { Ans }) . \\
& X=[a, b, c, d, d, e]-[d, e], \\
& \text { Hole }=[d, e], \\
& \text { Ans }=[a, b, c, d, d, e] .
\end{aligned}
$$

- diff_append3 has
- a difference list as its first argument,
- A new version that returns a(n open) list (with the hole filled) as the answer:

$$
\begin{array}{r}
\text { diff_append3(OpenList-Hole, } L, \quad \text { OpenList):- } \\
\text { Hole }=L .
\end{array}
$$

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }] \text {-Hole, } \\
& \text { diffappend3 }(X,[d, e], \text { Ans }) . \\
& X=[a, b, c, d, d, e]-[d, e], \\
& \text { Hole }=[d, e], \\
& \text { Ans }=[a, b, c, d, d, e] .
\end{aligned}
$$

- diff_append3 has
- a difference list as its first argument,
- a proper list as its second argument,
- A new version that returns a(n open) list (with the hole filled) as the answer:

$$
\begin{array}{r}
\text { diff_append3(OpenList-Hole, } L, \quad \text { OpenList):- } \\
\text { Hole }=L .
\end{array}
$$

its usage:

$$
\begin{aligned}
& ?-X=[a, b, c, d \mid \text { Hole }] \text {-Hole, } \\
& \text { diffappend }(X,[d, e], \text { Ans }) . \\
& \\
& X=[a, b, c, d, d, e]-[d, e], \\
& \text { Hole }=[d, e], \\
& \text { Ans }=[a, b, c, d, d, e] .
\end{aligned}
$$

- diff_append3 has
- a difference list as its first argument,
- a proper list as its second argument,
- returns a proper list.
- A further modification - to be systematic - for this version the arguments are all difference lists:
diff_append4 (OL1-Hole1, OL2-Hole2, OL1-Hole2):Hole1 = OL2.
- A further modification - to be systematic - for this version the arguments are all difference lists:
diff_append4 (OL1-Hole1, OL2-Hole2, OL1-Hole2):Hole1 = OL2.
and its usage:
?- $X=[a, b, c \mid H o]-H o$,
diff_append4 (X, [d,e,f|Hole2]-Hole2, Ans). $X=[a, b, c, d, e, f \mid H o l e 2]-[d, e, f \mid H o l e 2]$,
Ho $=[d, e, f \mid H o l e 2], A n s=[a, b, c, d, e, f \mid H o l$
- A further modification - to be systematic - for this version the arguments are all difference lists:

> diff_append4 (OL1-Hole1, OL2-Hole2, OL1-Hole2):Hole 1 = OL2.
and its usage:
? $-\mathrm{X}=[\mathrm{a}, \mathrm{b}, \mathrm{c} \mid \mathrm{Ho} \mathrm{C}-\mathrm{Ho}$,
diff_append4 (X, [d,e,f|Hole2]-Hole2, Ans).
$X=[a, b, c, d, e, f \mid H o l e 2]-[d, e, f \mid H o l e 2]$,
Ho $=[d, e, f \mid H o l e 2], A n s=[a, b, c, d, e, f \mid H o l$
or, if we want the result to be just the list, fill the hole with the empty list:

$$
\begin{aligned}
& ?-X= {[a, b, c \mid H o]-H o, } \\
& \quad \text { diff_append } 6(X, \quad[d, e, f \mid \text { Hole 2 }]-\text { Hole 2, } \\
&\text { Ans }-[]) . \\
& X=[a, b, c, d, e, f]-[d, e, f], \\
& H o=[d, e, f], \\
& H o l e 2=[], \\
& \text { Ans }=[a, b, c, d, e, f],
\end{aligned}
$$

- One last modification is possible:
append_diff(OL1-Hole1, Hole1-Hole2, OL1-Hole2).
- One last modification is possible: append_diff(OL1-Hole1, Hole1-Hole2, OL1-Hole2). its usage:

$$
\begin{aligned}
& ?-X=[a, b, c \mid H]-H, \\
& \text { append_diff }(X,[d, e, f \mid \text { Hole2 }]-\text { Hole2, } \\
& \text { Ans }-[]) . \\
& X=[a, b, c, d, e, f]-[d, e, f], \\
& H=[d, e, f], \\
& \text { Hole } 2=[], \\
& \text { Ans }=[a, b, c, d, e, f] .
\end{aligned}
$$

Example: adding to back

- Let us consider the program for adding one element to the back of a list:

\% boundary condition
add_to_back(EI, [], [EI]).
\% recursion
add_to_back(El,[Head|Tail],[Head|NewTail):-
add_to_back(EI, Tail, NewTail).

