Graph Theory and Combinatorics Seminar 3

- 1. Arrange the following permutations of $\{1, 2, 3, 4, 5\}$ in increasing lexicographic order: $\langle 4, 3, 1, 2, 5 \rangle$, $\langle 2, 1, 5, 3, 4 \rangle$, $\langle 3, 4, 5, 2, 1 \rangle$, $\langle 3, 4, 1, 5, 2 \rangle$, $\langle 4, 3, 1, 5, 2 \rangle$.
- 2. What is the permutation that follows after $\langle 4, 5, 3, 2, 1 \rangle$ in lexicographic order?
- 3. What is the permutation that follows after $\langle 4, 2, 5, 3, 1 \rangle$ in lexicographic order?
- 4. What is the rank of the 3-permutation with repetition (2, 2, 5) of the set $\{1, 2, 3, 4, 5\}$ in the lexicographic ordering?

ANSWER: 1, 2, 3, 4, 5 have ranks 0, 1, 2, 3, 4 in the set $\{1, 2, 3, 4, 5\}$ (which has 5 elements), thus the rank of the 3-permutation with repetition (2, 2, 5) is $114_{(5)} = 1 \cdot 5^2 + 1 \cdot 5 + 4 = 25 + 5 + 4 = 34$.

5. Compute the 6-permutation with repetition of the set $\{1, 2\}$ with rank 17 in the lexicographic ordering.

ANSWER: The set $A = \{1, 2\}$ has 2 elements, thus we shall compute the representation in base 2 of 17, using 6 digits:

$$17 = 16 + 1 = 2^4 + 1 = 010001_{(2)}$$

and the 6-permutation with repetition of $\{1, 2\}$ corresponding to the binary number $010001_{(2)}$ is $\langle 121112 \rangle$.

- 6. Compute the 5-permutation with repetition of the set $\{1, 2, 3\}$ with rank 17 in the lexicographic ordering.
- 7. Which is the fourth subset of {1,2,3,4} enumerated with the standard reflected Grey code?
- 8. Which is the subset of $\{1, 2, 3, 4\}$ that follows after $\{1, 3\}$ in the enumeration order via binary representations?

ANSWER: 4 > 3 > 2 > 1 and the binary representation of $\{1, 3\}$ is 0101. The next binary encoding is 0110, which corresponds to the subset $\{2, 3\}$.

9. Which is the 3-combination of $\{1, 2, 3, 4, 5\}$ that follows after $\{1, 3, 4\}$ in the enumeration order via binary representations? ANSWER:

5 > 4 > 3 > 2 > 1 and

3-combinaton	binary representation
	54321
$\{1, 3, 4\}$	01101

The next 5-bit number with 3 occurrences of 1, after 01101, is 01110. The 3-combination for 01110 is $\{2, 3, 4\}$.

- 10. What is the rank of the permutation (1, 2, 4, 5, 3) in lexicographic order?
- 11. What is the rank of the permutation (2, 4, 1, 3) in lexicographic order?
- 12. Write down the canonical cyclic structures of the following permutations:
 - (a) $\langle 1, 6, 3, 2, 5, 7, 4, 9, 8 \rangle$
 - (b) $\langle 6, 5, 8, 1, 2, 4, 7, 3, 10, 9 \rangle$
 - (c) $\langle 6, 1, 2, 4, 5, 3, 8, 7 \rangle$
- 13. Write down the permutations with the following cyclic structures:
 - (a) (4,7,3)(8,5,1,2)(10,6,9)
 - (b) (6)(1,2,3,4,5)
 - (c) (2,4,6,8)(1,5,3,7)
- 14. Write down the canonical cyclic structures of the cyclic structures from the previous exercise.
- 15. Write down the types of the following permutations:

a) $\langle 1, 2, 3, 4, 5, 6, 7, 8 \rangle$	b) $\langle 8, 1, 2, 3, 4, 5, 6, 7 \rangle$
c) $\langle 4, 5, 6, 7, 1, 2, 3 \rangle$	d) $\langle 3, 4, 5, 6, 7, 1, 2 \rangle$
e) $\langle 1, 2, 3, 4, 6, 5, 8, 7 \rangle$	f) $\langle 7, 8, 5, 6, 4, 3, 2, 1 \rangle$

16. Which of the following lists is a valid permutation type:

(a) $[1, 1, 0, 1]$	(b) $[1, 1, 0, 0]$
(c) $[1, 0, 1, 0, 0]$	(d) $[0, 0, 0, 0, 1]$
(e) $[0, 1, 0, 1, 0, 0]$	(f) $[1, 0, 1, 0, 0, 0]$

- 17. Write down all plausible types of the permutations of the set {1,2,3,4}. [SUGGESTION: Write down all integer partitions of 4, and use the relationship between integer partitions and permutation types described in Lecture 4.]
- 18. Write down all plausible types of the permutations of the set $\{1, 2, 3\}$.
- 19. How many permutations have the same type as the permutation (3, 2, 1, 5, 4)?
- 20. Which of the following formulas is a solution of the recurrence relation $a_n = 8 a_{n-1} 16 a_{n-2}$:

a) $a_n = 0$?	b) $a_n = 1?$
c) $a_n = 2^n$?	d) $a_n = 4^n$?
e) $a_n = n \cdot 4^n$?	f) $a_n = 2 \cdot 4^n + 3 \cdot n \cdot 4^n$?
g) $a_n = (-4)^n$?	h) $a_n = n^2 \cdot 4^n$?

