Lecture 6
Pólya’s Enumeration Formula.
Stirling cycle numbers. Stirling set numbers

Isabela Drămnesc UVT

Computer Science Department,
West University of Timișoara,
Romania
Counting in the presence of symmetries

Burnside’s Lemma

The number N of equivalence classes of a set of colourings C in the presence of a group of symmetries G is

$$N = \frac{1}{|G|} \sum_{\pi \in G} |C_\pi|$$

where $C_\pi = \{ c \in C \mid \pi^*(c) = c \}$ is the invariant set of π in the set of colorings C.

If C is the set of all possible colourings with m colours and π is a cyclic structure made of p cycles, then $|C_\pi| = m^p$.

For instance:

- $|C_{(1,2)(3,4)}| = m^2$
- $|C_{(1)(2)(3)(4)}| = m^4$
- $|C_{(1)(2,4)(3)}| = m^3$
Assumption: \(G \) is a group of \(n \)-permutations, and \(\pi \in G \)

- If \(\pi \) has type \(\lambda = [\lambda_1, \lambda_2, \ldots, \lambda_n] \) then

\[
M_\pi = M_\pi(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} x_i^{\lambda_i}
\]

where \(x_1, \ldots, x_n \) are unknowns.

- The cycle index of \(G \) is

\[
P_G(x_1, x_2, \ldots, x_n) = \frac{1}{|G|} \sum_{\pi \in G} M_\pi(x_1, x_2, \ldots, x_n).
\]
The dihedral group $G = D_4$ has 8 permutations, and:

$$
M_{(1)(2)(3)(4)} = x_1^4,
M_{(1,3)(2)(4)} = M_{(1)(2,4)(3)} = x_1^2x_2,
M_{(1,2)(3,4)} = M_{(1,3)(2,4)} = M_{(1,4)(2,3)} = x_2^2,
M_{(1,2,3,4)} = M_{(1,4,3,2)} = x_4.
$$

If we add these terms and divide the sum by their number, we obtain the cycle index of D_4:

$$
P_{D_4}(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4),
$$

Similarly, for the group C_4 we obtain

$$
P_{C_4}(x_1, x_2, x_3, x_4) = \frac{1}{4}(x_1^4 + x_2^2 + 2x_4).$$
According to Burnside, the number of colourings of n objects with m colors, by taking into account the symmetries of group G, is

$$N = P_G(m, m, \ldots, m).$$

Example

The number of 4-beads necklaces with m colors is

$$P_{D_4}(m, m, m, m) = \frac{1}{8}(m^4 + 2m^3 + 3m^2 + 2m).$$

because we already know that

$$P_{D_4}(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4)$$
Q: How many 20-beads necklaces can be made by using 3 colors?
A: We compute the cycle index of the symmetry group D_{20}. D_{20} has 20 rotations:
- The rotation with 0° has type [20, 0, 0, ..., 0] ⇒ monomial x_1^{20}
- 8 rotations with $k \cdot 18^\circ$ where $k \in \{1, 3, 7, 9, 11, 13, 17, 19\}$ have type [0, ..., 0, 1] ⇒ monomial $8 \times x_{20}$
- 4 rotations with $k \cdot 18^\circ$ where $k \in \{2, 6, 14, 18\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_{10} = 2$ and $\lambda_j = 0$ for all $j \neq 10$ ⇒ monomial $4 \times x_{10}^2$
- 4 rotations with $k \cdot 18^\circ$ where $k \in \{4, 8, 12, 16\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_5 = 4$ and $\lambda_j = 0$ for all $j \neq 5$ ⇒ monomial $4 \times x_5^4$
- 2 rotations with $k \cdot 18^\circ$ where $k \in \{5, 15\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_4 = 5$ and $\lambda_j = 0$ for all $j \neq 4$ ⇒ monomial $2 \times x_4^5$
- Rotation with $10 \cdot 18^\circ$ has type [0, 2, 0, ...] ⇒ monomial x_2^{10}

