
Logic Programming
Lists. Recursion

I Lists

I Recursion

I Accummulators

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,

“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,

2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,

3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,

4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,

5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,

6. leave everything else unchanged.

Recursive mapping

I Mapping: given 2 similar structures, change the first into the
second, according to some rules.

I Example:

“you are a computer” maps to “i am not a computer”,
“do you speak french” maps to “i do not speak german”.

I Mapping procedure:

1. accept a sentence,
2. change “you” to “i”,
3. change “are” to “am not”,
4. change “french” to “german”,
5. change “do” to “no”,
6. leave everything else unchanged.

Recursive mapping (continued)

I The program:

change (you , i) .
change (are , [am , not]) .
change (f r e n c h , german) .
change (do , no) .
change (X, X) .

a l t e r ([] , []) .
a l t e r ([H |T] , [X |Y]) :−

change (H, X) ,
a l t e r (T, Y) .

I Note that this program is limited:

I it would change “i do like you” into “i no like i”,
I new rules would have to be added to the program to deal with

such situations.

Recursive mapping (continued)

I The program:

change (you , i) .
change (are , [am , not]) .
change (f r e n c h , german) .
change (do , no) .
change (X, X) .

a l t e r ([] , []) .
a l t e r ([H |T] , [X |Y]) :−

change (H, X) ,
a l t e r (T, Y) .

I Note that this program is limited:

I it would change “i do like you” into “i no like i”,
I new rules would have to be added to the program to deal with

such situations.

Recursive mapping (continued)

I The program:

change (you , i) .
change (are , [am , not]) .
change (f r e n c h , german) .
change (do , no) .
change (X, X) .

a l t e r ([] , []) .
a l t e r ([H |T] , [X |Y]) :−

change (H, X) ,
a l t e r (T, Y) .

I Note that this program is limited:
I it would change “i do like you” into “i no like i”,

I new rules would have to be added to the program to deal with
such situations.

Recursive mapping (continued)

I The program:

change (you , i) .
change (are , [am , not]) .
change (f r e n c h , german) .
change (do , no) .
change (X, X) .

a l t e r ([] , []) .
a l t e r ([H |T] , [X |Y]) :−

change (H, X) ,
a l t e r (T, Y) .

I Note that this program is limited:
I it would change “i do like you” into “i no like i”,
I new rules would have to be added to the program to deal with

such situations.

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2

1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.

2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.

3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).

4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.

5. aless (alphabetic , alp) fails.
I Use the predicate name/2 which returns the name of a

symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Comparing Structures
I Dictionary comparison (lexicographic comparison) of atoms:

aless /2
1. aless (book, bookbinder) succeeds.
2. aless (elephant, elevator) succeeds.
3. aless (lazy , leather) is decided by aless (azy, eather).
4. aless (same, same) fails.
5. aless (alphabetic , alp) fails.

I Use the predicate name/2 which returns the name of a
symbol:

?−name (X, [9 7 , 1 0 8 , 1 1 2]) .
X=a l p .

I The program:

a l e s s (X, Y):−
name (X, L) , name (Y, M) , a l e s s x (L ,M) .

a l e s s x ([] , [|]) .
a l e s s x ([X |] , [Y |]) :− X < Y .
a l e s s x ([H |X] , [H |Y]) :− a l e s s (X, Y) .

Homework exercises for today. Questions?

I Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions
5. The concatenation of two lists.

Append

I We want to append two lists, i.e.

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , [a , b , c , 3 , 2 , 1]) .
t r u e

This illustrate the use of appendLists/3 for testing that a list
is the result of appending two other lists.

I Other uses of appendLists/3:

- Total list computation:

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , X) .

- Isolate:

?−a p p e n d L i s t s (X, [2 , 1] , [a , b , c , 2 , 1]) .

- Split:

?−a p p e n d L i s t s (X, Y, [a , b , c , 3 , 2 , 1]) .

Append

I We want to append two lists, i.e.

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , [a , b , c , 3 , 2 , 1]) .
t r u e

This illustrate the use of appendLists/3 for testing that a list
is the result of appending two other lists.

I Other uses of appendLists/3:

- Total list computation:

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , X) .

- Isolate:

?−a p p e n d L i s t s (X, [2 , 1] , [a , b , c , 2 , 1]) .

- Split:

?−a p p e n d L i s t s (X, Y, [a , b , c , 3 , 2 , 1]) .

