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Permutations and Cycles

Permutations can be thought as rearrangement operations.

Example

1 The permutation 〈4, 2, 1, 3〉 maps 1 to 4, 2 to 2, 3 to 1, and 4
to 3. We can write

1 7→ 4 7→ 3 7→ 1, 2 7→ 2

2 The permutation 〈2, 1, 3, 5, 7, 4, 6〉 maps

1 7→ 2 7→ 1, 3 7→ 3, 4 7→ 5 7→ 7 7→ 6 7→ 4

Definition (Cycle)

A cycle is a map π : {v1, v2, . . . , vk} → {v1, v2, . . . , vk} such that

v1 7→ v2 7→ . . . 7→ vk−1 7→ vk 7→ v1

The mathematical notation of this cycle is (v1, . . . , vk).
The cycle (v1) represents the map π : {v1} → {v1} with
π(v1) = v1.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 2 / 35



The cyclic structure of permutations

Remark

Any permutation can be represented as the composition of disjoint
cycles. This kind of representation is called the cyclic structure of
a permutation.

Example

1 The permutation 〈4, 2, 1, 3〉 can be represented as a
composition of 2 disjoint cycles: (1, 4, 3)(2).

2 The permutation 〈2, 1, 3, 5, 7, 4, 6〉 can be represented as a
composition of 3 disjoint cycles: (1, 2)(3)(4, 5, 7, 6).

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 3 / 35



The cyclic structure of permutations
Properties

The cyclic structure representation of a cycle is not unique: for
instance, (2, 3, 4), (3, 4, 2) and (4, 2, 3) are cycles which represent
the same function.

⇒ The cyclic structure of permutations is not unique: for
instance, the following cyclic structures represent the same
permutation:
B (1, 5)(2, 3, 4)
B (1, 5)(3, 4, 2)
B (5, 1)(4, 2, 3)
B (2, 3, 4)(1, 5)
B In general, the cyclic structures produced from each other by

rotating the cycles of the structure, to left or right, or
permuting the cycles within the cycle structure

represent the same permutation.

We can define the canonical cyclic structure of a permutation
as follows:
B Every cycle is written with smallest element first,
B Cycles are written in the increasing order of their first element.
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Cyclic structures
The construction of the cyclic structure of a permutation

Main idea

1 Start computing from 1 the sequence of successors until you
reach 1 again. This process builds the first cycle.

2 Choose the smallest element not in the first cycle and build
the second cycle in the same manner.

3 Repeat this process until all elements appear in a cycle.

Exercise

Write down the canonical cyclic structures of the following
permutations:

1 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉

(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)

2 〈10, 9, 8, 7, 6, 5, 4, 3, 2, 1〉

(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 5 / 35



Cyclic structures
The construction of the cyclic structure of a permutation

Main idea

1 Start computing from 1 the sequence of successors until you
reach 1 again. This process builds the first cycle.

2 Choose the smallest element not in the first cycle and build
the second cycle in the same manner.

3 Repeat this process until all elements appear in a cycle.

Exercise

Write down the canonical cyclic structures of the following
permutations:

1 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉
(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)

2 〈10, 9, 8, 7, 6, 5, 4, 3, 2, 1〉

(1, 10)(2, 9)(3, 8)(4, 7)(5, 6)
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Cyclic structures
Finding the permutation represented by a cyclic structure

Illustrated example

The permutation represented by a cyclic structure
(1, 3, 4)(2, 6, 7)(5) can be found as follow:

1 Rotate with 1 to the right all cycles of the initial cyclic
structure ⇒ (4, 1, 3)(7, 2, 6)(5)

2 Align the cyclic structure produced before on top of the initial
cyclic structure:

( 4 , 1 , 3 )( 7 , 2 , 6 )( 5 )
↓ ↓ ↓ ↓ ↓ ↓ ↓

( 1 , 3 , 4 )( 2 , 6 , 7 )( 5 )

3 Now, we can read off the corresponding permutation:

1 2 3 4 5 6 7
↓ ↓ ↓ ↓ ↓ ↓ ↓

〈 3 , 6 , 4 , 1 , 5 , 7 , 2 〉
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Cyclic structures
The type of a permutation

The type of a permutation π of n elements is the list
λ = [λ1, . . . , λn] where λi is the number of cycles of π with length
i , for 1 ≤ i ≤ n.

