
Lecture 12
Unification. Resolution

Isabela Drămnesc UVT

Computer Science Department,
West University of Timişoara,

Romania

I Herbrand’s theorem reduces the problem of establishing
unsatisfiability of a formula (set) to the problem of
establishing unsatisfiability of a finite set of ground formulae.

I For practical purposes, given a finite set of ground formulae,
one can rename the distinct ground atoms by distinct
propositional formulae and thus answer the question of
unsatisfiability by propositional resolution.
See [Crăciun, 2010] for details on propositional resolution.

I However, this approach is not practical: there is no indication
how to find the finite set of ground formulae: the set of
possible ground instantiations is both unbounded and
unstructured.

I Herbrand’s theorem reduces the problem of establishing
unsatisfiability of a formula (set) to the problem of
establishing unsatisfiability of a finite set of ground formulae.

I For practical purposes, given a finite set of ground formulae,
one can rename the distinct ground atoms by distinct
propositional formulae and thus answer the question of
unsatisfiability by propositional resolution.
See [Crăciun, 2010] for details on propositional resolution.

I However, this approach is not practical: there is no indication
how to find the finite set of ground formulae: the set of
possible ground instantiations is both unbounded and
unstructured.

I Herbrand’s theorem reduces the problem of establishing
unsatisfiability of a formula (set) to the problem of
establishing unsatisfiability of a finite set of ground formulae.

I For practical purposes, given a finite set of ground formulae,
one can rename the distinct ground atoms by distinct
propositional formulae and thus answer the question of
unsatisfiability by propositional resolution.
See [Crăciun, 2010] for details on propositional resolution.

I However, this approach is not practical: there is no indication
how to find the finite set of ground formulae: the set of
possible ground instantiations is both unbounded and
unstructured.

I A substitution of terms for variables is a set:

{x1 ← t1, . . . , xn ← tn}

where, for i = 1 . . . n, xi are distinct variables, ti are terms
such that xi and ti are distinct. Substitutions will be denoted
by lowercase greek letters (λ, θ, δ,σ). The empty substitution
is denoted by ε.

I An expression is a term or formula (in particular literal,
clause, or set of clauses).

I Let E be an expression, θ = {x1 ← t1, . . . , xn ← tn}. An
instance of E (or the result of applying θ to E), Eθ is the
expression obtained by simultaneously replacing every
occurrence of xi in E by ti .

I Example: let E = p(x) ∨ q(f (y)), θ = {x ← y , y ← f (a)}.
Then

Eθ = p(y) ∨ q(f (f (a))).

I A substitution of terms for variables is a set:

{x1 ← t1, . . . , xn ← tn}

where, for i = 1 . . . n, xi are distinct variables, ti are terms
such that xi and ti are distinct. Substitutions will be denoted
by lowercase greek letters (λ, θ, δ,σ). The empty substitution
is denoted by ε.

I An expression is a term or formula (in particular literal,
clause, or set of clauses).

I Let E be an expression, θ = {x1 ← t1, . . . , xn ← tn}. An
instance of E (or the result of applying θ to E), Eθ is the
expression obtained by simultaneously replacing every
occurrence of xi in E by ti .

I Example: let E = p(x) ∨ q(f (y)), θ = {x ← y , y ← f (a)}.
Then

Eθ = p(y) ∨ q(f (f (a))).

I A substitution of terms for variables is a set:

{x1 ← t1, . . . , xn ← tn}

where, for i = 1 . . . n, xi are distinct variables, ti are terms
such that xi and ti are distinct. Substitutions will be denoted
by lowercase greek letters (λ, θ, δ,σ). The empty substitution
is denoted by ε.

I An expression is a term or formula (in particular literal,
clause, or set of clauses).

I Let E be an expression, θ = {x1 ← t1, . . . , xn ← tn}. An
instance of E (or the result of applying θ to E), Eθ is the
expression obtained by simultaneously replacing every
occurrence of xi in E by ti .

I Example: let E = p(x) ∨ q(f (y)), θ = {x ← y , y ← f (a)}.
Then

Eθ = p(y) ∨ q(f (f (a))).