Append

I We want to append two lists, i.e.

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , [a , b , c , 3 , 2 , 1]) .
t r u e

This illustrate the use of appendLists/3 for testing that a list
is the result of appending two other lists.

I Other uses of appendLists/3:

- Total list computation:

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , X) .

- Isolate:

?−a p p e n d L i s t s (X, [2 , 1] , [a , b , c , 2 , 1]) .

- Split:

?−a p p e n d L i s t s (X, Y, [a , b , c , 3 , 2 , 1]) .

Append

I We want to append two lists, i.e.

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , [a , b , c , 3 , 2 , 1]) .
t r u e

This illustrate the use of appendLists/3 for testing that a list
is the result of appending two other lists.

I Other uses of appendLists/3:

- Total list computation:

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , X) .

- Isolate:

?−a p p e n d L i s t s (X, [2 , 1] , [a , b , c , 2 , 1]) .

- Split:

?−a p p e n d L i s t s (X, Y, [a , b , c , 3 , 2 , 1]) .

Append

I We want to append two lists, i.e.

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , [a , b , c , 3 , 2 , 1]) .
t r u e

This illustrate the use of appendLists/3 for testing that a list
is the result of appending two other lists.

I Other uses of appendLists/3:

- Total list computation:

?−a p p e n d L i s t s ([a , b , c] , [3 , 2 , 1] , X) .

- Isolate:

?−a p p e n d L i s t s (X, [2 , 1] , [a , b , c , 2 , 1]) .

- Split:

?−a p p e n d L i s t s (X, Y, [a , b , c , 3 , 2 , 1]) .

% th e boundary c o n d i t i o n
a p p e n d L i s t s ([] , L , L) .

% r e c u r s i o n
a p p e n d L i s t s ([X | L1] , L2 , [X | L3]) :−

a p p e n d L i s t s (L1 , L2 , L3) .

Summary

I The recursive nature of structures (and in particular lists)
gives a way to traverse them by recursive decomposition.

I When the boundary is reached, the decomposition stops and
the result is composed in a reverse of the decomposition
process.

I This process can be made more efficient: introduce an extra
variable in which the “result so far” is accumulated.

I When the boundary is reached this extra variable already
contains the result, no need to go back and compose the final
result.

I This variable is called an accumulator.

Summary

I The recursive nature of structures (and in particular lists)
gives a way to traverse them by recursive decomposition.

I When the boundary is reached, the decomposition stops and
the result is composed in a reverse of the decomposition
process.

I This process can be made more efficient: introduce an extra
variable in which the “result so far” is accumulated.

I When the boundary is reached this extra variable already
contains the result, no need to go back and compose the final
result.

I This variable is called an accumulator.

Summary

I The recursive nature of structures (and in particular lists)
gives a way to traverse them by recursive decomposition.

I When the boundary is reached, the decomposition stops and
the result is composed in a reverse of the decomposition
process.

I This process can be made more efficient: introduce an extra
variable in which the “result so far” is accumulated.

I When the boundary is reached this extra variable already
contains the result, no need to go back and compose the final
result.

I This variable is called an accumulator.

Summary

I The recursive nature of structures (and in particular lists)
gives a way to traverse them by recursive decomposition.

I When the boundary is reached, the decomposition stops and
the result is composed in a reverse of the decomposition
process.

I This process can be made more efficient: introduce an extra
variable in which the “result so far” is accumulated.

I When the boundary is reached this extra variable already
contains the result, no need to go back and compose the final
result.

I This variable is called an accumulator.

Summary

I The recursive nature of structures (and in particular lists)
gives a way to traverse them by recursive decomposition.

I When the boundary is reached, the decomposition stops and
the result is composed in a reverse of the decomposition
process.

I This process can be made more efficient: introduce an extra
variable in which the “result so far” is accumulated.

I When the boundary is reached this extra variable already
contains the result, no need to go back and compose the final
result.

I This variable is called an accumulator.

Exercises

I Define predicates in Prolog (with accumulators) for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions

Example: List Length

I Without accumulator:

% l e n g t h o f a l i s t
% boundary c o n d i t i o n
l i s t l e n ([] , 0) .

% r e c u r s i o n
l i s t l e n ([H |T] , N):−

l i s t l e n (T, N1) ,
N i s N1+1.

