
Logic Programming
Lists. Recursion

I Lists

I Recursion

Introducing lists

I Lists are a common data structure in symbolic computation.

I Lists contain elements that are ordered.

I Elements of lists are terms (any type, including other lists).

I Lists are the only data type in LISP

I They are a data structure in Prolog.

I Lists can represent practically any structure.

Introducing lists

I Lists are a common data structure in symbolic computation.

I Lists contain elements that are ordered.

I Elements of lists are terms (any type, including other lists).

I Lists are the only data type in LISP

I They are a data structure in Prolog.

I Lists can represent practically any structure.

Introducing lists

I Lists are a common data structure in symbolic computation.

I Lists contain elements that are ordered.

I Elements of lists are terms (any type, including other lists).

I Lists are the only data type in LISP

I They are a data structure in Prolog.

I Lists can represent practically any structure.

Introducing lists

I Lists are a common data structure in symbolic computation.

I Lists contain elements that are ordered.

I Elements of lists are terms (any type, including other lists).

I Lists are the only data type in LISP

I They are a data structure in Prolog.

I Lists can represent practically any structure.

Introducing lists

I Lists are a common data structure in symbolic computation.

I Lists contain elements that are ordered.

I Elements of lists are terms (any type, including other lists).

I Lists are the only data type in LISP

I They are a data structure in Prolog.

I Lists can represent practically any structure.

Introducing lists

I Lists are a common data structure in symbolic computation.

I Lists contain elements that are ordered.

I Elements of lists are terms (any type, including other lists).

I Lists are the only data type in LISP

I They are a data structure in Prolog.

I Lists can represent practically any structure.

Lists (inductive domain)

I “Base case”: [] – the empty list.

I “General case” : .(h, t) – the nonempty list, where:

I h - the head, can be any term,
I t - the tail, must be a list.

Lists (inductive domain)

I “Base case”: [] – the empty list.
I “General case” : .(h, t) – the nonempty list, where:

I h - the head, can be any term,
I t - the tail, must be a list.

Lists (inductive domain)

I “Base case”: [] – the empty list.
I “General case” : .(h, t) – the nonempty list, where:

I h - the head, can be any term,

I t - the tail, must be a list.

Lists (inductive domain)

I “Base case”: [] – the empty list.
I “General case” : .(h, t) – the nonempty list, where:

I h - the head, can be any term,
I t - the tail, must be a list.

List representations

I .(a, []) is represented as

�

a []

“tree

representation”

or
� []

a

“vine

representation”

List representations (cont’d)

I .(a, .(b, [])) is

� � []

a b

I .(a, b) is not a list, but it is a legal Prolog structure,
represented as

� b

a

List representations (cont’d)

I .(a, .(b, [])) is

� � []

a b

I .(a, b) is not a list, but it is a legal Prolog structure,
represented as

� b

a

List representations (cont’d)

I .(.(a, []), .(a, .(X, []))) is represented as

� � � []

� [] a X

a

Syntactic sugar for lists

I To simplify the notation, “,” can be used to separate the
elements.

I The lists introduced above are now:

[a],
[a, b],
[[a], a, X].

Syntactic sugar for lists

I To simplify the notation, “,” can be used to separate the
elements.

I The lists introduced above are now:

[a],
[a, b],
[[a], a, X].

Syntactic sugar for lists

I To simplify the notation, “,” can be used to separate the
elements.

I The lists introduced above are now:

[a],

[a, b],
[[a], a, X].

Syntactic sugar for lists

I To simplify the notation, “,” can be used to separate the
elements.

I The lists introduced above are now:

[a],
[a, b],

[[a], a, X].

Syntactic sugar for lists

I To simplify the notation, “,” can be used to separate the
elements.

I The lists introduced above are now:

[a],
[a, b],
[[a], a, X].

List manipulation

I Lists are naturally split between the head and the tail.

I Prolog offers a construct to take advantage of this: [H | T].

I Consider the following example:

p ([1 , 2 , 3]) .
p ([the , cat , sat , [on , the , mat]]) .