and 20 reflections
- 10 reflections around axes passing through midpoints of opposite edges of the regular polygon have type [0, 10, 0, ..., 0] ⇒ monomial $10 \times x_2^{10}$
- 10 reflections around axes passing through opposite nodes of the regular polygon have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_1 = 2$ and $\lambda_9 = 1$ ⇒ $10 \times x_1^2 \times x_2^9$
Q: How many 20-beads necklaces can be made by using 3 colors?
A: We compute the cycle index of the symmetry group D_{20}. D_{20} has 20 rotations:

- The rotation with 0° has type $[20, 0, 0, \ldots, 0] \Rightarrow$ monomial x_1^{20}
- 8 rotations with $k \cdot 18^\circ$ where $k \in \{1, 3, 7, 9, 11, 13, 17, 19\}$ have type $[0, \ldots, 0, 1] \Rightarrow$ monomial $8 \cdot x_{20}$
- 4 rotations with $k \cdot 18^\circ$ where $k \in \{2, 6, 14, 18\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_{10} = 2$ and $\lambda_j = 0$ for all $j \neq 10 \Rightarrow$ monomial $4 \cdot x_{10}^2$
- 4 rotations with $k \cdot 18^\circ$ where $k \in \{4, 8, 12, 16\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_5 = 4$ and $\lambda_j = 0$ for all $j \neq 5 \Rightarrow$ monomial $4 \cdot x_5^4$
- 2 rotations with $k \cdot 18^\circ$ where $k \in \{5, 15\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_4 = 5$ and $\lambda_j = 0$ for all $j \neq 4 \Rightarrow$ monomial $2 \cdot x_4^5$
- Rotation with $10 \cdot 18^\circ$ has type $[0, 2, 0, \ldots] \Rightarrow$ monomial x_{10}^{10}

and 20 reflections

- 10 reflections around axes passing through midpoints of opposite edges of the regular polygon have type $[0, 10, 0, \ldots, 0] \Rightarrow$ monomial $10 \cdot x_2^{10}$
- 10 reflections around axes passing through opposite nodes of the regular polygon have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_1 = 2$ and $\lambda_9 = 1 \Rightarrow 10 \cdot x_1^2 \cdot x_2^9$
Q: How many 20-beads necklaces can be made by using 3 colors?

A: We compute the cycle index of the symmetry group D_{20}. D_{20} has 20 rotations:

- The rotation with 0° has type $[20, 0, 0, \ldots, 0] \Rightarrow$ monomial x_1^{20}
- 8 rotations with $k \cdot 18^\circ$ where $k \in \{1, 3, 7, 9, 11, 13, 17, 19\}$ have type $[0, \ldots, 0, 1] \Rightarrow$ monomial $8x_2$
- 4 rotations with $k \cdot 18^\circ$ where $k \in \{2, 6, 14, 18\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_{10} = 2$ and $\lambda_j = 0$ for all $j \neq 10 \Rightarrow$ monomial $4x_{10}^2$
- 4 rotations with $k \cdot 18^\circ$ where $k \in \{4, 8, 12, 16\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_5 = 4$ and $\lambda_j = 0$ for all $j \neq 5 \Rightarrow$ monomial $4x_5^4$
- 2 rotations with $k \cdot 18^\circ$ where $k \in \{5, 15\}$ have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_4 = 5$ and $\lambda_j = 0$ for all $j \neq 4 \Rightarrow$ monomial $2x_4^5$
- Rotation with $10 \cdot 18^\circ$ has type $[0, 2, 0, \ldots] \Rightarrow$ monomial x_2^{10}

and 20 reflections

- 10 reflections around axes passing through midpoints of opposite edges of the regular polygon have type $[0, 10, 0, \ldots, 0] \Rightarrow$ monomial $10x_2^{10}$
- 10 reflections around axes passing through opposite nodes of the regular polygon have type $[\lambda_1, \ldots, \lambda_{20}]$ with $\lambda_1 = 2$ and $\lambda_9 = 1 \Rightarrow 10x_2^2x_9^2$