I A substitution of terms for variables is a set:

{x1 ← t1, . . . , xn ← tn}

where, for i = 1 . . . n, xi are distinct variables, ti are terms
such that xi and ti are distinct. Substitutions will be denoted
by lowercase greek letters (λ, θ, δ,σ). The empty substitution
is denoted by ε.

I An expression is a term or formula (in particular literal,
clause, or set of clauses).

I Let E be an expression, θ = {x1 ← t1, . . . , xn ← tn}. An
instance of E (or the result of applying θ to E), Eθ is the
expression obtained by simultaneously replacing every
occurrence of xi in E by ti .

I Example: let E = p(x) ∨ q(f (y)), θ = {x ← y , y ← f (a)}.
Then

Eθ = p(y) ∨ q(f (f (a))).

I Let θ = {x1 ← t1, . . . , xn ← tn} and
σ = {y1 ← s1, . . . , yk ← sk} be substitutions. Let X , Y be
the sets of variables from θ and σ, respectively. The
composition of θ and σ, θσ is the substitution:

θσ = {xi ← tiσ|xi ∈ X , xi 6= tiσ} ∪ {yj ← sj |yj ∈ Y , yj 6∈ X},

in other words, apply the substitution σ to the terms ti
(provided that the resulting substitution does not collapse into
xi ← xi) then append the substitutions from σ whose
variables do not appear already in θ.

I Example: let

θ = {x ← f (y), y ← f (a), z ← u},
σ = {y ← g(a), u ← z , v ← f (f (a))},

then:

θσ = {x ← f (g(a)), y ← f (a), u ← z , v ← f (f (a))}.
I Let E be an expression and θ, σ substitutions. Then

E (θσ) = (Eθ)σ.
I Let θ, σ, λ be substitutions. Then θ(σλ) = (θσ)λ.

I Let θ = {x1 ← t1, . . . , xn ← tn} and
σ = {y1 ← s1, . . . , yk ← sk} be substitutions. Let X , Y be
the sets of variables from θ and σ, respectively. The
composition of θ and σ, θσ is the substitution:

θσ = {xi ← tiσ|xi ∈ X , xi 6= tiσ} ∪ {yj ← sj |yj ∈ Y , yj 6∈ X},

in other words, apply the substitution σ to the terms ti
(provided that the resulting substitution does not collapse into
xi ← xi) then append the substitutions from σ whose
variables do not appear already in θ.

I Example: let

θ = {x ← f (y), y ← f (a), z ← u},
σ = {y ← g(a), u ← z , v ← f (f (a))},

then:

θσ = {x ← f (g(a)), y ← f (a), u ← z , v ← f (f (a))}.

I Let E be an expression and θ, σ substitutions. Then
E (θσ) = (Eθ)σ.

I Let θ, σ, λ be substitutions. Then θ(σλ) = (θσ)λ.

I Let θ = {x1 ← t1, . . . , xn ← tn} and
σ = {y1 ← s1, . . . , yk ← sk} be substitutions. Let X , Y be
the sets of variables from θ and σ, respectively. The
composition of θ and σ, θσ is the substitution:

θσ = {xi ← tiσ|xi ∈ X , xi 6= tiσ} ∪ {yj ← sj |yj ∈ Y , yj 6∈ X},

in other words, apply the substitution σ to the terms ti
(provided that the resulting substitution does not collapse into
xi ← xi) then append the substitutions from σ whose
variables do not appear already in θ.

I Example: let

θ = {x ← f (y), y ← f (a), z ← u},
σ = {y ← g(a), u ← z , v ← f (f (a))},

then:

θσ = {x ← f (g(a)), y ← f (a), u ← z , v ← f (f (a))}.
I Let E be an expression and θ, σ substitutions. Then

E (θσ) = (Eθ)σ.

I Let θ, σ, λ be substitutions. Then θ(σλ) = (θσ)λ.

I Let θ = {x1 ← t1, . . . , xn ← tn} and
σ = {y1 ← s1, . . . , yk ← sk} be substitutions. Let X , Y be
the sets of variables from θ and σ, respectively. The
composition of θ and σ, θσ is the substitution:

θσ = {xi ← tiσ|xi ∈ X , xi 6= tiσ} ∪ {yj ← sj |yj ∈ Y , yj 6∈ X},

in other words, apply the substitution σ to the terms ti
(provided that the resulting substitution does not collapse into
xi ← xi) then append the substitutions from σ whose
variables do not appear already in θ.

