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I We review here (first order) predicate logic:
I the syntax,
I the semantics,
I illustrate some difficulties of the semantic evaluation of truth

in first order logic,
I review some results that deal with this difficulty.



Syntax of first order predicate logic

I The vocabulary of the language contains the symbols from
which expressions of the language are built:

I Reserved symbols:
I ( ),
I ¬,∧,∨,⇒,⇔,
I ∀,∃.

I The set of variables V (countable set).
I The set of language symbols L:

I F - function symbols (each with their own arity),
I P - predicate symbols (with arity),
I C - constant symbols.

I Example language (symbols):
L = {{+/2,−/1}, {</2,≥/2}, {0, 1}}. We use a notation
similar to Prolog to indicate the arity of symbols.



I The expressions of (first order) predicate logic:
I Terms:

I variables v ∈ V are terms,
I constants c ∈ C are terms,
I if f/n ∈ F and t1, . . . , tn are terms, then so is f (t1, . . . , tn).

I Formulae:
I if p/n ∈ P and t1, . . . , tn are terms, then p(t1, . . . , tn) is an

atomic formula,
I if F ,G are formulae, then ¬F , F ∧ G , F ∨ G , F ⇒ G , F ⇔ G

are (compound) formulae,
I if x ∈ V and F is a formula then ∀xF , ∃xF are (quantified)

formulae (the universally and existentially quantified formulae,
respectively).



Semantics of first order predicate logic

I The semantics of first order logic describe the meaning of
expressions in the language.

I Such a language is used to describe:
I a domain of objects,
I relations between the objects (or properties of the objects),
I processes or functions that produce new objects from other

objects.

I To find (compute) the meaning of an expression, one must
first define an interpretation of the symbols:

I constants are interpreted as objects in the domain described by
the language,

I function symbols are interpreted as processes (functions) in the
domain described by the language,

I predicate symbols are interpreted as relations/properties
between/of objects in the domain described by the language.



I Consider the language presented previously
L = {{+/2,−/1}, {</2,≥/2}, {0, 1}} and let’s consider two
interpretations of this language:

I I1 an interpretation in the natural numbers:
I I1(0) = seven,
I I1(1) = zero,
I I1(+) = multiplication,
I I1(−) = factorial,
I I1(<) = smaller than,
I I1(≥) = divides.

I I2 an interpretation in domain of strings:
I I2(0) = “ ”,
I I2(1) = “one”,
I I2(+) = concatenation,
I I2(−) = reverse,
I I2(<) = substring,
I I1(≥) = sorted version.

I Note that interpretation shows the correspondence between
the name of a concept (constant, function symbol, predicate
symbol) and the concept described by that name.



I Once an interpretation has been defined, one can compute
the value of an expression E under interpretation I,
υI(E ) (i.e. the meaning of an expression under interpretation)
in the following way:

I The value of terms under interpretation:

I In general, terms will evaluate to objects in the universe of
discourse.

I If c ∈ C, υI(c) = I(c).
I If x ∈ V, υI(v) is not defined, unless the variable v is assigned

a value. I.e. the value of expressions containing free variables
cannot be determined unless the variables have values assigned
to them.

I If f (t1, . . . , tn) is a term, then

υI(f (t1, . . . , tn)) = I(f )(υI(t1), . . . , υI(tn)).
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I The value of formulae under interpretation:

I Formulae will evaluate to true or false (but not both).
I For atomic formulae,

υI(p(t1, . . . , tn)) = I(p)(υI(t1), . . . , υI(tn)).

I For compound formulae:

I υI(¬F ) = true iff υI(F ) = false.
I υI(F ∧ G) = true iff υI(F ) = true and υI(G) = true.
I υI(F ∨ G) = true iff υI(F ) = true or υI(G) = true (at least

one is true).
I υI(F ⇒ G) = false iff υI(F ) = true and υI(G) = false.
I υI(F ⇔ G) = true iff υI(F ) = υI(G).

I For quantified formulae:

I υI(∀xF ) = true iff for all values of x from the domain,
υI(F ) = true.

I υI(∃xF ) = true iff for some values of x from the domain,
υI(F ) = true.
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I For example, consider I1 as defined above:

υI1(−(0 + 1))) =
I1(−)(υI1(0 + 1)) =
factorial(I1(+)(υI1(0), υI1(1))) =
factorial(multiplication(seven, zero)) =
factorial(zero) =
one.