Example

1 〈1, 2, 3, 4, 5, 6, 7〉 = (1)(2)(3)(4)(5)(6)(7) has type
[7, 0, 0, 0, 0, 0, 0]

2 〈7, 6, 5, 4, 3, 2, 1〉 = (1, 7)(2, 6)(3, 5)(4) has type
[1, 3, 0, 0, 0, 0, 0]

3 〈1, 3, 2, 6, 7, 8, 9, 4, 10, 5〉 = (1)(2, 3)(4, 6, 8)(5, 7, 9, 10)
has type [1, 1, 1, 1, 0, 0, 0, 0, 0, 0]

Remark: [λ1, . . . , λn] is the type of a permutation if and only if
1 · λ1 + 2 · λ2 + . . .+ n · λn = n

i · λi = the number of elements in cycles with length i .
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Counting all permutations of a given type

Question: How many permutations have type λ = [λ1, λ2, . . . , λn]?

We write down all n! permutations and insert parentheses in order
to build n! cyclic structures of the form

c1
1 . . . c

1
λ1︸ ︷︷ ︸

cycles with length 1

. . . cn1 . . . c
n
λn︸ ︷︷ ︸

cycles with length. n

We count the cyclic structures for the same permutation

B Every cycle c ik of length i can be written in i distinct ways ⇒
because of this reason, there are 1λ1 · 2λ2 · . . . · nλn cyclic
structures which represent the same permutation

by Product Rule)
B Every permutation of the cycles inside the cyclic structure

yields a cyclic structure for the same permutation
there are λi ! permutations in every block of cycles of length i

⇒ for this reason, here are λ1! · λ2! · . . . · λn! equivalent cyclic
structures. (by Product Rule)

⇒ the no. of perms. of type λ is
n!

λ1! · λ2! · . . . · λn! · 1λ1 · 2λ2 · . . . · nλn
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A useful correspondence

Definition

An integer partition of a positive integer n is a multiset of strictly
positive integers whose sum is n.

Number of integer partition of n = Number of types of n-permutations.

[λ1, . . . , λn]↔ {1, . . . , 1︸ ︷︷ ︸
λ1 times

, . . . , n, . . . , n︸ ︷︷ ︸
λn times

}

Example (The integer partitions of 5 are the multisets:)

integer partitions the types
{5} [0, 0, 0, 0, 1]
{4, 1} [1, 0, 0, 1, 0]
{3, 2} [0, 1, 1, 0, 0]
{3, 1, 1} [2, 0, 1, 0, 0]
{2, 2, 1} [1, 2, 0, 0, 0]
{2, 1, 1, 1} [3, 1, 0, 0, 0]
{1, 1, 1, 1, 1} [5, 0, 0, 0, 0]
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Exercises

1 Given the permutation 〈2, 3, 4, 1, 5, 6〉
1 Which is the cyclic structure of the permutation?
2 Which is the canonical cyclic structure of the permutation?
3 Find the type of the permutation!
4 How many permutations have the same type as the given

permutation?

2 List all the integer partitions of 4 and their corresponding
types.
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Part 2: Advanced counting techniques
Preliminary remarks

Many interesting counting problems cannot be solved with the
counting techniques presented so far.

Examples:
1 How many n-bit strings don’t have two consecutive zeroes?
2 How many ways are there to assign 7 jobs to 3 employees so

that each employee is assigned at least one job?

Purpose of this part of the lecture: present more advanced
counting techniques:

Recurrence relations
Solving linear recurrence relations
Divide-and-conquer algorithms
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Recurrence relations

Problem: The number of bacteria in a colony doubles every hour.
If a colony begins with 5 bacteria, how many will be present in n
hours?

Answer. Let an be the number of bacteria after n hours.

a0 = 5 (initial knowledge)

an = 2 · an−1 for n > 0 (evolution)

A recurrence relation for a sequence {an} is an equation that
expresses an in terms of one or more of the previous terms
a0, a1, . . . , an−1 of the sequence, for all n ≥ n0, where n0 ≥ 0.

A solution of the recurrence relation is a formula of an as a
function of n which satisfies the recurrence relation.

We will develop techniques to solve various kinds of recurrence
relations.
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 12 / 35



Recurrence relations

Problem: The number of bacteria in a colony doubles every hour.
If a colony begins with 5 bacteria, how many will be present in n
hours?

Answer. Let an be the number of bacteria after n hours.

a0 = 5 (initial knowledge)
an = 2 · an−1 for n > 0 (evolution)

A recurrence relation for a sequence {an} is an equation that
expresses an in terms of one or more of the previous terms
a0, a1, . . . , an−1 of the sequence, for all n ≥ n0, where n0 ≥ 0.

A solution of the recurrence relation is a formula of an as a
function of n which satisfies the recurrence relation.

