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Counting in the presence of symmetries

Burnside's Lemma

The number N of equivalence classes of a set of colourings C in
the presence of a group of symmetries G is

| Crl
\GINEZG

where C; = {c € C | 7*(c) = c} is the invariant set of 7 in the set
of colorings C.

If C is the set of all possible colourings with m colours and 7 is a
cyclic structure made of p cycles, then |C;| = mP.
For instance:

° |C(12 34|:m2
o |C(1) \—m4
° |C(1 )(2,4)( 3)|—m3
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Cycle index of a group

ASSUMPTION: G is a group of n-permutations, and 7 € G
o If m has type A = [A1, A2, ..., A, then

My = Mz(x1,x2, ..., Xn) = Hxi’\"

i=1
where xi, ..., x, are unknowns.
@ The cycle index of G is
Po(x1,x2,...,Xp) = |G\ E My (x1, X2, - -y Xn)-

TeG
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Cycle index of a group
Example

The dihedral group G = D4 has 8 permutations, and:

My2)@3)) = X1,

M 3)2)4) = My2.a)3) = i xe,
M1.2)3.4) = Ma3)2.4) = M1.4)23) = %3
M1,2:3.4) = M(1,432) = Xa-

If we add these terms and divide the sum by their number, we
obtain the cycle index of Dy:

1
Pp,(x1,x2,x3,xa) = §(Xf + 2X12X2 + 3X22 +2x4),

Similarly, for the group C; we obtain

1
PC4(X17X2)X37X4) = Z(Xf +X22 + 2X4).
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Burnside's Lemma and the Cycle Index

According to Burnside, the number of colourings of n objects with

m colors, by taking into account the symmetries of group G, is
N = Pg(m,m,...,m).

Example

The number of 4-beads necklaces with m colors is
1
Pp,(m,m,m,m) = é(m4 +2m +3m?+2m).

because we already know that

1
Pp,(x1, X2, X3, Xa) = g(xf + 25330 + 353 +2x4)
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Burnside's Lemma

Application

Q: How many 20-beads necklaces can be made by using 3 colors?
A: We compute the cycle index of the symmetry group Djg. D2g has 20 rotations:

@ The rotation with 0° has type [20,0,0,...,0] = monomial x2°
@ 8 rotations with k - 18° where k € {1,3,7,9,11,13,17,19} have type
[0,...,0,1] = monomial 8 xg

@ 4 rotations with k - 18° where k € {2,6,14,18} have type [A1, ..., Ax]
with A1p = 2 and A; = 0 for all j # 10 = monomial 4x120

@ 4 rotations with k - 18° where k € {4,8,12,16} have type [A1,..., Ap]
with A5 = 4 and \; = 0 for all j # 5 = monomial 4><§l

@ 2 rotations with k - 18° where k € {5,15} have type [A1,..., A2] with
A3 =5 and A; =0 for all j # 4 = monomial 2 x?

@ Rotation with 10 - 18° has type [0,2,0,...] = monomial x}°

and 20 reflections

@ 10 reflections around axes passing through midpoints of opposite edges of
the regular polygon have type [0, 10,0, ...,0] = monomial 10 x1°

@ 10 reflections around axes passing through opposite nodes of the regular
polygon have type [A1, ..., A2] with Ay =2 and A9 = 1 = 10x? xJ

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 6 6/25



Burnside's Lemma

Application

Q: How many 20-beads necklaces can be made by using 3 colors?
A: We compute the cycle index of the symmetry group Djg. D2g has 20 rotations:

@ The rotation with 0° has type [20,0,0,...,0] = monomial x2°
@ 8 rotations with k - 18° where k € {1,3,7,9,11,13,17,19} have type
[0,...,0,1] = monomial 8 xg

@ 4 rotations with k - 18° where k € {2,6,14,18} have type [A1, ..., Ax]
with A1p = 2 and A; = 0 for all j # 10 = monomial 4x120

@ 4 rotations with k - 18° where k € {4,8,12,16} have type [A1,..., Ap]
with A5 = 4 and \; = 0 for all j # 5 = monomial 4><§l

@ 2 rotations with k - 18° where k € {5,15} have type [A1,..., A2] with
A3 =5 and A; =0 for all j # 4 = monomial 2 x?