\[P_{D_{20}}(x_1, x_2, \ldots, x_{20}) = \frac{1}{40} (x_1^{20} + 10x_1^2x_2^9 + 11x_2^{10} + 2x_4^5 + 4x_5^4 + 4x_9^2 + 8x_{20}) \]

\[\Rightarrow N = P_{20}(3, \ldots, 3) = 87230157 \]
The cycle index can be used to solve more complicated problems to count arrangements in the presence of symmetries. For instance:

- How can we find the number of equivalence classes of colourings of arrangements of n objects with m colours y_1, y_2, \ldots, y_m, if every colour should appear a predefined number of times?

Definition (Pattern Inventory)

The pattern inventory of the colourings of n objects with m colours in the presence of symmetries from a group G is the polynomial

$$F_G(y_1, y_2, \ldots, y_m) = \sum_v a_v y_1^{n_1} y_2^{n_2} \cdots y_m^{n_m}$$

where

- the sum is over all vectors $v = (n_1, n_2, \ldots, n_m)$ of positive integers such that $n_1 + n_2 + \ldots + n_m = n$, and
- $a_{(n_1, n_2, \ldots, n_m)}$ is the number of non-equivalent colourings of these n objects, where every colour y_i appears exactly n_i times.
Example

How many different necklaces can be made with 2 red beads (r), 9 black (b) and 9 white (w)? We assume that the symmetries of this necklace are the permutations of the dihedral group D_{20}, made of

- 20 rotations
- 20 symmetries
Example

How many different necklaces can be made with 2 red beads (r), 9 black (b) and 9 white (w)? We assume that the symmetries of this necklace are the permutations of the dihedral group D_{20}, made of

- 20 rotations
- 20 symmetries

Answer: This is the coefficient of $r^2 b^9 w^9$ in the pattern inventory, which is the polynomial

$$F_{D_{20}}(r, b, w) = \sum_{v=(i,j,k)} a_v r^i b^j w^k = \sum_{i+j+k=20} a_{(i,j,k)} r^i b^j w^k.$$
Example

How many different necklaces can be made with 2 red beads \((r)\), 9 black \((b)\) and 9 white \((w)\)? We assume that the symmetries of this necklace are the permutations of the dihedral group \(D_{20}\), made of

- 20 rotations
- 20 symmetries

Answer: This is the coefficient of \(r^2 b^9 w^9\) in the pattern inventory, which is the polynomial

\[
F_{D_{20}}(r, b, w) = \sum_{v=(i, j, k) \text{ s.t. } i+j+k=20, i,j,k \geq 0} a_v r^i b^j w^k = \sum_{i+j+k=20, i,j,k \geq 0} a(i,j,k) r^i b^j w^k.
\]

In 1937, G. Pólya found a simple formula to compute the pattern inventory, using the cycle index of the group. (see next slide)
Pólya’s Enumeration Formula

Theorem

Suppose S is an arrangement of n objects colorable with m colors y_1, \ldots, y_m, and G is a group of n-permutations. Let

$$P_G(x_1, x_2, \ldots, x_n) = \frac{1}{|G|} \sum_{\pi \in G} M_\pi(x_1, x_2, \ldots, x_n)$$

be the cycle index of G. The pattern inventory of all colourings of the objects of S with colours y_1, \ldots, y_m in the presence of symmetries of G is

$$F_G(y_1, \ldots, y_m) = P_G \left(\sum_{i=1}^m y_i, \sum_{i=1}^m y_i^2, \ldots, \sum_{i=1}^m y_i^n \right).$$
The pattern inventory of colourings $F_G(r, g, b)$ with red (r) green (g) and blue (b) of the beads of a necklace with 4 beads (≡square vertices) in the presence of symmetries from $G = D_4$ can be computed as follows:

- $m = 3$ because the set of colours is $\{r, g, b\}$

- The cycle index is $P_{D_4}(x_1, x_2, x_3, x_4) = \frac{1}{|D_4|} \sum_{\pi \in D_4} M_\pi(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^4 + 2x_1^2x_2 + 3x_2^2 + 2x_4)$

$$F_G(r, g, b) = P_{D_4}(r + g + b, r^2 + g^2 + b^2, r^3 + g^3 + b^3, r^4 + g^4 + b^4)$$

$$= \frac{1}{8}((r + g + b)^4 + 2(r + g + b)^2(r^2 + g^2 + b^2)$$

$$+ 3(r^2 + g^2 + b^2)^2 + 2(r^4 + g^4 + b^4))$$

$$= r^4 + g^4 + b^4 + r^3g + r^3b + r^2g^3 + r^2b^3 + g^3b + g^2b^3 + 2r^2g^2 + 2r^2b^2 + 2g^2b^2 + 2r^2gb + 2rg^2b + 2rgb^2$$

E.g., there are 2 colorings with 1 red bead, 1 green, and 2 blue.
The pattern inventory of colourings $F_G(r, g, b)$ with red (r) green (g) and blue (b) of the beads of a necklace with 4 beads (=square vertices) in the presence of symmetries from $G = C_4$ can be computed as follows:

- $m = 3$ because the set of colourings is $\{r, g, b\}$
- The cycle index is
 \[
P_{C_4}(x_1, x_2, x_3, x_4) = \frac{1}{|C_4|} \sum_{\pi \in C_4} M_\pi(x_1, x_2, x_3, x_4) = \frac{1}{4} \left(x_1^4 + x_2^2 + 2x_4\right)
 \]

\[
F_G(r, g, b) = P_{C_4}(r + g + b, r^2 + g^2 + b^2, r^3 + g^3 + b^3, r^4 + g^4 + b^4)
= \frac{1}{4} \left((r + g + b)^4 + (r^2 + g^2 + b^2)^2 + 2 (r^4 + g^4 + b^4)\right)
= r^4 + g^4 + b^4 + r^3g + rg^3 + b^3 + r^3b + r^2b^2 + 3rb^3 + 3g^3b + g^2b^2 + 3rg + 3g^2b + 3r^2g
\]

E.g., there are 3 colourings with 1 red bead, 1 green, and 2 blue.
Problem
In how many ways can \(n \) persons be seated at \(k \) round tables, such that no table is unoccupied? At every table can stay any number of persons between 1 and \(n \).

Answer:
Every answer to this problem is described by a cycle structure with \(k \) disjoint structures \(C_1, \ldots, C_k \) where \(C_i \) is the cycle describing the people seated at table \(i \).

Example
The cycle structure \((1, 2, 4)(3, 6, 9, 10)(5)(7, 8) \) represents a possible arrangement of 10 persons at 4 round tables:
The people at one table are arranged 1, 2, 4 clockwise.
The people at another table are arranged 3, 6, 9, 10 clockwise.
At another table stays only person 5.
At the remaining table are persons 7 and 8.
Problem
In how many ways can \(n \) persons be seated at \(k \) round tables, such that no table is unoccupied? At every table can stay any number of persons between 1 and \(n \).

Answer: Every answer to this problem is described by a cycle structure with \(k \) disjoint structures \(C_1 \ldots C_k \) where \(C_i \) is the cycle describing the people seated at table \(i \).
Problem

In how many ways can \(n \) persons be seated at \(k \) round tables, such that no table is unoccupied? At every table can stay any number of persons between 1 and \(n \).

Answer: Every answer to this problem is described by a cycle structure with \(k \) disjoint structures \(C_1 \ldots C_k \) where \(C_i \) is the cycle describing the people seated at table \(i \).