I Example: let

θ = {x ← f (y), y ← f (a), z ← u},
σ = {y ← g(a), u ← z , v ← f (f (a))},

then:

θσ = {x ← f (g(a)), y ← f (a), u ← z , v ← f (f (a))}.
I Let E be an expression and θ, σ substitutions. Then

E (θσ) = (Eθ)σ.
I Let θ, σ, λ be substitutions. Then θ(σλ) = (θσ)λ.

Unifiers

I Consider two nonground literals: p(f (x), g(y)) and
p(f (f (a)), g(z)):

I the substitution

{x ← f (a), y ← f (g(a)), z ← f (g(a))}

applied to both the literals will make them identical (will
“unify” them),

I the same effect is obtained when applying the substitutions

{x ← f (a), y ← a, z ← a},

{x ← f (a), z ← y}.

Unifiers

I Consider two nonground literals: p(f (x), g(y)) and
p(f (f (a)), g(z)):

I the substitution

{x ← f (a), y ← f (g(a)), z ← f (g(a))}

applied to both the literals will make them identical (will
“unify” them),

I the same effect is obtained when applying the substitutions

{x ← f (a), y ← a, z ← a},

{x ← f (a), z ← y}.

Unifiers

I Consider two nonground literals: p(f (x), g(y)) and
p(f (f (a)), g(z)):

I the substitution

{x ← f (a), y ← f (g(a)), z ← f (g(a))}

applied to both the literals will make them identical (will
“unify” them),

I the same effect is obtained when applying the substitutions

{x ← f (a), y ← a, z ← a},

{x ← f (a), z ← y}.

I Given a set of literals, a unifier is a substitution that makes
the atoms of the set identical. A most general unifier
(mgu) is a unifier µ such that any other unifier θ can be
obtained from µ by a further substitution λ such that θ = µλ.

I Note that not all literals are unifiable: if the predicate symbols
are different, the literals cannot be unified. Also, consider the
case of p(x) and p(f (x)). Since the substitution of the
variable x has to be done in the same time, the terms x and
f (x) cannot be made identical, and the unification will fail.

I Given a set of literals, a unifier is a substitution that makes
the atoms of the set identical. A most general unifier
(mgu) is a unifier µ such that any other unifier θ can be
obtained from µ by a further substitution λ such that θ = µλ.

I Note that not all literals are unifiable: if the predicate symbols
are different, the literals cannot be unified. Also, consider the
case of p(x) and p(f (x)). Since the substitution of the
variable x has to be done in the same time, the terms x and
f (x) cannot be made identical, and the unification will fail.

Unification algorithm

I Note that the unifiability of the literals p(f (x), g(y)) and
p(f (f (a)), g(z)) can be expressed as a set of term equations:

f (x) = f (f (a))
g(y) = g(z).

I A set of term equations is in solved form iff:

I all equations are of the form xi = ti , where xi are variables,
I each variable xi that appears on the left hand side of an

equation does not appear elsewhere in a set.
A set of equations in solved form defines a substitution in a
natural way by turning each equation xi = ti into an element
of the substitution, xi ← ti .

Unification algorithm

I Note that the unifiability of the literals p(f (x), g(y)) and
p(f (f (a)), g(z)) can be expressed as a set of term equations:

f (x) = f (f (a))
g(y) = g(z).

I A set of term equations is in solved form iff:

I all equations are of the form xi = ti , where xi are variables,
I each variable xi that appears on the left hand side of an

equation does not appear elsewhere in a set.
A set of equations in solved form defines a substitution in a
natural way by turning each equation xi = ti into an element
of the substitution, xi ← ti .

Unification algorithm

I Note that the unifiability of the literals p(f (x), g(y)) and
p(f (f (a)), g(z)) can be expressed as a set of term equations:

f (x) = f (f (a))
g(y) = g(z).

I A set of term equations is in solved form iff:
I all equations are of the form xi = ti , where xi are variables,

I each variable xi that appears on the left hand side of an
equation does not appear elsewhere in a set.
A set of equations in solved form defines a substitution in a
natural way by turning each equation xi = ti into an element
of the substitution, xi ← ti .