@ Rotation with 10 - 18° has type [0,2,0,...] = monomial x}°

and 20 reflections

@ 10 reflections around axes passing through midpoints of opposite edges of
the regular polygon have type [0, 10,0, ...,0] = monomial 10 x1°

@ 10 reflections around axes passing through opposite nodes of the regular
polygon have type [A1, ..., A2] with Ay =2 and A9 = 1 = 10x? xJ

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 6 6/25



Burnside's Lemma

Application

Q: How many 20-beads necklaces can be made by using 3 colors?
A: We compute the cycle index of the symmetry group Djg. D2g has 20 rotations:

@ The rotation with 0° has type [20,0,0,...,0] = monomial x2°
@ 8 rotations with k - 18° where k € {1,3,7,9,11,13,17,19} have type
[0,...,0,1] = monomial 8 xg

@ 4 rotations with k - 18° where k € {2,6,14,18} have type [A1, ..., Ax]
with A1p = 2 and A; = 0 for all j # 10 = monomial 4x120
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with A5 = 4 and \; = 0 for all j # 5 = monomial 4><§l

@ 2 rotations with k - 18° where k € {5,15} have type [A1,..., A2] with
A3 =5 and A; =0 for all j # 4 = monomial 2 x?

@ Rotation with 10 - 18° has type [0,2,0,...] = monomial x}°

and 20 reflections

@ 10 reflections around axes passing through midpoints of opposite edges of
the regular polygon have type [0, 10,0, ...,0] = monomial 10 x1°

@ 10 reflections around axes passing through opposite nodes of the regular
polygon have type [A1,..., Ax] with Ay =2 and A9 = 1 = 10x? xJ

> Ppy(x1,x2,...,x0) = %O(XIQO +10x2 x§ + 11x3° + 257 + 4 x2 + 4 x%) + 8.x20)
= N = Px(3,...,3) = 87230157
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Applications of the cycle index
Pélya's enumeration formula

The cycle index can be used to solve more complicated problems to
count arrangements in the presence of symmetries. For instance:
@ How can we find the number of equivalence classes of colourings of

arrangements of n objects with m colours y1, yo, ..., ym, if every
colour should appear a predefined number of times?

Definition (Pattern Inventory)

The pattern inventory of the colourings of n objects with m colours in
the presence of symmetries from a group G is the polynomial

FG()’17}’27~-~a)’m Zavyl y2 ym

where

@ the sum is over all vectors v = (ny, ny, ..., ny) of positive integers

such that ny +np + ...+ ny, = n, and
@ 3(ny,m,...,n,) IS the number of non-equivalent colourings of these n

objects, where every colour y; appears exactly n; times.
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Pdélya's Enumeration Formula

Example

How many different necklaces can be made with 2 red beads (r), 9 black
(b) and 9 white (w)? We assume that the symetries of this necklace are
the permutations of the dihedral group Dy, made of

» 20 rotations

» 20 symmetries
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Pdélya's Enumeration Formula

Example

How many different necklaces can be made with 2 red beads (r), 9 black
(b) and 9 white (w)? We assume that the symetries of this necklace are
the permutations of the dihedral group Dy, made of

» 20 rotations
» 20 symmetries

Answer: This is the coefficient of r2b°w? in the pattern inventory, which
is the polynomial

FDzo(rabaW): Z avribjWk: Z a(i,j,k)ribjwk.

v=(i.j,k) i+j+k=20
i+j+k=20 i.j,k>0
ij,k>0
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Pdélya's Enumeration Formula