Example

The cycle structure \((1, 2, 4)(3, 6, 9, 10)(5)(7, 8)\) represents a possible arrangement of 10 persons at 4 round tables:

- The people at one table are arranged 1,2,4 clockwise.
- The people at another table are arranged 3,6,9,10 clockwise.
- At another table stays only person 5.
- At the remaining table are persons 7 and 8.
The Stirling cycle number $\left[\begin{array}{c} n \\ k \end{array} \right]$ is the number of possibilities to seat n persons at k identical round tables such that no round table is left unoccupied.

Question: How to compute directly $\left[\begin{array}{c} n \\ k \end{array} \right]$?

Answer: Identify a recursive definition for Stirling cycle numbers, and then solve it.
The Stirling cycle number $\left[\begin{array}{c} n \\ k \end{array} \right]$ is the number of possibilities to seat n persons at k identical round tables such that no round table is left unoccupied.

From the previous remark results that $\left[\begin{array}{c} n \\ k \end{array} \right]$ is the number of n-permutations whose cycle structure is made of exactly k cycles.
Definition

The **Stirling cycle number** \[^n_k\] is the number of possibilities to seat \(n\) persons at \(k\) identical round tables such that no round table is left unoccupied.

From the previous remark results that \[^n_k\] is the number of \(n\)-permutations whose cycle structure is made of exactly \(k\) cycles.

Question: How to compute directly \[^n_k\]?
The Stirling cycle number \([n \atop k]\) is the number of possibilities to seat \(n\) persons at \(k\) identical round tables such that no round table is left unoccupied.

From the previous remark results that \([n \atop k]\) is the number of \(n\)-permutations whose cycle structure is made of exactly \(k\) cycles.

Question: How to compute directly \([n \atop k]\)?

Answer: Identify a recursive definition for Stirling cycle numbers, and then solve it.
Stirling cycle numbers

Obvious properties

1. We can not place \(n \) persons at 0 tables, unless \(n = 0 \) (in this special case, the number is assumed to be 1). Thus

\[
\begin{bmatrix}
\begin{array}{c}
\n \\
\end{array}
\end{bmatrix}_{0} = \begin{cases}
1 & \text{if } n = 0, \\
0 & \text{if } n > 0.
\end{cases}
\]

2. \(n \geq 1 \) persons can be seated at 1 table in \((n - 1)!\) ways. Thus:

\[
\begin{bmatrix}
\begin{array}{c}
\n \\
\end{array}
\end{bmatrix}_{1} = (n - 1)! \quad \text{if } n \geq 1.
\]

3. \(n \) persons can be seated at \(n \) tables in just 1 way: every person is alone at a table. Thus: \(\begin{bmatrix}
\begin{array}{c}
\n \\
\end{array}
\end{bmatrix}_{n} = 1 \).

4. \(n \) persons can be seated at \(n - 1 \) tables as follows: all persons, except one couple, stay alone at a table. Thus

\[
\begin{bmatrix}
\begin{array}{c}
\n \\
\end{array}
\end{bmatrix}_{n - 1} = \text{number of possible couples} = \binom{n}{2}.
\]
5. If the number of tables k is negative or if there are more tables than persons, the problem has no solution. Thus:

$$\left[\begin{array}{c} n \\ k \end{array} \right] = 0 \text{ if } k < 0 \text{ or } k > n.$$

6. Every permutation has a cycle structure made of k cycles, where $1 \leq k \leq n$. According to the rule of sum

$$\sum_{k=1}^{n} \left[\begin{array}{c} n \\ k \end{array} \right] = n!$$
How can we seat \(n > 0 \) persons at \(k > 0 \) round tables?

We distinguish two disjoint cases:

1. Place the first \(n - 1 \) persons at \(k - 1 \) round tables, and afterwards place person \(n \) at table \(k \). This case can be performed in \(\binom{n-1}{k-1} \) ways.