Unification algorithm

I Note that the unifiability of the literals p(f (x), g(y)) and
p(f (f (a)), g(z)) can be expressed as a set of term equations:

f (x) = f (f (a))
g(y) = g(z).

I A set of term equations is in solved form iff:
I all equations are of the form xi = ti , where xi are variables,
I each variable xi that appears on the left hand side of an

equation does not appear elsewhere in a set.

A set of equations in solved form defines a substitution in a
natural way by turning each equation xi = ti into an element
of the substitution, xi ← ti .

Unification algorithm

I Note that the unifiability of the literals p(f (x), g(y)) and
p(f (f (a)), g(z)) can be expressed as a set of term equations:

f (x) = f (f (a))
g(y) = g(z).

I A set of term equations is in solved form iff:
I all equations are of the form xi = ti , where xi are variables,
I each variable xi that appears on the left hand side of an

equation does not appear elsewhere in a set.
A set of equations in solved form defines a substitution in a
natural way by turning each equation xi = ti into an element
of the substitution, xi ← ti .

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.
2. Erase the equation x = x , for all x , variables.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If

the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.
2. Erase the equation x = x , for all x , variables.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If

the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.
2. Erase the equation x = x , for all x , variables.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If

the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.

2. Erase the equation x = x , for all x , variables.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If

the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.
2. Erase the equation x = x , for all x , variables.

3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If
the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.
2. Erase the equation x = x , for all x , variables.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If

the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Unification Algorithm

INPUT: A set of term equations.

OUTPUT: A set of term equations in solved form, or “not
unifiable”.

Perform the following transformations on the set of equations
as long as any of them can still be performed:

1. Transform t = x into x = t, where x is a variable and t is not.
2. Erase the equation x = x , for all x , variables.
3. Let t ′ = t ′′ be an equation where t ′, t ′′ are not variables. If

the outermost (function) symbol of t ′ and t ′′ are not identical,
terminate and answer “not unifiable”. Otherwise, if t ′ is of the
form f (t ′1, . . . , t

′
k) and t ′′ is of the form f (t ′′1, . . . , t

′′
k),

replace the equation f (t ′1, . . . , t
′
k) = f (t ′′1, . . . , t

′′
k) by the k

equations
t ′1 = t ′′1, . . . , t

′
k = t ′′k .

4. Let x = t a term equation such that x has another occurrence
in the set of term equations. If x occurs in t (occurs check!),
terminate and answer “not unifiable”. Otherwise, transform
the equation set by replacing each occurrence of x in other
equations by t.

Example (Unification, from [Ben-Ari, 2001])

Consider the following two equations:

g(y) = x
f (x , h(x), y) = f (g(z),w , z).

I Apply rule 1 to the first equation and rule 3 to the second
equation:

x = g(y)
x = g(z)
h(x) = w
y = z .

I Apply rule 4 on the second equation to replace the other
occurrences of x :

g(z) = g(y)
x = g(z)

h(g(z)) = w
y = z .

Example (Unification, from [Ben-Ari, 2001])

Consider the following two equations:

g(y) = x
f (x , h(x), y) = f (g(z),w , z).

I Apply rule 1 to the first equation and rule 3 to the second
equation:

x = g(y)
x = g(z)
h(x) = w
y = z .

I Apply rule 4 on the second equation to replace the other
occurrences of x :

g(z) = g(y)
x = g(z)

h(g(z)) = w
y = z .

Example (Unification, from [Ben-Ari, 2001])

Consider the following two equations:

g(y) = x
f (x , h(x), y) = f (g(z),w , z).

I Apply rule 1 to the first equation and rule 3 to the second
equation:

x = g(y)
x = g(z)
h(x) = w
y = z .

I Apply rule 4 on the second equation to replace the other
occurrences of x :

g(z) = g(y)
x = g(z)

h(g(z)) = w
y = z .

Example (Unification, from [Ben-Ari, 2001])

I Apply rule 3 to the first equation

z = y
x = g(z)

h(g(z)) = w
y = z .