I With accumulator:

% l e n g t h o f a l i s t w i t h a c c u m u l a t o r s
% c a l l o f t he a c c u m u l a t o r :

l i s t l e n 1 (L , N):−
l e n a c c (L , 0 , N) .

% boundary c o n d i t i o n f o r a c c u m u l a t o r
l e n a c c ([] , A , A) .

% r e c u r s i o n f o r th e a c c u m u l a t o r
l e n a c c ([H |T] , A, N):−

A1 i s A + 1 ,
l e n a c c (T, A1 , N) .

I Inside Prolog, for the query ?− listlen1 ([a, b, c], N):

l e n a c c ([a , b , c] , 0 , N) .
l e n a c c ([b , c] , 1 , N) .
l e n a c c ([c] , 2 , N) .
l e n a c c ([] , 3 , N)

The return variable is shared by every goal in the trace.

I With accumulator:

% l e n g t h o f a l i s t w i t h a c c u m u l a t o r s
% c a l l o f t he a c c u m u l a t o r :

l i s t l e n 1 (L , N):−
l e n a c c (L , 0 , N) .

% boundary c o n d i t i o n f o r a c c u m u l a t o r
l e n a c c ([] , A , A) .

% r e c u r s i o n f o r th e a c c u m u l a t o r
l e n a c c ([H |T] , A, N):−

A1 i s A + 1 ,
l e n a c c (T, A1 , N) .

I Inside Prolog, for the query ?− listlen1 ([a, b, c], N):

l e n a c c ([a , b , c] , 0 , N) .
l e n a c c ([b , c] , 1 , N) .
l e n a c c ([c] , 2 , N) .
l e n a c c ([] , 3 , N)

The return variable is shared by every goal in the trace.

Example: Reverse

I Without accumulators:

%% r e v e r s e
% boundary c o n d i t i o n

r e v e r s e 1 ([] , []) .
% r e c u r s i o n

r e v e r s e 1 ([X |TX] , L):−
r e v e r s e 1 (TX, NL) ,
a p p e n d L i s t s (NL , [X] , L) .

I With accumulators:

%% r e v e r s e w i t h a c c u m u l a t o r s
% c a l l th e a c c u m u l a t o r

r e v e r s e 2 (L , R):−
r e v e r s e A c c (L , [] , R) .

% boundary c o n d i t i o n f o r t he a c c u m u l a t o r
r e v e r s e A c c ([] , R , R) .

% r e c u r s i o n f o r th e a c c u m u l a t o r
r e v e r s e A c c ([H |T] , A, R):−

r e v e r s e A c c (T, [H |A] , R) .

Summary

I Accumulators provide a technique to keep trace of the “result
so far” (in the accumulator variable) at each step of
computation, such that when the structure is traversed the
accumulator contains “the final result”, which is then passed
to the “output variable”.

I Now we consider a technique where we use a variable to hold
“the final result” and the second to indicate a “hole in the
final result”, where more things can be inserted.

I Consider [a, b, c | X] - we know that this structure is a list
up to a point (up to X). We call this an open list (a list with a
“hole”).

� � �

a b c

Summary

I Accumulators provide a technique to keep trace of the “result
so far” (in the accumulator variable) at each step of
computation, such that when the structure is traversed the
accumulator contains “the final result”, which is then passed
to the “output variable”.

I Now we consider a technique where we use a variable to hold
“the final result” and the second to indicate a “hole in the
final result”, where more things can be inserted.

I Consider [a, b, c | X] - we know that this structure is a list
up to a point (up to X). We call this an open list (a list with a
“hole”).

� � �

a b c

Summary

I Accumulators provide a technique to keep trace of the “result
so far” (in the accumulator variable) at each step of
computation, such that when the structure is traversed the
accumulator contains “the final result”, which is then passed
to the “output variable”.

I Now we consider a technique where we use a variable to hold
“the final result” and the second to indicate a “hole in the
final result”, where more things can be inserted.

I Consider [a, b, c | X] - we know that this structure is a list
up to a point (up to X). We call this an open list (a list with a
“hole”).

� � �

a b c

Summary

I Accumulators provide a technique to keep trace of the “result
so far” (in the accumulator variable) at each step of
computation, such that when the structure is traversed the
accumulator contains “the final result”, which is then passed
to the “output variable”.

I Now we consider a technique where we use a variable to hold
“the final result” and the second to indicate a “hole in the
final result”, where more things can be inserted.

I Consider [a, b, c | X] - we know that this structure is a list
up to a point (up to X). We call this an open list (a list with a
“hole”).