Validity, satisfiability, unsatisfiability

I We are interested in the meaning of formulae, in particular:

I Whether a formula is valid, i.e. true under all possible
interpretations.

I Whether a formula is satisfiable, i.e. there is an interpretation
such that the formula is true.

I Whether a formula is unsatisfiable, i.e. the formula is false
under all possible interpretations.

I Whether two formulae are logically equivalent, i.e. the
formulae have the same meaning under all possible
interpretations (we denote F1 ≡ F2).

I Whether a formula is a logical consequence of a set of other
formulae, i.e. the formula is true in all interpretations such that
all formulae in the set are true (we denote F1, . . . ,Fn � G ).
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I Using these notions in practice is very difficult: the number of
possible interpretations for a language is infinite. Checking the
value of an expression in all possible interpretations is
therefore not practical.

I If a formula is (or a set of formulae are) true under an
interpretation in a domain, then that domain is called a
model of the formula(e).
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Herbrand Universe

I Fortunately, the difficulty represented by the immense number
of possible interpretations of a language can be overcome.

I We will define a domain and an interpretation that “captures”
all the properties of all potential domains and interpretation.

I Checking satisfiability (and validity) of a formula (set) can be
done by just checking the evaluation under a certain
interpretation into this special universe.

I Let L be a language containing the constant symbols C,
function symbols F and predicate symbols P. Let F be a
formula over L.
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I The Herbrand universe H corresponding to the language L
(or corresponding to the formula F ) is defined in the following
way:

I If c ∈ C then c ∈ H.
I If t1, . . . , tn and f ∈ F then f (t1, . . . , tn) ∈ H.
I Note that if C = ∅ then add an arbitrary constant to the

Herbrand universe H.

I The Herbrand universe is the set of ground terms that can be
formed from the constants and function symbols of the
language.

I The Herbrand base B of the language L or the formula F is
the set of ground atoms that can be formed from the
predicate symbols in P and terms in H.
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I A Herbrand interpretation IH for the language L is an
interpretation whose domain is the Herbrand universe H
whose symbols are interpreted to themselves:

I If c ∈ C, IH(c) = c .
I If f ∈ F , IH(f ) = f .
I If f ∈ P, IH(p) = p.

I A Herbrand model for a formula (set) F is a Herbrand
interpretation that satisfies F . A Herbrand model can be
identified with a subset of the Herbrand base, namely the
subset for which

υIH(p(t1, . . . , tn)) = true.
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Herbrand’s Theorem

Several remarkable results hold.

Theorem
Let F be a formula. F has a model iff it has a Herbrand model.

Theorem (Herbrand’s theorem (semantic form))

Let F be a formula (set). F is unsatisfiable iff a formula built from
a finite set of ground instances of subformulae of F is unsatisfiable.

Theorem (Herbrand’s theorem (syntactic form))

A formula F is provable iff a formula built from a finite set of
ground instances of subformulas of F is provable in propositional
logic.
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I Herbrand’s theorem (semantic form) tells us that we can
reduce the question of unsatisfiability in predicate logic to the
question of unsatisfiability in propositional logic.

I For propositional logic, the resolution method is used to
decide the question of satisfiability. See [Crăciun, 2010] for
details.

I For using resolution in propositional logic, propositional
formulas are written in Conjunctive Normal Form (CNF).

I To use Herbrand’s theorem in and propositional resolution,
one would need a similar transformation for predicate logic.



I Herbrand’s theorem (semantic form) tells us that we can
reduce the question of unsatisfiability in predicate logic to the
question of unsatisfiability in propositional logic.

I For propositional logic, the resolution method is used to
decide the question of satisfiability. See [Crăciun, 2010] for
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I A literal in predicate logic is an atomic formula or the
negation of an atomic formula.

I A formula of predicate logic is in conjunctive normal form
(CNF) iff it is a conjunction of disjunctions of literals.

I A formula of predicate logic is in prenex conjunctive normal
form (PCNF) iff it is of the form

Q1x1 . . .QnxnM,

where Qi is a quantifier (either ∀, ∃), for i = 1 . . . n, and M is
a quantifier-free formula in CNF. Q1x1 . . .Qnxn is called the
prefix and M is called the matrix.

I A formula is closed iff it has no free variables (i.e. all
variables are bound by a quantifier).

I A closed formula is in clausal form iff it is in PCNF and its
prefix consists only of universal quantifiers.