I Prolog will give:

?−p ([H | T]) .
H = 1 ,
T = [2 , 3] ;
H = the
T = [cat , sat , [on , the , mat]] ;
no

I Attention! [a | b] is not a list, but it is a valid Prolog
expression, corresponding to .(a, b)

List manipulation

I Lists are naturally split between the head and the tail.

I Prolog offers a construct to take advantage of this: [H | T].

I Consider the following example:

p ([1 , 2 , 3]) .
p ([the , cat , sat , [on , the , mat]]) .

I Prolog will give:

?−p ([H | T]) .
H = 1 ,
T = [2 , 3] ;
H = the
T = [cat , sat , [on , the , mat]] ;
no

I Attention! [a | b] is not a list, but it is a valid Prolog
expression, corresponding to .(a, b)

List manipulation

I Lists are naturally split between the head and the tail.

I Prolog offers a construct to take advantage of this: [H | T].

I Consider the following example:

p ([1 , 2 , 3]) .
p ([the , cat , sat , [on , the , mat]]) .

I Prolog will give:

?−p ([H | T]) .
H = 1 ,
T = [2 , 3] ;
H = the
T = [cat , sat , [on , the , mat]] ;
no

I Attention! [a | b] is not a list, but it is a valid Prolog
expression, corresponding to .(a, b)

List manipulation

I Lists are naturally split between the head and the tail.

I Prolog offers a construct to take advantage of this: [H | T].

I Consider the following example:

p ([1 , 2 , 3]) .
p ([the , cat , sat , [on , the , mat]]) .

I Prolog will give:

?−p ([H | T]) .
H = 1 ,
T = [2 , 3] ;
H = the
T = [cat , sat , [on , the , mat]] ;
no

I Attention! [a | b] is not a list, but it is a valid Prolog
expression, corresponding to .(a, b)

List manipulation

I Lists are naturally split between the head and the tail.

I Prolog offers a construct to take advantage of this: [H | T].

I Consider the following example:

p ([1 , 2 , 3]) .
p ([the , cat , sat , [on , the , mat]]) .

I Prolog will give:

?−p ([H | T]) .
H = 1 ,
T = [2 , 3] ;
H = the
T = [cat , sat , [on , the , mat]] ;
no

I Attention! [a | b] is not a list, but it is a valid Prolog
expression, corresponding to .(a, b)

Unifying lists: examples

[X , Y, Z] = [john , l i k e s , f i s h]
X = j o h n
Y = l i k e s
Z = f i s h

[c a t] = [X | Y]
X = c a t
Y = []

[X , Y | Z] = [mary , l i k e s , wine]
X = mary
Y = l i k e s
Z = [wine]

Unifying lists: examples

[X , Y, Z] = [john , l i k e s , f i s h]
X = j o h n
Y = l i k e s
Z = f i s h

[c a t] = [X | Y]
X = c a t
Y = []

[X , Y | Z] = [mary , l i k e s , wine]
X = mary
Y = l i k e s
Z = [wine]

Unifying lists: examples

[X , Y, Z] = [john , l i k e s , f i s h]
X = j o h n
Y = l i k e s
Z = f i s h

[c a t] = [X | Y]
X = c a t
Y = []

[X , Y | Z] = [mary , l i k e s , wine]
X = mary
Y = l i k e s
Z = [wine]

Unifying lists: examples (cont’d)

[[the , Y] | Z] = [[X, h a r e] , [i s , h e r e]]
X = t he
Y = h a r e
Z = [[i s , h e r e]]

[g o l d e n | T] = [go lden , n o r f o l k]
T = [n o r f o l k]

[v a l e , h o r s e] = [horse , X]
f a l s e

[w h i t e |Q] = [P | h o r s e]
P = w h i t e
Q = h o r s e

Unifying lists: examples (cont’d)

[[the , Y] | Z] = [[X, h a r e] , [i s , h e r e]]
X = t he
Y = h a r e
Z = [[i s , h e r e]]

[g o l d e n | T] = [go lden , n o r f o l k]
T = [n o r f o l k]

[v a l e , h o r s e] = [horse , X]
f a l s e

[w h i t e |Q] = [P | h o r s e]
P = w h i t e
Q = h o r s e

Unifying lists: examples (cont’d)