� � �

a b c

Using open lists

I Consider

?− X = [a , b , c | L] , L = [d , e , f , g] .
X = [a , b , c , d , e , f , g] ,
L = [d , e , f , g] .

I the result is the concatenation of the beginning of X (the list
before the “hole”) with L,

I i.e. we filled the “hole”,
I and this is done in one step!

I Now fill the hole with an open list:

?− X = [a , b , c | L] , L = [d , e | L1] .
X = [a , b , c , d , e | L1] ,
L = [d , e | L1] .

I the hole was filled partially.

Using open lists

I Consider

?− X = [a , b , c | L] , L = [d , e , f , g] .
X = [a , b , c , d , e , f , g] ,
L = [d , e , f , g] .

I the result is the concatenation of the beginning of X (the list
before the “hole”) with L,

I i.e. we filled the “hole”,
I and this is done in one step!

I Now fill the hole with an open list:

?− X = [a , b , c | L] , L = [d , e | L1] .
X = [a , b , c , d , e | L1] ,
L = [d , e | L1] .

I the hole was filled partially.

Using open lists

I Consider

?− X = [a , b , c | L] , L = [d , e , f , g] .
X = [a , b , c , d , e , f , g] ,
L = [d , e , f , g] .

I the result is the concatenation of the beginning of X (the list
before the “hole”) with L,

I i.e. we filled the “hole”,

I and this is done in one step!

I Now fill the hole with an open list:

?− X = [a , b , c | L] , L = [d , e | L1] .
X = [a , b , c , d , e | L1] ,
L = [d , e | L1] .

I the hole was filled partially.

Using open lists

I Consider

?− X = [a , b , c | L] , L = [d , e , f , g] .
X = [a , b , c , d , e , f , g] ,
L = [d , e , f , g] .

I the result is the concatenation of the beginning of X (the list
before the “hole”) with L,

I i.e. we filled the “hole”,
I and this is done in one step!

I Now fill the hole with an open list:

?− X = [a , b , c | L] , L = [d , e | L1] .
X = [a , b , c , d , e | L1] ,
L = [d , e | L1] .

I the hole was filled partially.

Using open lists

I Consider

?− X = [a , b , c | L] , L = [d , e , f , g] .
X = [a , b , c , d , e , f , g] ,
L = [d , e , f , g] .

I the result is the concatenation of the beginning of X (the list
before the “hole”) with L,

I i.e. we filled the “hole”,
I and this is done in one step!

I Now fill the hole with an open list:

?− X = [a , b , c | L] , L = [d , e | L1] .
X = [a , b , c , d , e | L1] ,
L = [d , e | L1] .

I the hole was filled partially.

Using open lists

I Consider

?− X = [a , b , c | L] , L = [d , e , f , g] .
X = [a , b , c , d , e , f , g] ,
L = [d , e , f , g] .

I the result is the concatenation of the beginning of X (the list
before the “hole”) with L,

I i.e. we filled the “hole”,
I and this is done in one step!

I Now fill the hole with an open list:

?− X = [a , b , c | L] , L = [d , e | L1] .
X = [a , b , c , d , e | L1] ,
L = [d , e | L1] .

I the hole was filled partially.

I Now express this as a Prolog predicate:

d i f f a p p e n d 1 (OpenList , Hole , L):−
Hole=L .

i.e. we have an open list (OpenList), with a hole (Hole) is
filled with a list (L):

?− X = [a , b , c , d | Hole] ,
d i f f a p p e n d 1 (X, Hole , [d , e]) .

X = [a , b , c , d , d , e] ,
Hole = [d , e] .

I Now express this as a Prolog predicate:

d i f f a p p e n d 1 (OpenList , Hole , L):−
Hole=L .

i.e. we have an open list (OpenList), with a hole (Hole) is
filled with a list (L):

?− X = [a , b , c , d | Hole] ,
d i f f a p p e n d 1 (X, Hole , [d , e]) .

X = [a , b , c , d , d , e] ,
Hole = [d , e] .

I Note that when we work with open lists we need to have
information (i.e. a variable) both for the open list and its hole.

I A list can be represented as the the difference between an
open list and its hole.

I Notation: OpenList−Hole

I here the difference operator − has no interpretation,
I in fact other operators could be used instead.

I Note that when we work with open lists we need to have
information (i.e. a variable) both for the open list and its hole.