2. Place \(n - 1 \) persons at \(k \) round tables, and afterwards add person \(n \) together with other persons at a round table.
 - Placing \(n - 1 \) persons at \(k \) tables can be done in \(\binom{n-1}{k} \) ways.
 - Placing person \(n \) at a round table = placing person \(n \) to the left of one of the other persons \(i \in \{1, 2, \ldots, n-1\} \) \(\Rightarrow \) \(n - 1 \) ways.

\(\Rightarrow \) This case can be performed in \((n-1) \cdot \binom{n-1}{k} \) ways.

According to the rule of sum

\[
\binom{n}{k} = (n-1)\binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{if} \; n \geq 1 \; \text{and} \; k \geq 1.
\]
We already know that the binomial formula holds
\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.\] For \(y = 1\) we get:
\[\frac{2}{2}
\]
\[(x + 1)^n = \sum_{k=0}^{n} \binom{n}{k} x^k\]

Also, in a previous lecture we gave a combinatorial proof that
\[\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.\]

We just proved combinatorial proof that
\[
\begin{bmatrix} n \\ k \end{bmatrix} = (n-1) \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}.
\]
We already know that the binomial formula holds
\[(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}.\] For \(y = 1\) we get:
\[(x + 1)^n = \sum_{k=0}^{n} \binom{n}{k} x^k\]

Also, in a previous lecture we gave a combinatorial proof that
\[\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.\]

We just proved combinatorial proof that
\[\left[\begin{array}{c} n \\ k \end{array} \right] = (n - 1) \left[\begin{array}{c} n-1 \\ k \end{array} \right] + \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right].\]

We want to get a formula for Stirling cycle numbers, which is similar to the binomial formula.
Stirling cycle numbers
Identifying a generative function

Let $G_n(x) = \sum_k \binom{n}{k} x^k$. Then $G_0(x) = \left[\binom{0}{0}\right] x^0 = 1 \cdot 1 = 1$, and for $n \geq 1$

\[
G_n(x) = \sum_k \binom{n}{k} x^k = (n - 1) \sum_k \binom{n - 1}{k} x^k + \sum_k \binom{n - 1}{k - 1} x^k \\
= (n - 1) G_{n-1}(x) + x G_{n-1}(x) \\
= (x + n - 1) G_{n-1}(x)
\]

$\Rightarrow G_n(x) = x \cdot (x + 1) \cdot (x + 2) \cdot \ldots \cdot (x + n - 1).$

Thus $x^n = \sum_k \binom{n}{k} x^k$.

Isabela Drămnesc UVT
Graph Theory and Combinatorics – Lecture 6 18 / 25
This is an infinite triangle of Stirling cycle numbers growing downwards:

<table>
<thead>
<tr>
<th>$\left[\begin{array}{c} n \ k \end{array} \right]$</th>
<th>$k = 0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>6</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>24</td>
<td>50</td>
<td>35</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>120</td>
<td>274</td>
<td>225</td>
<td>85</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>720</td>
<td>1764</td>
<td>1624</td>
<td>735</td>
<td>175</td>
<td>21</td>
<td>1</td>
<td></td>
<td>5040</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>5040</td>
<td>13068</td>
<td>13132</td>
<td>6769</td>
<td>1960</td>
<td>322</td>
<td>28</td>
<td>1</td>
<td>40320</td>
</tr>
</tbody>
</table>

Recursive formula used in the computation:

$$\left[\begin{array}{c} n \\ k \end{array} \right] = (n-1) \left[\begin{array}{c} n-1 \\ k \end{array} \right] + \left[\begin{array}{c} n-1 \\ k-1 \end{array} \right].$$
This is an infinite triangle of binomial numbers growing downwards:

<table>
<thead>
<tr>
<th></th>
<th>$k = 0$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n = 0$</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>6</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td>720</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>7</td>
<td>21</td>
<td>35</td>
<td>35</td>
<td>21</td>
<td>7</td>
<td>1</td>
<td></td>
<td>5040</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>8</td>
<td>28</td>
<td>56</td>
<td>70</td>
<td>56</td>
<td>28</td>
<td>8</td>
<td>1</td>
<td>40320</td>
</tr>
</tbody>
</table>

Recursive formula used in the computation:

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}.
\]
Problem

In how many ways can we divide \(n \) persons in \(k \) non-empty and disjoint groups, if the order of persons in one group does not matter?
Problem

In how many ways can we divide \(n \) persons in \(k \) non-empty and disjoint groups, if the order of persons in one group does not matter?