[[the , Y] | Z] = [[X, h a r e] , [i s , h e r e]]
X = t he
Y = h a r e
Z = [[i s , h e r e]]

[g o l d e n | T] = [go lden , n o r f o l k]
T = [n o r f o l k]

[v a l e , h o r s e] = [horse , X]
f a l s e

[w h i t e |Q] = [P | h o r s e]
P = w h i t e
Q = h o r s e

Unifying lists: examples (cont’d)

[[the , Y] | Z] = [[X, h a r e] , [i s , h e r e]]
X = t he
Y = h a r e
Z = [[i s , h e r e]]

[g o l d e n | T] = [go lden , n o r f o l k]
T = [n o r f o l k]

[v a l e , h o r s e] = [horse , X]
f a l s e

[w h i t e |Q] = [P | h o r s e]
P = w h i t e
Q = h o r s e

Strings

I In Prolog, strings are written inside double quotation marks.

I Example: ”a string ”.

I Internally, a string is a list of the corresponding ASCII codes
for the characters in the string.

I ?− X = ”a s t r i n g ” .
X = [9 7 , 32 , 115 , 116 , 114 , 105 , 110 , 1 0 3] .

Summary

I Items of interest:
I the anatomy of a list in Prolog .(h, t)
I graphic representations of lists: “tree representation”, “vine

representation”,
I syntactic sugar for lists [...] ,
I list manipulation: head-tail notation [H|T],
I strings as lists,
I unifying lists.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:

I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:
I recursion describes computation in inductive domains,

I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:
I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,

I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:
I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.

I As a result, a recursive procedure will have to describe the
behaviour for:

(a) The “simplest” objects, and/or the objects/situations for
which the computation stops, i.e. the boundary conditions, and

(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:
I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:

(a) The “simplest” objects, and/or the objects/situations for
which the computation stops, i.e. the boundary conditions, and

(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:
I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and

(b) the general case, which describes the recursive call.

Induction/Recursion
I Inductive domain:

I A domain composed of objects constructed in a “manageable
way”, i.e.:

I there are some “simplest”(atomic) objects, that cannot be
decomposed,

I there are “complex” objects that can be decomposed into
finitely many simpler objects,

I and this decomposition process can be performed finitely many
times before one reaches the “simplest” objects.

I In such domains, one can use induction as an inference rule.

I Recursion is the dual of induction, i.e.:
I recursion describes computation in inductive domains,
I recursive procedures (functions, predicates) call themselves,
I but the recursive call has to be done on a “simpler” object.
I As a result, a recursive procedure will have to describe the

behaviour for:
(a) The “simplest” objects, and/or the objects/situations for

which the computation stops, i.e. the boundary conditions, and
(b) the general case, which describes the recursive call.

Example: lists as an inductive domain

I simplest object: the empty list [].

I any other list is made of a head and a tail (the tail should be
a list): [H|T].

Example: lists as an inductive domain

I simplest object: the empty list [].

I any other list is made of a head and a tail (the tail should be
a list): [H|T].

Example: member

I Implement in Prolog the predicate member/2, such that
member(X, Y) is true when X is a member of the list Y.

% The boundary c o n d i t i o n .
member (X, [X |]) .
% The r e c u r s i v e c o n d i t i o n .
member (X, [|Y]) :−

member (X, Y) .

I The boundary condition is, in this case, the condition for
which the computation stops (not necessarily for the
”simplest” list, which is []).

I For [] the predicate is false, therefore it will be omitted.

I Note that the recursive call is on a smaller list (second
argument). The elements in the recursive call are getting
smaller in such a way that eventually the computation will
succeed, or reach the empty list and fail. predicate for the
empty list (where it fails).

Example: member

I Implement in Prolog the predicate member/2, such that
member(X, Y) is true when X is a member of the list Y.

% The boundary c o n d i t i o n .
member (X, [X |]) .
% The r e c u r s i v e c o n d i t i o n .
member (X, [|Y]) :−

member (X, Y) .

I The boundary condition is, in this case, the condition for
which the computation stops (not necessarily for the
”simplest” list, which is []).