I Apply rule 4 on the last equation to replace y by z in the first
equation, then erase the resulting z = z using rule 2:

x = g(z)
h(g(z)) = w

y = z .

I Transform the second equation by rule 1:

x = g(z)
w = h(g(z))

y = z .

Example (Unification, from [Ben-Ari, 2001])

I Apply rule 3 to the first equation

z = y
x = g(z)

h(g(z)) = w
y = z .

I Apply rule 4 on the last equation to replace y by z in the first
equation, then erase the resulting z = z using rule 2:

x = g(z)
h(g(z)) = w

y = z .

I Transform the second equation by rule 1:

x = g(z)
w = h(g(z))

y = z .

Example (Unification, from [Ben-Ari, 2001])

I Apply rule 3 to the first equation

z = y
x = g(z)

h(g(z)) = w
y = z .

I Apply rule 4 on the last equation to replace y by z in the first
equation, then erase the resulting z = z using rule 2:

x = g(z)
h(g(z)) = w

y = z .

I Transform the second equation by rule 1:

x = g(z)
w = h(g(z))

y = z .

Example (Unification, from [Ben-Ari, 2001])

I The algorithm terminates successfully. The resulting
substitution

{x ← g(z),w ← h(g(z)), y ← z}

is the most general unifier of the initial set of equations.

Theorem (Correctness of the unification algorithm)

The unification algorithm terminates. If the algorithm terminates
with the answer “not unifiable”, there is no unifier for the set of
term equations. If it terminates successfully, the resulting set of
equations is in solved form and it defines an mgu

µ = {x1 ← t1, . . . , xn ← tn}

of the set of equations

Proof.
See [Ben-Ari, 2001], pp. 158.

I Ground resolution was not practical.

I It turns out that a practical version of resolution is possible,
using unification.

I Recall the notions of literal, clause, clause sets introduced in
the previous lecture.

I Notation. Let L be a literal. We denote with Lc the
complementary literal (i.e. L and Lc are opposite, one is the
negation of the other).

I Ground resolution was not practical.

I It turns out that a practical version of resolution is possible,
using unification.

I Recall the notions of literal, clause, clause sets introduced in
the previous lecture.

I Notation. Let L be a literal. We denote with Lc the
complementary literal (i.e. L and Lc are opposite, one is the
negation of the other).

I Ground resolution was not practical.

I It turns out that a practical version of resolution is possible,
using unification.

I Recall the notions of literal, clause, clause sets introduced in
the previous lecture.

I Notation. Let L be a literal. We denote with Lc the
complementary literal (i.e. L and Lc are opposite, one is the
negation of the other).

I Ground resolution was not practical.

I It turns out that a practical version of resolution is possible,
using unification.

I Recall the notions of literal, clause, clause sets introduced in
the previous lecture.

I Notation. Let L be a literal. We denote with Lc the
complementary literal (i.e. L and Lc are opposite, one is the
negation of the other).

Definition (General resolution step)

Let C1, C2 be clauses with no variables in common. Let L1 ∈ C1

and L2 ∈ C2 be literals in the clauses such that L1 and L2
c can be

unified by a mgu σ. Then C1 and C2 are said to be clashing
clauses, that clash on the literals L1 and L2, and resolvent of
C1 and C2 is the clause:

Res(C1,C2) = (C1σ − L1σ) ∪ (C2σ − L2σ).

Example (Resolvent of two clauses)

Consider the clauses:

p(f (x), g(y)) ∨ q(x , y) ¬p(f (f (a)), g(z)) ∨ q(f (a), g(z))

L1 = p(f (x), g(y)) and L2
c = p(f (f (a)), g(z)) can be unified

with the mgu {x ← f (a), y ← z} and the resolvent of the
clauses is:

q(f (a), z) ∨ q(f (a), g(z)).

I Note that the requirement for clauses to have no variables in
common does not impose any real restrictions on the clause
set. Remember that clauses are implicitly universally
quantified, so changing the name of a variable does not
change the meaning of the clause set.

Example (Resolvent of two clauses)

Consider the clauses:

p(f (x), g(y)) ∨ q(x , y) ¬p(f (f (a)), g(z)) ∨ q(f (a), g(z))

L1 = p(f (x), g(y)) and L2
c = p(f (f (a)), g(z)) can be unified

with the mgu {x ← f (a), y ← z} and the resolvent of the
clauses is:

q(f (a), z) ∨ q(f (a), g(z)).