Example

How many different necklaces can be made with 2 red beads (r), 9 black
(b) and 9 white (w)? We assume that the symetries of this necklace are
the permutations of the dihedral group Dy, made of

» 20 rotations
» 20 symmetries

Answer: This is the coefficient of r2b°w? in the pattern inventory, which
is the polynomial

Fpy,(r, b, w) = Z avfibjWk: Z a(iJ,k)ribjWk.

v=(i,j,k) i+j+k=20
i+j+k=20 ij,k>0
ij,k>0

In 1937, G. Pdlya found a simple formula to compute the pattern
inventory, using the cycle index of the group. (see next slide)
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Pdélya's Enumeration Formula

Theorem

Suppose S is an arrangement of n objects colorable with m colors
Yi,---,¥Ym, and G is a group of n-permutations. Let

1
Pe(x1, %2, ..y Xn) = m Z M (x1, X2, -« s Xn)
TEG

be the cycle index of G. The pattern inventory of all colourings of the

objects of S with colours yi, ...,y in the presence of symmetries of G is
m m m
FG(Y17~ .. ,}’m) = PG (ZY:;Z}G{ . '7Zyin> -
i=1 =1 i=1
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Pdélya's Enumeration Formula
Applications

The pattern inventory of colourings F¢(r, g, b) with red (r) green (g)
and blue (b) of the beads of a necklace with 4 beads (=square vertices)
in the presence of symmetries from G = D, can be computed as follows:

@ m = 3 because the set of colours is {r, g, b}
@ The cycle index is Pp,(x1, X2, X3, X4) =
ﬁ Y wen, Mr(x1, %2, x3,%) = O+ 2xx + 353 +2x4)
Fe(r.g,b) =Pp,(r+g+b,r* +g>+b°,r* + &>+ b*,r* + g* + b*)
1
=g((r+eg+b)*+2(r+g+b)(r" + g +b)
+3(rP+ g2+ b2 +2(r* +g* + bY))
=gt + b +rg+rg+rb+rb*+g3b4gbd
+2r°g% +2r°b? +2g°b? +2r’gb+2rg’b+2rgb?

E.g., there are 2 colorings with 1 red bead, 1 green, and 2 blue.
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Pdélya's Enumeration Formula
Applications

The pattern inventory of colourings F¢(r, g, b) with red (r) green (g)
and blue (b) of the beads of a necklace with 4 beads (=square vertices)
in the presence of symmetries from G = (; can be computed as follows:

@ m = 3 because the set of colourings is {r, g, b}

@ The cycle index is
1 1
PC4(X17X27X37X4) = W E MF(X17X27X37X4) = Z(Xf +X22 +2X4)
4
TeCy

Fo(r.g,b) =Pc,(r+g+b,r* + &>+ b>,r’ + g° + b>, r* + g* + b*)
1
=z ((r+g+b)"+ (P +g>+ ) +2(r* +g*+ b%))
=4 gt b+ rPg+rg +rb+rb*+gb+ghb
+2r%g2 +2r°b? +2g°b* +3r°gb+3rg’b+3rgh’
E.g., there are 3 colourings with 1 red bead, 1 green, and 2 blue.
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Stirling cycle numbers

Problem

In how many ways can n persons be seated at k round tables, such that
no table is unoccupied? At every table can stay any number o persons
between 1 and n.
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Stirling cycle numbers

Problem

In how many ways can n persons be seated at k round tables, such that
no table is unoccupied? At every table can stay any number o persons
between 1 and n.

ANSWER: Every answer to this problem is described by a cycle structure
with k disjoint structures C; ... Cx where C; is the cycle describing the
people seated at table J.

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 6 12 /25



Stirling cycle numbers

Problem

In how many ways can n persons be seated at k round tables, such that
no table is unoccupied? At every table can stay any number o persons
between 1 and n.

ANSWER: Every answer to this problem is described by a cycle structure
with k disjoint structures C; ... Cx where C; is the cycle describing the
people seated at table J.