I For [] the predicate is false, therefore it will be omitted.

I Note that the recursive call is on a smaller list (second
argument). The elements in the recursive call are getting
smaller in such a way that eventually the computation will
succeed, or reach the empty list and fail. predicate for the
empty list (where it fails).

Example: member

I Implement in Prolog the predicate member/2, such that
member(X, Y) is true when X is a member of the list Y.

% The boundary c o n d i t i o n .
member (X, [X |]) .
% The r e c u r s i v e c o n d i t i o n .
member (X, [|Y]) :−

member (X, Y) .

I The boundary condition is, in this case, the condition for
which the computation stops (not necessarily for the
”simplest” list, which is []).

I For [] the predicate is false, therefore it will be omitted.

I Note that the recursive call is on a smaller list (second
argument). The elements in the recursive call are getting
smaller in such a way that eventually the computation will
succeed, or reach the empty list and fail. predicate for the
empty list (where it fails).

Example: member

I Implement in Prolog the predicate member/2, such that
member(X, Y) is true when X is a member of the list Y.

% The boundary c o n d i t i o n .
member (X, [X |]) .
% The r e c u r s i v e c o n d i t i o n .
member (X, [|Y]) :−

member (X, Y) .

I The boundary condition is, in this case, the condition for
which the computation stops (not necessarily for the
”simplest” list, which is []).

I For [] the predicate is false, therefore it will be omitted.

I Note that the recursive call is on a smaller list (second
argument). The elements in the recursive call are getting
smaller in such a way that eventually the computation will
succeed, or reach the empty list and fail. predicate for the
empty list (where it fails).

Example: member

I Implement in Prolog the predicate member/2, such that
member(X, Y) is true when X is a member of the list Y.

% The boundary c o n d i t i o n .
member (X, [X |]) .
% The r e c u r s i v e c o n d i t i o n .
member (X, [|Y]) :−

member (X, Y) .

I The boundary condition is, in this case, the condition for
which the computation stops (not necessarily for the
”simplest” list, which is []).

I For [] the predicate is false, therefore it will be omitted.

I Note that the recursive call is on a smaller list (second
argument). The elements in the recursive call are getting
smaller in such a way that eventually the computation will
succeed, or reach the empty list and fail. predicate for the
empty list (where it fails).

When to use the recursion?

I Avoid circular definitions:

p a r e n t (X, Y):− c h i l d (Y, X) .
c h i l d (X, Y):− p a r e n t (Y, X) .

I Careful with left recursion:

p e r s o n (X):− p e r s o n (Y) , mother (X, Y) .
p e r s o n (adam) .

In this case,

?−p e r s o n (X) .

will loop (no chance to backtrack). Prolog tries to satisfy the
rule and this leads to the loop.

When to use the recursion?

I Avoid circular definitions:

p a r e n t (X, Y):− c h i l d (Y, X) .
c h i l d (X, Y):− p a r e n t (Y, X) .

I Careful with left recursion:

p e r s o n (X):− p e r s o n (Y) , mother (X, Y) .
p e r s o n (adam) .

In this case,

?−p e r s o n (X) .

will loop (no chance to backtrack). Prolog tries to satisfy the
rule and this leads to the loop.

I Order of facts, rules in the database:

i s l i s t ([A |B]) :− i s l i s t (B) .
i s l i s t ([]) .

The following query will loop:

?− i s l i s t (X)

I The order in which the rules and facts are given matters. In
general, place facts before rules.

Exercises

I Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions
5. The concatenation of two lists.

Exercises

I Define predicates in Prolog for:

1. The length of a list

2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions
5. The concatenation of two lists.

Exercises

I Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list

3. The reverse of a list
4. The list of elements on even positions
5. The concatenation of two lists.

Exercises

I Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list

4. The list of elements on even positions
5. The concatenation of two lists.

Exercises

I Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions

5. The concatenation of two lists.

Exercises

I Define predicates in Prolog for:

1. The length of a list
2. The sum of elements of a list
3. The reverse of a list
4. The list of elements on even positions
5. The concatenation of two lists.

	Lists
	Recursion
	Introducing Recursion