I Note that the requirement for clauses to have no variables in
common does not impose any real restrictions on the clause
set. Remember that clauses are implicitly universally
quantified, so changing the name of a variable does not
change the meaning of the clause set.

Example (Resolvent of two clauses)

Consider the clauses:

p(f (x), g(y)) ∨ q(x , y) ¬p(f (f (a)), g(z)) ∨ q(f (a), g(z))

L1 = p(f (x), g(y)) and L2
c = p(f (f (a)), g(z)) can be unified

with the mgu {x ← f (a), y ← z} and the resolvent of the
clauses is:

q(f (a), z) ∨ q(f (a), g(z)).

I Note that the requirement for clauses to have no variables in
common does not impose any real restrictions on the clause
set. Remember that clauses are implicitly universally
quantified, so changing the name of a variable does not
change the meaning of the clause set.

Example (Resolvent of two clauses)

Consider the clauses:

p(f (x), g(y)) ∨ q(x , y) ¬p(f (f (a)), g(z)) ∨ q(f (a), g(z))

L1 = p(f (x), g(y)) and L2
c = p(f (f (a)), g(z)) can be unified

with the mgu {x ← f (a), y ← z} and the resolvent of the
clauses is:

q(f (a), z) ∨ q(f (a), g(z)).

I Note that the requirement for clauses to have no variables in
common does not impose any real restrictions on the clause
set. Remember that clauses are implicitly universally
quantified, so changing the name of a variable does not
change the meaning of the clause set.

Example (Resolvent of two clauses)

Consider the clauses:

p(f (x), g(y)) ∨ q(x , y) ¬p(f (f (a)), g(z)) ∨ q(f (a), g(z))

L1 = p(f (x), g(y)) and L2
c = p(f (f (a)), g(z)) can be unified

with the mgu {x ← f (a), y ← z} and the resolvent of the
clauses is:

q(f (a), z) ∨ q(f (a), g(z)).

I Note that the requirement for clauses to have no variables in
common does not impose any real restrictions on the clause
set. Remember that clauses are implicitly universally
quantified, so changing the name of a variable does not
change the meaning of the clause set.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .

I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).

I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.

I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si

I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

General Resolution Procedure.

INPUT: A set of clauses S .

OUTPUT: S is satisfiable or S is not satisfiable. Also the
algorithm may not terminate.

I Start with S0 = S .
I Repeat

I Choose C1,C2 ∈ Si clashing clauses and let C = Res(C1,C2).
I If C = ∅ terminate with the answer “not satisfiable”.
I Otherwise, Si+1 = Si ∪ {C}.

I until Si+1 = Si
I Return “satisfiable”.

Note that the algorithm above may not terminate, it is not a
decision procedure (indeed that would not be expected since
first order predicate logic is undecidable). The reason for
nontermination is the existence of infinite models.

Example (Resolution refutation, from [Ben-Ari, 2001])

1. ¬p(x) ∨ q(x) ∨ r(x , f (x))
2. ¬p(x) ∨ q(x) ∨ s(f (x))
3. t(a)
4. p(a)
5. ¬r(a, y) ∨ t(y)
6. ¬t(x) ∨ ¬q(x)
7. ¬t(x) ∨ ¬s(x)

8. ¬q(a) x ← a 3, 6
9. q(a) ∨ s(f (a)) x ← a 2.4
10. s(f (a)) 8, 9
11. q(a) ∨ r(a, f (a)) x ← a 1, 4
12. r(a, f (a)) 8.11
13. t(f (a)) y ← f (a) 5, 12
14. ¬s(f (a)) x ← f (a) 7, 13
15. ∅ 10, 14

Example (Resolution refutation with variable renaming,
from [Ben-Ari, 2001])

