Graphs. Connectivity. Flow networks

Graph connectivity. Transitive closures

1. Consider the undirected graph G with the graphical representation

What are the representations of this graph with

- (a) List of edges and list of nodes.
- (b) Lists of adjacencies.
- (c) Adjacency matrix A_G .

Then

(d) Compute A_G^3 and decide which nodes can be reached from c with a path of length 3.

Answer

$$\begin{array}{ll} \text{(a)} \;\; E = [\{a,b\},\{a,x\},\{b,d\},\{b,x\},\{c,d\}] \\ V = [a,b,c,d,x] \end{array}$$

$$\begin{array}{ccc} \text{(b)} & a \mapsto [b,x] & d \mapsto [d,x] \\ & b \mapsto [a,d,x] & x \mapsto [a,b] \\ & c \mapsto [d] \end{array}$$

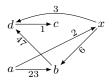
(c) We assume that the nodes are enumerated in the order [a,b,c,d,x,y]. In this case, the adjacency matrix A_G looks as follows:

$$A_G^3 = A_G^2 \odot A_G = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \odot \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} =$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

c is the third node, and the third line of the matrix A_G^3 is [1,0,0,1,1,0], which has nonzero entries at positions 1, 4 and 5. Thus c is connected with paths of length 3 to the first, 4-th, and 5-th node, i.e., to a, d and x.

2. Consider the weighted digraph G with the graphical rpresentation



Indicate the representations of this graph with

- (a) List of edges and list of nodes.
- (b) Lists of adjacencies.
- (c) Adjacency matrix A_G .
- (d) Weight matrix M_G .

and then

(e) Compute A_G^4 and indicate the pairs of nodes connected by paths of length 4.

Answer:

(a)
$$E = [(a, b), (a, x), (b, d), (d, c), (x, b), (x, d)],$$

 $V = [a, b, c, d, x]$

$$\begin{array}{ccc} \text{(b)} & a \mapsto [b,x] & d \mapsto [c] \\ & b \mapsto [d] & x \mapsto [b,d] \\ & c \mapsto [] \end{array}$$

(c) If we fix the enumeration [a, b, c, d, x] for the nodes of the graph, then

$$A_G = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

Note that these three representations of G (with list of edges + list of nodes, with lists of adjacencies, and with adjacency matrix) are incomplete because they do not store the weights of arcs.

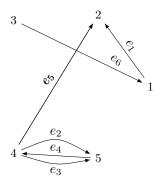
(d) If we fix the enumeration [a, b, c, d, x] for the nodes of the graph, then

$$W_G = \begin{pmatrix} 0 & 23 & \infty & \infty & 2\\ \infty & 0 & \infty & 47 & \infty\\ \infty & \infty & 0 & \infty & \infty\\ \infty & \infty & 1 & 0 & \infty\\ \infty & 6 & \infty & 3 & 0 \end{pmatrix}.$$

The only nonzero element of A_G^4 is at position $(1,3) \Rightarrow$ there is only pair of nodes between whom there is a path of length 4 in G: from the 1st node (which is a) to the 3rd node (which is c).

For example, such a path is [a, x, b, d, c].

3. Let G be the digraph illustrated below:



Specify the representations of G with

- (a) Adjacency matrix A_G .
- (b) Incidence matrix M_G .

Answer:

(a) For the enumeration [1, 2, 3, 4, 5] of nodes, the adjacency matrix is

$$A_G = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

(b) For the enumerations [1,2,3,4,5] of nodes, and $[e_1,e_2,e_3,e_4,e_5,e_6]$ of edges, the incidence matrix M_G of this graph is

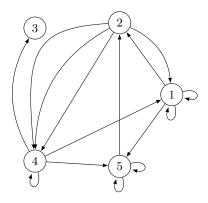
	e_1	e_2	e_3	e_4	e_5 0 1 0 -1 0	e_6
1	-1	0	0	0	0	-1
2	1	0	0	0	1	0
3	0	0	0	0	0	1
4	0	-1	-1	1	-1	0
5	0	1	1	-1	0	0

4. Draw a digraph G whose adjacency matrix is

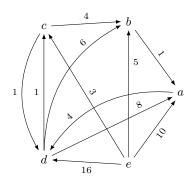
$$A_G = \begin{pmatrix} 2 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 2 \end{pmatrix}$$

Answer: A_G has dimension 5×5 , thus G has 5 nodes \Rightarrow we can assume that the list of nodes is [1, 2, 3, 4, 5].

We draw these nodes in the plane, and afterwards we draw arcs between nodes in accordance with the element values of the adjacency matrix A_G :



5. For the weighted digraph G depicted below



Use Warshall's algorithm to comptue the lightest paths between all pairs of nodes in this graph.