Example: adding to back

- Let us consider the program for adding one element to the back of a list:

```
                            % boundary condition
add_to_back(El,[],[El]).
    % recursion
add_to_back(El,[Head|Tail],[Head|NewTail):-
    add_to_back(El,Tail,NewTail).
```

- The program above is quite inefficient, at least compared with the similar operation of adding an element at the beginning of a list (linear in the length of the list - one goes through the whole list to find its end - versus constant - one step).

Example: adding to back

- Let us consider the program for adding one element to the back of a list:

```
            % boundary condition
add_to_back(El,[],[El]).
    % recursion
add_to_back(El,[Head| Tail],[Head|NewTail):-
    add_to_back(El,Tail,NewTail).
```

- The program above is quite inefficient, at least compared with the similar operation of adding an element at the beginning of a list (linear in the length of the list - one goes through the whole list to find its end - versus constant - one step).
- But difference lists can help - the hole is at the end of the list:

```
add_to_back_d(El,OpenList-Hole, Ans):-
append_diff(OpenList-Hole, [El|ElHole]-ElHole, Ans-[]).
```


Problems with difference lists

- Consider:

$$
\begin{aligned}
& ?-\text { append_diff }([a, b]-[b],[c, d]-[d], L) . \\
& \quad \text { false. }
\end{aligned}
$$

Problems with difference lists

- Consider:

$$
\begin{aligned}
& ?-\quad \text { append_diff }([a, b]-[b],[c, d]-[d], L) . \\
& \quad \text { false. }
\end{aligned}
$$

The above does not work! (no holes to fill).

Problems with difference lists

- Consider:

$$
\begin{aligned}
& ?-\quad \text { append_diff }([a, b]-[b],[c, d]-[d], L) . \\
& \quad \text { false. }
\end{aligned}
$$

The above does not work! (no holes to fill).

- There are also problems with the occurs check (or lack there of):

$$
\begin{aligned}
& \operatorname{empty}(L-L) \\
& \text { ?- empty }([a \mid Y]-Y) \\
& Y=[a \mid * *]
\end{aligned}
$$

- - in difference lists is a partial function. It is not defined for [a, b, c]-[d]:
?- append_diff $([a, b]-[c],[c]-[d], L)$. $L=[a, b]-[d]$.
- - in difference lists is a partial function. It is not defined for [a, b, c]-[d]:

$$
\begin{aligned}
& ?-\quad \text { append_diff }([a, b]-[c], \quad[c]-[d], L) . \\
& \quad L=[a, b]-[d] .
\end{aligned}
$$

The query succeeds, but the result is not the one expected.

- - in difference lists is a partial function. It is not defined for [a, b, c]-[d]:

$$
\begin{aligned}
?- & \text { append_diff }([a, b]-[c], \quad[c]-[d], L) . \\
& L=[a, b]-[d] .
\end{aligned}
$$

The query succeeds, but the result is not the one expected.

- This can be fixed:

$$
\begin{aligned}
& \text { append_diff_fix }(X-Y, \quad Y-Z, \quad X-Z):- \\
& \text { suffix }(Y, X), \\
& \\
& \text { suffix }(Z, Y) .
\end{aligned}
$$

- - in difference lists is a partial function. It is not defined for [a, b, c]-[d]:
?- append_diff $([a, b]-[c],[c]-[d], L)$. $L=[a, b]-[d]$.

The query succeeds, but the result is not the one expected.

- This can be fixed:

$$
\begin{aligned}
& \text { append_diff_fix }(X-Y, \quad Y-Z, X-Z):- \\
& \text { suffix }(Y, X), \\
& \\
& \text { suffix }(Z, Y) .
\end{aligned}
$$

however, now the execution time becomes linear again.