First four clauses represent the initial clause set.
1. ¬p(x , y) ∨ p(y , x)
2. ¬p(x , y) ∨ ¬p(y , z) ∨ p(x , z)
3. p(x , f (x))
4. p(x , x)
3′. p(x ′, f (x ′)) Rename 3.
5. p(f (x), x) σ1 = {y ← f (x), x ′ ← x}1, 3′
3′′. p(x ′′, f (x ′′)) Rename 3
6. ¬p(f (x), z) ∨ p(x , z) σ2 = {y ← f (x), x ′′ ← x}2, 3′′
5′′′. p(f (x ′′′), x ′′′) Rename 5
7. p(x , x) σ3 = {z ← x , x ′′′ ← x}6, 5′′′
4′′′′. ¬p(x ′′′′, x ′′′′) Rename 4
8. ∅ σ4 = {x ′′′′ ← x}7, 4′′′′

Resolution refutation with variable renaming, from [Ben-Ari, 2001].

I The substitution resulting from composing all intermediary
substitutions:

σ = σ1σ2σ3σ4 =

{y ← f (x), z ← x , x ′ ← x , x ′′ ← x , x ′′′ ← x , x ′′′′ ← x}
I Restricted to the variables from the initial set, the resulting

substitution is:

σ = {y ← f (x), z ← x}

Theorem (Soundness of substitution)

If the unsatisfiable clause ∅ is derived during the general
resolution procedure, then the set of clauses is unsatisfiable.

Theorem (Completeness of substitution)

If a set of clauses is unsatistiable, then the empty clause ∅ can
be derived by the resolution procedure.

I For details on how the proofs of these theorems,
see [Ben-Ari, 2001].

Theorem (Soundness of substitution)

If the unsatisfiable clause ∅ is derived during the general
resolution procedure, then the set of clauses is unsatisfiable.

Theorem (Completeness of substitution)

If a set of clauses is unsatistiable, then the empty clause ∅ can
be derived by the resolution procedure.

I For details on how the proofs of these theorems,
see [Ben-Ari, 2001].

Some remarks on the resolution procedure

I Note that the resolution procedure is nondeterministic: which
clashing clause to choose and which clashing literals to resolve
on is not specified.

I Good choices will lead to the result quickly, while bad choices
may lead to the algorithm not terminating.

I The completeness theorem says that if the clause set is
unsatisfiable a resolution refutation (generation of the empty
clause) exists, i.e. that which uses good choices. Variants
with bad choices may miss the solution.

Some remarks on the resolution procedure

I Note that the resolution procedure is nondeterministic: which
clashing clause to choose and which clashing literals to resolve
on is not specified.

I Good choices will lead to the result quickly, while bad choices
may lead to the algorithm not terminating.

I The completeness theorem says that if the clause set is
unsatisfiable a resolution refutation (generation of the empty
clause) exists, i.e. that which uses good choices. Variants
with bad choices may miss the solution.

Some remarks on the resolution procedure

I Note that the resolution procedure is nondeterministic: which
clashing clause to choose and which clashing literals to resolve
on is not specified.

I Good choices will lead to the result quickly, while bad choices
may lead to the algorithm not terminating.

I The completeness theorem says that if the clause set is
unsatisfiable a resolution refutation (generation of the empty
clause) exists, i.e. that which uses good choices. Variants
with bad choices may miss the solution.

I Read: Chapter 7, sections 7.5-7.8 of [Ben-Ari, 2001].
I Items of interest:

I Ground resolution, impracticality of ground resolution
(reasons).

I Substitutions: compositions of substitutions, unifiers, most
general unifiers.

I Unification procedure.
I General resolution, completeness of resolution (no proof).

I Read: Chapter 7, sections 7.1-7.4 of [Ben-Ari, 2001].
I Items of interest (no proofs required):

I Predicate logic language: syntax, semantics(interpretation,
model).

I Herbrand’s universe, Herbrand base, Herbrand interpretation
I Herbrand’s theorem, the significance of Herbrand’s theorem.
I Clausal form of first order formulae: Skolemization (Skolem

constants, Skolem functions), transformation algorithm.

Ben-Ari, M. (2001).
Mathematical Logic for Computer Science.
Springer Verlag, London, 2nd edition.

Crăciun, A. (2005-2010).
Logic for Computer Science.

	The Theoretical Basis of Logic Programming
	Resolution
	Ground Resolution
	Substitution
	Unification
	Resolution
	Reading and Further Exercises
	Reading and Further Exercises