I A list can be represented as the the difference between an
open list and its hole.

I Notation: OpenList−Hole

I here the difference operator − has no interpretation,
I in fact other operators could be used instead.

I Note that when we work with open lists we need to have
information (i.e. a variable) both for the open list and its hole.

I A list can be represented as the the difference between an
open list and its hole.

I Notation: OpenList−Hole

I here the difference operator − has no interpretation,
I in fact other operators could be used instead.

I Note that when we work with open lists we need to have
information (i.e. a variable) both for the open list and its hole.

I A list can be represented as the the difference between an
open list and its hole.

I Notation: OpenList−Hole
I here the difference operator − has no interpretation,

I in fact other operators could be used instead.

I Note that when we work with open lists we need to have
information (i.e. a variable) both for the open list and its hole.

I A list can be represented as the the difference between an
open list and its hole.

I Notation: OpenList−Hole
I here the difference operator − has no interpretation,
I in fact other operators could be used instead.

I Now modify the append predicate to use difference list
notation:

d i f f a p p e n d 2 (OpenList−Hole , L):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 2 (X , [d , e]) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] .

I Perhaps the fact that the answer is given as a difference list is
not convenient.

I Now modify the append predicate to use difference list
notation:

d i f f a p p e n d 2 (OpenList−Hole , L):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 2 (X , [d , e]) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] .

I Perhaps the fact that the answer is given as a difference list is
not convenient.

I Now modify the append predicate to use difference list
notation:

d i f f a p p e n d 2 (OpenList−Hole , L):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 2 (X , [d , e]) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] .

I Perhaps the fact that the answer is given as a difference list is
not convenient.

I A new version that returns a(n open) list (with the hole filled)
as the answer:

d i f f a p p e n d 3 (OpenList−Hole , L , OpenL i s t):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 3 (X , [d , e] , Ans) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] ,
Ans = [a , b , c , d , d , e] .

I diff append3 has

I a difference list as its first argument,
I a proper list as its second argument,
I returns a proper list.

I A new version that returns a(n open) list (with the hole filled)
as the answer:

d i f f a p p e n d 3 (OpenList−Hole , L , OpenL i s t):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 3 (X , [d , e] , Ans) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] ,
Ans = [a , b , c , d , d , e] .

I diff append3 has

I a difference list as its first argument,
I a proper list as its second argument,
I returns a proper list.

I A new version that returns a(n open) list (with the hole filled)
as the answer:

d i f f a p p e n d 3 (OpenList−Hole , L , OpenL i s t):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 3 (X , [d , e] , Ans) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] ,
Ans = [a , b , c , d , d , e] .

I diff append3 has

I a difference list as its first argument,
I a proper list as its second argument,
I returns a proper list.

I A new version that returns a(n open) list (with the hole filled)
as the answer:

d i f f a p p e n d 3 (OpenList−Hole , L , OpenL i s t):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 3 (X , [d , e] , Ans) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] ,
Ans = [a , b , c , d , d , e] .

I diff append3 has
I a difference list as its first argument,

I a proper list as its second argument,
I returns a proper list.

I A new version that returns a(n open) list (with the hole filled)
as the answer:

d i f f a p p e n d 3 (OpenList−Hole , L , OpenL i s t):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 3 (X , [d , e] , Ans) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] ,
Ans = [a , b , c , d , d , e] .

I diff append3 has
I a difference list as its first argument,
I a proper list as its second argument,

I returns a proper list.

I A new version that returns a(n open) list (with the hole filled)
as the answer:

d i f f a p p e n d 3 (OpenList−Hole , L , OpenL i s t):−
Hole = L .

its usage:

?− X = [a , b , c , d | Hole]−Hole ,
d i f f a p p e n d 3 (X , [d , e] , Ans) .

X = [a , b , c , d , d , e]− [d , e] ,
Hole = [d , e] ,
Ans = [a , b , c , d , d , e] .

I diff append3 has
I a difference list as its first argument,
I a proper list as its second argument,
I returns a proper list.