I A clause is a disjunction of literals.



I Example: The following formula is in clausal normal form:

∀x∀y∀z
((

p(f (x)) ∨ ¬q(y , z)
)
∧(

¬p(x) ∨ q(y , f (z)) ∨ r(x , y)
)
∧(

q(x , f (z)) ∨ ¬r(f (y), f (z))
))
.

I Notation: Since the matrix only consists of universal
quantifiers, these can be omitted. The clausal form can be
represented in the following manner (clauses as sets of
literals, formulae in clausal form as sets of clauses):{{

p(f (x)),¬q(y , z)
}
,{

¬p(x), q(y , f (z)), r(x , y)
}
,{

q(x , f (z)),¬r(f (y), f (z))
}}

.

I Notation: Let F , G be formulas. We denote F ≈ G if F and
G are equisatisfiable (i.e. F is satisfiable iff G is satisfiable).
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Theorem (Skolem)

Let F be a closed formula. Then there exists a formula F ′ in
clausal form such that F ≈ F ′.

I Skolem’s theorem can be used to decide if a formula is
unsatisfiable if a method for deciding unsatisfiability of
formulas in clausal exists. This is the subject of the next
Chapter.



Skolemization Algorithm

IN: closed formula F .

OUT: formula F ′ in clausal form such that F ≈ F ′.

Running example:

∀x(p(x)⇒ q(x))⇒ (∀xp(x)⇒ ∀xq(x))

1: Rename the bound variables such that no variable appears in
the scope of two different quantifiers.

∀x(p(x)⇒ q(x))⇒ (∀yp(y)⇒ ∀zq(z))

2: Eliminate all the equivalence and implication connectives
(⇔,⇒).

¬∀x(¬p(x) ∨ q(x)) ∨ (¬∀yp(y) ∨ ∀zq(z))



3: Push the negations inside the parantheses, until negations
apply only to atomic formulae. Use the equivalences

¬(¬F ) ≡ F ,
¬(F ∧ G ) ≡ (¬F ∨ ¬G ),
¬(F ∨ G ) ≡ (¬F ∧ ¬G ),
¬(∀xF [x ]) ≡ ∃x¬F [x ],
¬(∃xF [x ]) ≡ ∀x¬F [x ].

∃x(p(x) ∧ ¬q(x)) ∨ ∃y¬p(y) ∨ ∀zq(z)

4: Extract the quantifiers from the matrix. Since the variables
have been renamed, the following equivalences can be applied:
AopQxB[x ] ≡ Qx(AopB[X ]) and QxB[x ]opA ≡ Qx(B[X ]opA)
where Q is one of ∀,∃ and op is one of ∧,∨.

∃x∃y∀z((p(x) ∧ ¬q(x)) ∨ ¬p(y) ∨ q(z))



5: Use the distributive laws P ∨ (Q ∧ R) ≡ (P ∨ Q) ∧ (P ∨ R),
(P ∧ Q) ∨ R) ≡ (P ∨ R) ∧ (Q ∨ R) to transform the matrix
into CNF.

∃x∃y∀z((p(x) ∨ ¬p(y) ∨ q(z)) ∧ (¬q(x) ∨ ¬p(y) ∨ q(z)))

6: Skolemization

I If the prefix is of the form ∀y1 . . . ∀yn∃x , let f be a new n-ary
function symbol. Delete ∃x from the prefix, replace all
occurences of x in the matrix by f (y1, . . . , yn). The function f
is called a Skolem function.

I If there are no universal quantifiers before ∃x in the prefix, let
a be a new constant. Eliminate ∃x from the prefix and replace
every occurence of x in the matrix with a. The constant a is a
Skolem constant.

∀z((p(a) ∨ ¬p(b) ∨ q(z)) ∧ (¬q(a) ∨ ¬p(b) ∨ q(z)))

Note that steps 1-5 preserve logical consequence. It is relatively
easy to show that step 6 preserves satisfiability.
See [Ben-Ari, 2001].
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I Read: Chapter 7, sections 7.1-7.4 of [Ben-Ari, 2001].
I Items of interest (no proofs required):

I Predicate logic language: syntax, semantics(interpretation,
model).

I Herbrand’s universe, Herbrand base, Herbrand interpretation
I Herbrand’s theorem, the significance of Herbrand’s theorem.
I Clausal form of first order formulae: Skolemization (Skolem

constants, Skolem functions), transformation algorithm.
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