Example

The cycle structure (1,2,4)(3,6,9,10)(5)(7,8) represents a possible
arrangement of 10 persons at 4 round tables:

@ The people at one table are arranged 1,2,4 clockwise.
@ The people at another table are arranged 3,6,9,10 clockwise.
@ At another table stays only person 5.

@ At the remaining table are persons 7 and 8.
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Stirling cycle numbers

Definition

The Stirling cycle number [ﬂ is the number of possibilities to seat
n persons at k identical round tables such that no round table is
left unoccupied.
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Stirling cycle numbers

Definition

The Stirling cycle number [ﬂ is the number of possibilities to seat
n persons at k identical round tables such that no round table is
left unoccupied.

From the previous remark results that [Z] is the number of
n-permutations whose cycle structure is made of exactly k cycles.
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Stirling cycle numbers

Definition

The Stirling cycle number [ﬂ is the number of possibilities to seat
n persons at k identical round tables such that no round table is
left unoccupied.

From the previous remark results that [Z] is the number of
n-permutations whose cycle structure is made of exactly k cycles.

® QUESTION: How to compute directly []]?
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Stirling cycle numbers

Definition

The Stirling cycle number m is the number of possibilities to seat
n persons at k identical round tables such that no round table is
left unoccupied.

From the previous remark results that [Z] is the number of
n-permutations whose cycle structure is made of exactly k cycles.

® QUESTION: How to compute directly []]?

o ANSWER: ldentify a recursive definition for Stirling cycle
numbers, and then solve it.
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Stirling cycle numbers
Obvious properties

1. We can not place n persons at 0 tables, unless n =0 (in this
special case, the number is assumed to be 1). Thus

n| [ 1 ifn=0,
0] |0 ifn>0.
2. n>1 persons can be seated at 1 table in (n— 1)! ways. Thus:

n

[1] =(n-1)! ifn>1

3. n persons can be seated at n tables in just 1 way: every
person is alone at a table. Thus: m =1

4. n persons can be seated at n — 1 tables as follows: all persons,

except one couple, stay alone at a table. Thus

[ 7 ] = number of possible couples = (g)

n—1
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Stirling cycle numbers
Obvious properties

5. If the number of tables k is negative or if there are more
tables than persons, the problem has no solution. Thus:

[Z]infk<00rk>n.

6. Every permutation has a cycle structure made of k cycles,
where 1 < k < n. According to the rule of sum

5l

k=1
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Stirling cycle numbers
Finding a recurrence relation

How can we seat n > 0 persons at k > 0 round tables?

We distinguish two disjoint cases:

© Place the first n — 1 persons at k — 1 round tables, and

afterwards place person n at table k. This case can be

performed in [Z:ﬂ ways.

@ Place n— 1 persons at k round tables, and afterwards add
person n together with other persons at a round table.
e Placing n — 1 persons at k tables can be done in [";1] ways.
e Placing person n at a round table = placing person n to the
left of one of the other persons i € {1,2,...,n—1} = n—1
ways.

= This case can be performed in (n—1)- [";1] ways.

According to the rule of sum

[ -os['7 ] sesmerss
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Stirling cycle numbers
Comparison with binomial numbers

@ We already know that the binomial formula holds
(x+y)" =30 (Z)Xky"_k. For y =1 we get:

(x+1)" = kzn% <Z>xk

Also, in a previous lecture we gave a combinatorial proof that

(W)= 6m)

@ We just proved combinatorial proof that
n n—1 n—1
R iR
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Stirling cycle numbers
Comparison with binomial numbers

@ We already know that the binomial formula holds
(x+y)" =30 (Z)Xky"_k. For y =1 we get:

(x+1)" = zn: <Z>xk

k=0

Also, in a previous lecture we gave a combinatorial proof that

(W)= 6m)

@ We just proved combinatorial proof that

NP R P

We want to get a formula for Stirling cycle numbers, which is

similar to the binomial formula.
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Stirling cycle numbers
Identifying a generative function