- 21. Solve these recurrence relations together with the initial conditions given.
 - (a) $a_n = 2 a_{n-1}$ for $n \ge 1$, $a_0 = 3$. (b) $a_n = 5 a_{n-1} - 6 a_{n-2}$ for $n \ge 2$, $a_0 = 1$, $a_1 = 0$. (c) $a_n = 4 a_{n-1} - 4 a_{n-2}$, $a_0 = 6$, $a_1 = 8$. (d) $a_n = 4 a_{n-2}$, $a_0 = 0$, $a_1 = 4$. (e) $a_n = 7 a_{n-1} - 10 a_{n-2}$ for $n \ge 2$, $a_0 = 2$, $a_1 = 1$.
- 22. Find the solution to $a_n = 2a_{n-1} + 5a_{n-2} 6a_{n-3}$ with $a_0 = 7$, $a_1 = -4$, and $a_2 = 8$.

ANSWER: The characteristic equation of this relation is $r^3 - 2r^2 - 5r + 6 = 0$. As a first guess, we will check if some divisor of the free term 8 is root of this equation. It turns out that $r_1 = 1$ is solution, thus $r^3 - 2r^2 - 5r + 6$ is divisible with r - 1. If we divide $r^3 - 2r^2 - 5r + 6$ with r - 1, we get $r^3 - 2r^2 - 5r + 6 = (r^2 - r - 6)(r - 1) = (r + 2)(r - 3)(r - 1)$, thus the characteristic equation has three distinct roots: $r_1 = 1$, $r_2 = -2$, $r_3 = 3$. It follows that

$$a_n = a \cdot r_1^n + b \cdot r_2^n + c \cdot r_3^n = a + b \cdot (-2)^n + c \cdot 3^n$$

From $a_0 = 7$, $a_1 = -4$, and $a_2 = 8$ we obtain

$$\begin{cases} a+b+c = 7\\ a-2b+3c = -4\\ a+4b+9c = 8 \end{cases} \Rightarrow \begin{cases} a = 5\\ b = 3\\ c = -1 \end{cases} \Rightarrow a_n = 5+3 \cdot (-2)^n - 3^n.$$

23. Determine the values of the constants a and b such that $a_n = a n + b$ is a solution of the recurrence relation $a_n = 2 a_{n-1} + n + 5$.

ANSWER: If we replace a_n with a n + b in this recurrence relation, we obtain

$$a n + b = 2 (a (n - 1) + b) + n + 5 = (2 a + 1) n + 2 b - 2 a + 5$$

for all $n \in \mathbb{N}$, which implies

$$\begin{cases} a = 2a+1 \\ b = 2b-2a+5 \end{cases} \Rightarrow \begin{cases} a = -1 \\ b = -7 \end{cases}$$

- 24. What is the general form of a solution of the linear nonhomogeneous recursive relation $a_n = 6 a_{n-1} 12 a_{n-2} + 8 a_{n-3} + F(n)$, if
 - (a) $F(n) = n^2$? (b) $F(n) = n 2^n$? (c) $F(n) = n^2 2^n$? (d) $F(n) = 2^n$? (e) $F(n) = (-2)^n$?

25. Find all solutions of the recurrence relation $a_n = 2 a_{n-1} + 2 n^2$.

26. Let

$$a_n = \sum_{k=1}^n \frac{k(k+1)}{2}$$
 for all $n \ge 1$.

Show that $\{a_n\}$ satisfies the linear nonhomogeneous recurrence relation

$$a_n = a_{n-1} + \frac{n(n+1)}{2}$$

and the initial condition $a_1 = 1$. Then, solve this recurrence relation to determine a formula for a_n .

27. A computer system considers a string of decimal digits a valid codeword if it contains an even number of 0 digits. For instance, 12304056789 is valid, whereas 12098700567 is not. Let a_n be the number of valid *n*-digit codewords. Find a recurrence relation for a_n .

ANSWER: There are nine 1-digit codewords, namely 1, 2, 3, 4, 5, 6, 7, 8, 9. Thus $a_1 = 9$.