I A further modification – to be systematic – for this version
the arguments are all difference lists:

d i f f a p p e n d 4 (OL1−Hole1 , OL2−Hole2 , OL1−Hole2):−
Hole1 = OL2 .

and its usage:

?− X=[a , b , c |Ho]−Ho ,
d i f f a p p e n d 4 (X, [d , e , f | Hole2]−Hole2 , Ans) .
X = [a , b , c , d , e , f | Hole2]− [d , e , f | Hole2] ,
Ho = [d , e , f | Hole2] , Ans = [a , b , c , d , e , f | Hole2]−Hole2 .

or, if we want the result to be just the list, fill the hole with
the empty list:

?− X=[a , b , c |Ho]−Ho ,
d i f f a p p e n d 6 (X, [d , e , f | Hole2]−Hole2 ,

Ans − []) .
X = [a , b , c , d , e , f]− [d , e , f] ,
Ho = [d , e , f] ,
Hole2 = [] ,
Ans = [a , b , c , d , e , f] .

I A further modification – to be systematic – for this version
the arguments are all difference lists:

d i f f a p p e n d 4 (OL1−Hole1 , OL2−Hole2 , OL1−Hole2):−
Hole1 = OL2 .

and its usage:

?− X=[a , b , c |Ho]−Ho ,
d i f f a p p e n d 4 (X, [d , e , f | Hole2]−Hole2 , Ans) .
X = [a , b , c , d , e , f | Hole2]− [d , e , f | Hole2] ,
Ho = [d , e , f | Hole2] , Ans = [a , b , c , d , e , f | Hole2]−Hole2 .

or, if we want the result to be just the list, fill the hole with
the empty list:

?− X=[a , b , c |Ho]−Ho ,
d i f f a p p e n d 6 (X, [d , e , f | Hole2]−Hole2 ,

Ans − []) .
X = [a , b , c , d , e , f]− [d , e , f] ,
Ho = [d , e , f] ,
Hole2 = [] ,
Ans = [a , b , c , d , e , f] .

I A further modification – to be systematic – for this version
the arguments are all difference lists:

d i f f a p p e n d 4 (OL1−Hole1 , OL2−Hole2 , OL1−Hole2):−
Hole1 = OL2 .

and its usage:

?− X=[a , b , c |Ho]−Ho ,
d i f f a p p e n d 4 (X, [d , e , f | Hole2]−Hole2 , Ans) .
X = [a , b , c , d , e , f | Hole2]− [d , e , f | Hole2] ,
Ho = [d , e , f | Hole2] , Ans = [a , b , c , d , e , f | Hole2]−Hole2 .

or, if we want the result to be just the list, fill the hole with
the empty list:

?− X=[a , b , c |Ho]−Ho ,
d i f f a p p e n d 6 (X, [d , e , f | Hole2]−Hole2 ,

Ans − []) .
X = [a , b , c , d , e , f]− [d , e , f] ,
Ho = [d , e , f] ,
Hole2 = [] ,
Ans = [a , b , c , d , e , f] .

I One last modification is possible:

a p p e n d d i f f (OL1−Hole1 , Hole1−Hole2 , OL1−Hole2) .

its usage:

?− X=[a , b , c |H]−H,
a p p e n d d i f f (X, [d , e , f | Hole2]−Hole2 ,
Ans − []) .
X = [a , b , c , d , e , f]− [d , e , f] ,
H = [d , e , f] ,
Hole2 = [] ,
Ans = [a , b , c , d , e , f] .

I One last modification is possible:

a p p e n d d i f f (OL1−Hole1 , Hole1−Hole2 , OL1−Hole2) .

its usage:

?− X=[a , b , c |H]−H,
a p p e n d d i f f (X, [d , e , f | Hole2]−Hole2 ,
Ans − []) .
X = [a , b , c , d , e , f]− [d , e , f] ,
H = [d , e , f] ,
Hole2 = [] ,
Ans = [a , b , c , d , e , f] .

Example: adding to back

I Let us consider the program for adding one element to the
back of a list:

% boundary c o n d i t i o n
a d d t o b a c k (El , [] , [E l]) .

% r e c u r s i o n
a d d t o b a c k (El , [Head | T a i l] , [Head | NewTail):−

a d d t o b a c k (El , T a i l , NewTail) .

I The program above is quite inefficient, at least compared with
the similar operation of adding an element at the beginning of
a list (linear in the length of the list – one goes through the
whole list to find its end – versus constant – one step).

I But difference lists can help - the hole is at the end of the list:

a d d t o b a c k d (El , OpenList−Hole , Ans):−
a p p e n d d i f f (OpenList−Hole , [E l | E l H o l e]−ElHole ,
Ans − []) .

Example: adding to back

I Let us consider the program for adding one element to the
back of a list:

% boundary c o n d i t i o n
a d d t o b a c k (El , [] , [E l]) .