Answer: First, we fix a traversal order for the nodes of G: [a, b, c, d, e]. Thus a is node 1, b is 2, c is 3, d is 4, and e is 5.

To simplify the description of how the algorithm works, I will write in one matrix $WP^{[k]}$ the element values of both matrices $W^{[k]}$ and $P^{[k]}$:

$$\bullet WP^{[0]} = \begin{pmatrix} [a]_{\mathbf{0}} & \bullet_{\infty} & \bullet_{\infty} & [a,d]_{4} & \bullet_{\infty} \\ [b,a]_{1} & [b]_{\mathbf{0}} & \bullet_{\infty} & \bullet_{\infty} & \bullet_{\infty} \\ \bullet_{\infty} & [c,b]_{4} & [c]_{\mathbf{0}} & [c,d]_{1} & \bullet_{\infty} \\ [d,a]_{8} & [d,b]_{6} & [d,c]_{1} & [d]_{\mathbf{0}} & \bullet_{\infty} \\ [e,a]_{10} & [e,b]_{5} & [e,c]_{3} & [e,d]_{16} & [e]_{\mathbf{0}} \end{pmatrix}$$

The red marked indices represent the values of $W^{[0]}$ at he respective positions; if we elide the indices, we obtain the matrix $P^{[0]}$. From now on we will omit the indices of \bullet , because the values of $W^{[k]}$ at the positions where \bullet occurs are always ∞ .

• For the computation of $WP^{[1]}$ we check if we can get lighter paths if we go through node 1 (which is a):

$$WP^{[1]} = \begin{pmatrix} [a]_0 & \bullet & & [a,d]_4 & \bullet \\ [b,a]_1 & [b]_0 & \bullet & [b,a,d]_5 & \bullet \\ \bullet & [c,b]_4 & [c]_0 & [c,d]_1 & \bullet \\ [d,a]_8 & [d,b]_6 & [d,c]_1 & [d]_0 & \bullet \\ [e,a]_{10} & [e,b]_5 & [e,c]_3 & [e,a,d]_{14} & [e]_0 \end{pmatrix}$$

The blue entries are those that got modified (they are paths that are lighter than the previous ones).

• For the computation of $WP^{[2]}$ we check if we can get lighter paths if we go through node 2 (which is b):

$$WP^{[2]} = \begin{pmatrix} [a]_0 & \bullet & \bullet & [a,d]_4 & \bullet \\ [b,a]_1 & [b]_0 & \bullet & [b,a,d]_5 & \bullet \\ [c,b,a]_5 & [c,b]_4 & [c]_0 & [c,d]_1 & \bullet \\ [d,b,a]_7 & [d,b]_6 & [d,c]_1 & [d]_0 & \bullet \\ [e,b,a]_6 & [e,b]_5 & [e,c]_3 & [e,b,a,d]_{10} & [e]_0 \end{pmatrix}$$

• For the computation of $WP^{[3]}$ we check if we can get lighter paths if we go through node 3 (which is c):

$$WP^{[3]} = \begin{pmatrix} [a]_0 & \bullet & & [a,d]_4 & \bullet \\ [b,a]_1 & [b]_0 & \bullet & [b,a,d]_5 & \bullet \\ [c,b,a]_5 & [c,b]_4 & [c]_0 & [c,d]_1 & \bullet \\ [d,c,b,a]_6 & [d,c,b]_5 & [d,c]_1 & [d]_0 & \bullet \\ [e,b,a]_6 & [e,b]_5 & [e,c]_3 & [e,c,d]_4 & [e]_0 \end{pmatrix}$$

• For the computation of $WP^{[4]}$ we check if we can get lighter paths if we go through node 4 (which is d):

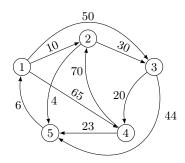
$$WP^{[4]} = \begin{pmatrix} [a]_0 & [a,d,c,b]_9 & [a,d,c]_5 & [a,d]_4 & \bullet \\ [b,a]_1 & [b]_0 & [b,a,d,c]_6 & [b,a,d]_5 & \bullet \\ [c,b,a]_5 & [c,b]_4 & [c]_0 & [c,d]_1 & \bullet \\ [d,c,b,a]_6 & [d,c,b]_5 & [d,c]_1 & [d]_0 & \bullet \\ [e,b,a]_6 & [e,b]_5 & [e,c]_3 & [e,c,d]_4 & [e]_0 \end{pmatrix}$$