Example

The set \(\{1, 2, 3\} \) can be partitioned in 2 non-empty subsets in 3 ways: \(\{1, 2\}, \{3\} \); \(\{1, 3\}, \{2\} \); and \(\{1\}, \{2, 3\} \).
Problem
In how many ways can we divide \(n \) persons in \(k \) non-empty and disjoint groups, if the order of persons in one group does not matter?

Example
The set \(\{1, 2, 3\} \) can be partitioned in 2 non-empty subsets in 3 ways: \(\{1, 2\}, \{3\} \); \(\{1, 3\}, \{2\} \); and \(\{1\}, \{2, 3\} \).

Definition
The number of ways in which we can partition a set of \(n \) elements in exactly \(k \) non-empty and disjoint subsets is the Stirling set number \(\{n\}_k \). Often in the literature this number is denoted by \(S(n, k) \) instead of \(\{n\}_k \).
1. There is only one way to place n people in one group, and also only one way to split n people in n groups. Thus:

$$\binom{n}{1} = \binom{n}{n} = 1.$$

2. We can not place $n > 0$ people in 0 groups. If $n = 0$ then we assume there is 1 way to place 0 people in 0 groups. Thus:

$$\binom{n}{0} = \begin{cases} 1 & \text{if } n = 0, \\ 0 & \text{if } n > 0. \end{cases}$$

3. Splitting n people in $n-1$ groups amounts to choosing a couple of persons for one group; all other persons are alone in their group. Thus

$$\binom{n}{n-1} = \binom{n}{2}.$$

4. It is obvious that

$$\binom{n}{k} = 0 \quad \text{if } k < 0 \text{ or } k > n.$$
How can we split $n > 0$ persons in $k > 0$ non-empty and disjoint subsets?

We distinguish 2 disjoint cases:

1. We split the first $n - 1$ persons in $k - 1$ groups; then person n is obliged to form a singleton group $\{n\} \Rightarrow \left\{ \begin{array}{l}
\end{array} \right.$ possibilities.

2. We split the first $n - 1$ persons in k groups $\Rightarrow \left\{ \begin{array}{l}
\end{array} \right.$ possibilities; afterwards, we add person n to one of those k groups $\Rightarrow k \cdot \left\{ \begin{array}{l}
\end{array} \right.$ possibilities.

According to the rule of sum

$$\left\{ \begin{array}{l}
\end{array} \right. = k \cdot \left\{ \begin{array}{l}
\end{array} \right. + \left\{ \begin{array}{l}
\end{array} \right. \text{ if } n \geq 1 \text{ and } k \geq 1.$$
This is an infinite triangle of Stirling set numbers growing downwards:

<table>
<thead>
<tr>
<th>(\binom{n}{k})</th>
<th>k = 0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>15</td>
<td>25</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>1</td>
<td>31</td>
<td>90</td>
<td>65</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>1</td>
<td>63</td>
<td>301</td>
<td>350</td>
<td>140</td>
<td>21</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1</td>
<td>127</td>
<td>966</td>
<td>1701</td>
<td>1050</td>
<td>266</td>
<td>28</td>
<td>1</td>
</tr>
</tbody>
</table>

Recursive formula used in the computation:

\[
\binom{n}{k} = k \cdot \binom{n-1}{k} + \binom{n-1}{k-1}.
\]