Let Gp(x) = Z [Z] xK. Then Gy(x) = [g]xo =1-1=1, and for

k
n>1
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Stirling cycle numbers
The triangle of Stirling cycle numbers

This is an infinite triangle of Stirling cycle numbers growing downwards:

[l | k=0 1 2 3 4 5 6 7 8 n!
n=0 1 1
1 0 1 1
2 0 1 1 2
3 0 2 3 1 6
4 0 6 11 6 1 24
5 0 24 50 3% 10 1 120
6 0 120 274 225 8 15 1 720
7 0 720 1764 1624 735 175 21 1 5040
8 0 5040 13068 13132 6769 1960 322 28 1 | 40320

Recursive formula used in the computation:

m —(n—l)[”kl} +[Z_1]

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 6



Binomial numbers
The triangle of binomial numbers

This is an infinite triangle of binomial numbers growing downwards:

() |k=0 1 2 3 4 5 6 7 8 n!
n=0 1 1
1 11 1

2 12 1 2

3 13 3 1 6

4 14 6 4 1 24

5 1510 10 5 1 120

6 16 15 20 15 6 1 720

7 1 7 21 35 35 21 7 1 5040

8 1 8 28 56 70 56 28 8 140320

Recursive formula used in the computation:
n\ (n-—1 n n—1
k) k k—1)
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Stirling set numbers

In how many ways can we divide n persons in k non-empty and disjoint
groups, if the order of persons in one group does not matter?
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Stirling set numbers

In how many ways can we divide n persons in k non-empty and disjoint
groups, if the order of persons in one group does not matter?

The set {1,2,3} can be partitioned in 2 non-empty subsets in 3 ways:

{1,2},{3}; {1,3},{2}; and {1},{2,3}.
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Stirling set numbers

In how many ways can we divide n persons in k non-empty and disjoint
groups, if the order of persons in one group does not matter?

The set {1,2,3} can be partitioned in 2 non-empty subsets in 3 ways:

{1,2},{3}; {1,3},{2}; and {1},{2,3}. |

The number of ways in which we can partition a set of n elements in

exactly k non-empty and disjoint subsets is the Stirling set number {Z}
Often in the literature this number is denoted by S(n, k) instead of {]}.
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Stirling set numbers
Obvious properties

1. There is only one way to place n people in one group, and also only

4.

one way to split n people in n groups. Thus:

(-

We can not place n > 0 people in 0 groups. If n =0 then we
assume there there is 1 way to place 0 people in 0 groups. Thus:

nl [ 1 ifn=0,
of 10 ifn>0.

Splitting n people in n — 1 groups amounts to choosing a couple of
persons for one group; all other persons are alone in their group.

(-0

{:}:0 if k< 0ork>n.
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Stirling set numbers
Finding a recurrence relation

How can we split n > 0 persons in k > 0 non-empty and disjoint
subsets?
We distinguish 2 disjoint cases:
1. We split the first n — 1 persons in k — 1 groups; then person n
is obliged to form a singleton group {n} = {}_1} possibilities.

2. We split the first n — 1 persons in k groups = {”;1}
possibilities; afterwards, we add person n to one of those k
groups= k - {";1} possibilities.

According to the rule of sum

n n—1 n—1
= k- i > > 1.
{k} k{ P }+{k—1} ifn>1and k>1
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Stirling set numbers
The triangle of Stirling set numbers

This is an infinite triangle of Stirling set numbers growing downwards:

{{J|k=0 1 2 3 4 5 6 7 8
n=0 1

1 01

2 01 1

3 01 3 1

A 01 7 6 1

5 01 15 25 10 1

6 01 3 9 65 15 1

7 0 1 63 301 350 140 21 1

8 0 1 127 966 1701 1050 266 28 1

Recursive formula used in the computation:
n n—1 n—1
= k . .
=
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