• For the computation of $WP^{[5]}$ we check if we can get lighter paths if we go through node 5 (which is e):

$$WP^{[5]} = WP^{[4]} = \begin{pmatrix} [a]_0 & [a,d,c,b]_9 & [a,d,c]_5 & [a,d]_4 & \bullet \\ [b,a]_1 & [b]_0 & [b,a,d,c]_6 & [b,a,d]_5 & \bullet \\ [c,b,a]_5 & [c,b]_4 & [c]_0 & [c,d]_1 & \bullet \\ [d,c,b,a]_6 & [d,c,b]_5 & [d,c]_1 & [d]_0 & \bullet \\ [e,b,a]_6 & [e,b]_5 & [e,c]_3 & [e,c,d]_4 & [e]_0 \end{pmatrix}$$

The elements of $WP^{[5]}$ are the lightest paths between the corresponding nodes, and their subscripts represent their corresponding weights.

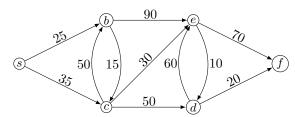
Homework 1: Use Warshall's algorithm to compute the lightest paths between any pair of nodes in the weighted directed graph depicted below:



Dijkstra's Algorithm

Allows to compute efficiently the lightest paths from a source node to all other nodes in a weighted digraph.

Homework 2: The following picture illustrates a weighted digraph with source node s, and also the values of π and d associated with the nodes of the graph by the initialisation step of Dijkstra's algorithm:



Compute the values of π and d for the nodes of the graph after every **while** loop that marks a node in Dijkstra's algorithm. Afterwards, draw the rooted tree G_{π} .

Ford-Fulkerson's algorithm

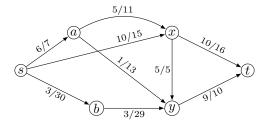
The purpose of this exercise is to illustrate how to use Ford-Fulkerson's algorithm to compute a maximum flow from a source to a destination in a flow network .

Remember that:

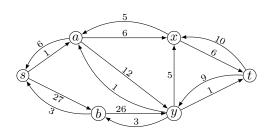
- For any representation G + f of a flow network G with a ntework flow f, we construct the **residual network** G_f as follows:
 - ▶ Se înlocuieşte fiecare arc $x \xrightarrow{a/c} y$ din G + f cu două arce: $x \xrightarrow{a} y$ Remember that in G + f, an arc $x \xrightarrow{0/c} y$ has the simplified representation $x \xrightarrow{c} y$, and in G_f we do not draw arcs with label 0.

- At every step, Ford-Fulkerson's algorithm looks for an augmenting path in the residual network G_f , as follows:
 - 1. We verify if there is a path $s \rightsquigarrow t$ from source s to destination t in G_f . This test is performed as follows:
 - Perform a breadth-first traversal of G_f , starting from source s \Rightarrow the rooted tree \mathtt{Bft}_{G_f} .
 - The shorthand Bft is derived from breadth-first traversal.
 - If Bft_{G_f} has a branch from s to t, we choose the augmenting path $s \overset{f'}{\leadsto} t$ along that branch, with the flow f' whose value is equal with the minimum capacity of an arc along that path.
 - If Bft_{G_f} has no branch from s to t, the algorithm stops and decides that G + f is a flow network with maximum flow f.
 - 2. If the previous step found an augmenting path $s \stackrel{f'}{\leadsto} t$, construct G + (f + f') and **goto** step 1.

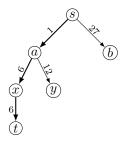
For example, if G + f is



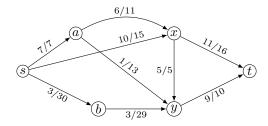
then G_f is



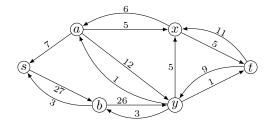
and \mathtt{Bft}_{G_f} can be (the exact shape of \mathtt{Bft}_{G_f} depends on the traversal order of the neighbours of a node):



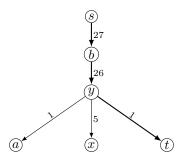
We get the augmenting path $s \xrightarrow{1} a \xrightarrow{6} b \xrightarrow{6} x \xrightarrow{6} t$ with a flow whose value is 1. After adding f' to f, we obtain $G + f_1$ where $f_1 = f + f'$, which looks as follows:



In the next round, G_{f_1} is



and $\mathtt{Bft}_{G_{f_1}}$ is the rooted tree



 \Rightarrow the augmenting path $s \xrightarrow{27} b \xrightarrow{26} y \xrightarrow{1} t$ whose flow value is 1, a.s.o. . . .

 $\begin{tabular}{ll} \textbf{Homework 3:} Use Ford-Fulkerson's algorithm to find a maximum flow in the flow network \\ \end{tabular}$