If n > 1, we distinguish 2 disjoint cases:

- 1. The codeword starts with a non-zero digit x, thus it is of the form xw where $1 \leq x \leq 9$ and w id a codeword with n-1 decimal digits. There are 9 choices for x, and a_{n-1} choices for w. By the rule of product, there are $9 \cdot a_{n-1}$ codewords in this case.
- 2. The codeword starts with 0, thus it is of the form 0w' where w' is a string with n-1 decimal digits which is not a codeword. There are 10^{n-1} strings with n-1 decimal digits. By the principle of inclusion and exclusion, there are $10^{n-1} a_{n-1}$ possibilities to choose w'. Thus, there are $10^{n-1} a_{n-1}$ codewords in this case.

By the sum rule, $a_n = 9 a_{n-1} + 10^{n-1} - a_{n-1} = 10^{n-1} + 8 a_{n-1}$.

28. Find a recurrence relation for C_n , the number of ways to parenthesize the product of n + 1 numbers, $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$, to specify the order of multiplication. For example $C_3 = 5$ because there are five ways to parenthesize $x_0 \cdot x_1 \cdot x_2 \cdot x_3$ to determine the order of multiplication:

$$\begin{array}{ll} ((x_0 \cdot x_1) \cdot x_2) \cdot x_3 & (x_0 \cdot (x_1 \cdot x_2)) \cdot x_3 & (x_0 \cdot x_1) \cdot (x_2 \cdot x_3) \\ x_0 \cdot ((x_1 \cdot x_2) \cdot x_3) & x_0 \cdot (x_1 \cdot (x_2 \cdot x_3)) \end{array}$$

ANSWER: Note that, however we insert parentheses in the product $x_0 \cdot x_1 \cdot x_2 \cdot \ldots \cdot x_n$, one '·' operator remains outside all parentheses, namely, the operator for the final multiplication operation to be performed. For example, in $((x_0 \cdot x_1) \cdot x_2) \cdot x_3$ it is the final '·', while in $(x_0 \cdot x_1) \cdot (x_2 \cdot x_3)$ it is the second '·'. This final operator appears between two of the n + 1 numbers, say between x_k and x_{k+1} .

By the product rule, there are $C_k \cdot C_{n-k-1}$ ways to insert parentheses to determine the order of the n + 1 numbers to be multiplied when the final operator appears between x_k and x_{k+1} , because:

- There are C_k ways to parenthesize the product $x_0 \cdot x_1 \cdot \ldots \cdot x_k$, and
- There are C_{n-k-1} ways to parenthesize the product $x_{k+1} \cdot \ldots \cdot x_n$.

Because the final operator can appear between any of the n+1 numbers, it follows from the rule of sum that

$$C_n = \sum_{k=0}^{n-1} C_k \cdot C_{n-k-1}.$$

Note that the initial conditions are $C_0 = 1$ and $C_1 = 1$. From now we can compute the other values of C_n recursively:

$$\begin{aligned} C_2 &= C_0 \cdot C_1 + C_1 \cdot C_0 = 1 + 1 = 2 \\ C_3 &= C_0 \cdot C_2 + C_1 \cdot C_1 + C_2 \cdot C_0 = 1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1 = 5 \\ C_4 &= C_0 \cdot C_3 + C_1 \cdot C_2 + C_2 \cdot C_1 + C_3 \cdot C_0 = 5 + 2 + 2 + 5 = 14 \end{aligned}$$

29. A vending machine dispensing books of stamps accepts only bills of 1\$, 5\$, and 20\$. Let b_n be the number of ways to deposit n dollars in the vending machine, if the order in which the bills are inserted matters. Find a recursive formula for the computation of b_n .

ANSWER: We distinguish three distinct cases:

. . .

- 1. The first bill inserted in the vending machine is $1\$ \Rightarrow$ there are n-1 dollars left to insert in the machine, and this can be done in a_{n-1} ways.
- 2. The first bill inserted in the vending machine is $5\$ \Rightarrow$ there are n-5 dollars left to insert in the machine, and this can be done in a_{n-5} ways.
- 3. The first bill inserted in the vending machine is $20\$ \Rightarrow$ there are n 20 dollars left to insert in the machine, and this can be done in a_{n-20} ways.

By the sum rule, $a_n = a_{n-1} + a_{n-5} + a_{n-20}$.

30. Let a_n be the number of *n*-bit strings that contain 01. Find a recurrence relation for the computation of a_n .

ANSWER: Let b_n be the number of all *n*-bit strings, and c_n be the number of all *n*-nit strings that do not contain 01. An *n*-bit string is of one of the following two kinds:

- (a) It contains 01. There are a_n *n*-bit strings of this kind.
- (b) It does not contain 01. There are c_n *n*-bit strings of this kind.

By the rule of sum, the total number of *n*-bit strings is $b_n = a_n + c_n$. By the rule of product, $b_n = 2^n$. Thus $a_n = b_n - c_n = 2^n - c_n$.

An n-bit string which does not contain 01 is of the form

$$\underbrace{1\dots 1}_{k \text{ times } n} \underbrace{0\dots 0}_{-k \text{ times}}$$

where $0 \le k \le n$. There are n + 1 possible values for k, thus $c_n = n + 1$. We conclude that $a_n = 2^n - (n + 1)$.