% r e c u r s i o n
a d d t o b a c k (El , [Head | T a i l] , [Head | NewTail):−

a d d t o b a c k (El , T a i l , NewTail) .

I The program above is quite inefficient, at least compared with
the similar operation of adding an element at the beginning of
a list (linear in the length of the list – one goes through the
whole list to find its end – versus constant – one step).

I But difference lists can help - the hole is at the end of the list:

a d d t o b a c k d (El , OpenList−Hole , Ans):−
a p p e n d d i f f (OpenList−Hole , [E l | E l H o l e]−ElHole ,
Ans − []) .

Example: adding to back

I Let us consider the program for adding one element to the
back of a list:

% boundary c o n d i t i o n
a d d t o b a c k (El , [] , [E l]) .

% r e c u r s i o n
a d d t o b a c k (El , [Head | T a i l] , [Head | NewTail):−

a d d t o b a c k (El , T a i l , NewTail) .

I The program above is quite inefficient, at least compared with
the similar operation of adding an element at the beginning of
a list (linear in the length of the list – one goes through the
whole list to find its end – versus constant – one step).

I But difference lists can help - the hole is at the end of the list:

a d d t o b a c k d (El , OpenList−Hole , Ans):−
a p p e n d d i f f (OpenList−Hole , [E l | E l H o l e]−ElHole ,
Ans − []) .

Problems with difference lists

I Consider:

?− a p p e n d d i f f ([a , b] − [b] , [c , d]− [d] , L) .
f a l s e .

The above does not work! (no holes to fill).

I There are also problems with the occurs check (or lack there
of):

empty (L−L) .

?− empty ([a |Y]−Y) .
Y = [a | * *] .

Problems with difference lists

I Consider:

?− a p p e n d d i f f ([a , b] − [b] , [c , d]− [d] , L) .
f a l s e .

The above does not work! (no holes to fill).

I There are also problems with the occurs check (or lack there
of):

empty (L−L) .

?− empty ([a |Y]−Y) .
Y = [a | * *] .

Problems with difference lists

I Consider:

?− a p p e n d d i f f ([a , b] − [b] , [c , d]− [d] , L) .
f a l s e .

The above does not work! (no holes to fill).

I There are also problems with the occurs check (or lack there
of):

empty (L−L) .

?− empty ([a |Y]−Y) .
Y = [a | * *] .

I − in difference lists is a partial function. It is not defined for
[a, b, c]−[d] :

?− a p p e n d d i f f ([a , b]− [c] , [c]− [d] , L) .
L = [a , b]− [d] .

The query succeeds, but the result is not the one expected.

I This can be fixed:

a p p e n d d i f f f i x (X−Y, Y−Z , X−Z):−
s u f f i x (Y, X) ,
s u f f i x (Z , Y) .

however, now the execution time becomes linear again.

I − in difference lists is a partial function. It is not defined for
[a, b, c]−[d] :

?− a p p e n d d i f f ([a , b]− [c] , [c]− [d] , L) .
L = [a , b]− [d] .

The query succeeds, but the result is not the one expected.

I This can be fixed:

a p p e n d d i f f f i x (X−Y, Y−Z , X−Z):−
s u f f i x (Y, X) ,
s u f f i x (Z , Y) .

however, now the execution time becomes linear again.

I − in difference lists is a partial function. It is not defined for
[a, b, c]−[d] :

?− a p p e n d d i f f ([a , b]− [c] , [c]− [d] , L) .
L = [a , b]− [d] .

The query succeeds, but the result is not the one expected.

I This can be fixed:

a p p e n d d i f f f i x (X−Y, Y−Z , X−Z):−
s u f f i x (Y, X) ,
s u f f i x (Z , Y) .

however, now the execution time becomes linear again.

I − in difference lists is a partial function. It is not defined for
[a, b, c]−[d] :

?− a p p e n d d i f f ([a , b]− [c] , [c]− [d] , L) .
L = [a , b]− [d] .

The query succeeds, but the result is not the one expected.

I This can be fixed:

a p p e n d d i f f f i x (X−Y, Y−Z , X−Z):−
s u f f i x (Y, X) ,
s u f f i x (Z , Y) .

however, now the execution time becomes linear again.

	Recursive Mapping
	Recursive Comparison
	Joining Structures
	Accumulators
	Difference Structures

