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Lists are a common data structure in symbolic computation.

Lists contain elements that are ordered.
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Elements of lists are terms (any type, including other lists).

v

Lists are the only data type in LISP

v

They are a data structure in Prolog.

v

Lists can represent practically any structure.
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Lists (inductive domain)

» “Base case”: [ ] — the empty list.
» “General case” : .(h, t) — the nonempty list, where:

> h - the head, can be any term,
» t - the tail, must be a list.



List representations

» .(a, [ ]) is represented as

. o e — ]
a [] a
“tree “vine

representation” representation”



List representations (cont'd)

> (a, (b, [])is

e — o — ]

a b



List representations (cont'd)

> (a, (b, [])is
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» .(a, b)is not a list, but it is a legal Prolog structure,
represented as



List representations (cont'd)

» ((a, []), (a, (X, []))) is represented as
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Syntactic sugar for lists

» To simplify the notation, “," can be used to separate the
elements.
» The lists introduced above are now:
[a],
[a, b],
[[a], a, X].
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» Lists are naturally split between the head and the tail.
» Prolog offers a construct to take advantage of this: [H | T].
» Consider the following example:

p([1, 2. 3]).
p([the, cat, sat, [on, the, mat]]).

> Prolog will give:

7—p([H | T]).
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H = the

T = [cat, sat, [on, the, mat]];
no



List manipulation

» Lists are naturally split between the head and the tail.

v

Prolog offers a construct to take advantage of this: [H | T].

v

Consider the following example:

p([1, 2. 3]).
p([the, cat, sat, [on, the, mat]]).

> Prolog will give:
—p([H [ T]).
H=1,
T=1[2, 3];
H = the
T = [cat, sat, [on, the, mat]];
no

v

Attention! [a | b] is not a list, but it is a valid Prolog
expression, corresponding to .(a, b)
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Unifying lists: examples

N < X X

[cat] = [X | VY]
X =c
Y=

.Y, Z] = [john,

john
likes
fish

at
]

likes , fish]

[X, Y | Z] = [mary, likes , wine]

X
Y
Z

mary
likes
[wine]
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[[the, Y] | Z] = [[X, hare], [is, here]]
X = the

Y = hare

Z = [[is, here]]

[golden | T] = [golden, norfolk]
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false



Unifying lists: examples (cont'd)

[[the, Y] | Z] = [[X, hare], [is, here]]
X = the

Y = hare

Z = [[is, here]]

[golden | T] = [golden, norfolk]
T = [norfolk]

[vale, horse] = [horse, X]
false

[white |Q] = [P|horse]
P = white
Q = horse



Strings

v

In Prolog, strings are written inside double quotation marks.

v

Example: "a string”.

Internally, a string is a list of the corresponding ASCII codes
for the characters in the string.

v

» 7— X ="a string".
X = 1[97, 32, 115, 116, 114, 105, 110, 103].



Summary

> ltems of interest:

» the anatomy of a list in Prolog .(h, t)

» graphic representations of lists: “tree representation”, “vine
representation”,

syntactic sugar for lists [...] ,

list manipulation: head-tail notation [H|T],

strings as lists,

unifying lists.

vV vy VvVvyy
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recursion describes computation in inductive domains,
recursive procedures (functions, predicates) call themselves,
but the recursive call has to be done on a “simpler” object.
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» Inductive domain:
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>

A domain composed of objects constructed in a “manageable
way", i.e.:

there are some “simplest” (atomic) objects, that cannot be
decomposed,

there are “complex” objects that can be decomposed into
finitely many simpler objects,

and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

In such domains, one can use induction as an inference rule.

» Recursion is the dual of induction, i.e.:

>
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recursion describes computation in inductive domains,
recursive procedures (functions, predicates) call themselves,
but the recursive call has to be done on a “simpler” object.

As a result, a recursive procedure will have to describe the
behaviour for:

The “simplest” objects, and/or the objects/situations for
which the computation stops, i.e. the boundary conditions, and
the general case, which describes the recursive call.
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Example: lists as an inductive domain

» simplest object: the empty list [ ].

» any other list is made of a head and a tail (the tail should be
a list): [H|T].
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Example: member

» Implement in Prolog the predicate member/2, such that
member(X, Y) is true when X is a member of the list Y.

% The boundary condition.
member (X, [X|-]).
% The recursive condition.
member (X, [-|Y]):—

member (X, Y).

» The boundary condition is, in this case, the condition for
which the computation stops (not necessarily for the
"simplest” list, which is [ ]).

» For [ ] the predicate is false, therefore it will be omitted.

» Note that the recursive call is on a smaller list (second
argument). The elements in the recursive call are getting
smaller in such a way that eventually the computation will
succeed, or reach the empty list and fail. predicate for the
empty list (where it fails).
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When to use the recursion?

» Avoid circular definitions:
parent(X, Y):— child(Y, X).
child (X, Y):— parent(Y, X).
» Careful with left recursion:

person (X):—person(Y), mother(X, Y).
person (adam).

In this case,
?—person (X).

will loop (no chance to backtrack). Prolog tries to satisfy the
rule and this leads to the loop.



» Order of facts, rules in the database:
is_list ([A[B]):— is_list(B).
is_list ([])-
The following query will loop:
7—is_list (X)

» The order in which the rules and facts are given matters. In
general, place facts before rules.
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Exercises

» Define predicates in Prolog for:

1.

ARl

The length of a list

The sum of elements of a list

The reverse of a list

The list of elements on even positions
The concatenation of two lists.
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