We will develop techniques to solve various kinds of recurrence
relations.
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Recurrence relations
Examples

a0 = 3, a1 = 5, an = an−1 − an−2 for n ≥ 2.
All elements of {an} can be computed recursively:

a2 = a1 − a0 = 5− 3 = 2

a3 = a2 − a1 = 2− 5 = −3

. . .

Can we find a general formula to compute an directly, as
a function of n?

a0 = 0, a1 = 3, an = 2 · an−1 − an−2 for n ≥ 2. All elements of
{an} can be computed recursively:

a2 = 2 a1 − a0 = 6

a3 = 2 a2 − a1 = 9

. . .

It can be shown by induction on n that an = 3 n for all n ≥ 0.
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Example: Rabbits and Fibonacci numbers

A young pair of rabbits starts breeding when they are 2 months old, by

giving birth to another pair each month. Suppose a zero-months old pair

of rabbits is placed on an island. Find a recurrence relation for the

number of pairs of rabbits on the island after n months.

f1 = 1, f2 = 1, fn = fn−1 + fn−2 if n ≥ 2.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 14 / 35



Example: Tower of Hanoi

Move all disks on the second peg in order of size, with the
largest disk on the bottom.

Disks are moved one at a time from one peg to another peg
as long as a disk is never placed on top of a smaller disk.

Question: What is the minimum number of moves needed to
solve the Tower of Hanoi problem with n disks?
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Example: Tower of Hanoi (continued)

A: Let Hn be the minimum number of moves needed to move
n disks in order of size, from one peg to another.

To place the largest disk on bottom of peg 2, first we must
move the n − 1 smaller disks from peg 1 to peg 3. The
minimum number of moves to do so is Hn−1.
After moving the largest disk from peg 1 to peg 2, we need
minimum Hn−1 moves to move the disks from peg 3 to peg 2.

peg 1 peg 2 peg 3

⇒ Hn = Hn−1 + 1 + Hn−1 = 2Hn−1 + 1. Note that H1 = 1.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 16 / 35



Example: Tower of Hanoi (continued)

A: Let Hn be the minimum number of moves needed to move
n disks in order of size, from one peg to another.

To place the largest disk on bottom of peg 2, first we must
move the n − 1 smaller disks from peg 1 to peg 3. The
minimum number of moves to do so is Hn−1.
After moving the largest disk from peg 1 to peg 2, we need
minimum Hn−1 moves to move the disks from peg 3 to peg 2.

(1) Hn−1 moves

peg 1 peg 2 peg 3

⇒ Hn = Hn−1 + 1 + Hn−1 = 2Hn−1 + 1. Note that H1 = 1.
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Example: Tower of Hanoi (continued)

We can use an iterative approach to find the formula for Hn

when n > 1:

Hn = 2Hn−1 + 1

= 2(2Hn−2 + 1) + 1 = 22 Hn−2 + 2 + 1

= 22(2Hn−3 + 1) + 2 + 1 = 23 Hn−3 + 22 + 2 + 1

...

= 2n−1H1 + 2n−2 + . . .+ 2 + 1

= 2n−1 + 2n−2 + . . .+ 2 + 1

=
2n − 1

2− 1
= 2n − 1.

The myth of the puzzle:

There are 64 disks, and moving 1 disk takes 1 second
Minimum time to move the Tower of Hanoi=
(264 − 1) s = 18446744073709551615 s ≈ 500 billion years.
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Example: Special bit strings

Find a recurrence relation and give initial conditions for the number

of bit strings of length n that do not have two consecutive zeros.

How many such bit strings of length 5 do we have?

A: There are 2 disjoint counting tasks:
1 Count the n-bit strings with no 2 consec. 0s that end with 1:
2 Count the n bit-strings with no 2 consec. 0s that end with 0:

Number of bit strings of length

n with no two consecutive 0s:

End with a 1: Any bit string of length n − 1 with
no 2 consecutive 0s

1 an−1

End with a 0: Any bit string of length n − 2
with no 2 consecutive 0s

1 0 an−2

Total: an = an−1 + an−2
The bit strings of length 1 are 0 and 1 ⇒ a1 = 2, and the bit strings of length 2

without consecutive 0s are 01, 10, 11⇒ a2 = 3.
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Example: Special bit strings (continued)

The number an of bit strings of length n without two consecutive
zeros is given by the recurrence relation

a1 = 2, a2 = 3, an = an−1 + an−2 if n ≥ 2.

⇒ a3 = a1 + a2 = 2 + 3 = 5

⇒ a4 = a2 + a3 = 3 + 5 = 8

⇒ a5 = a3 + a4 = 5 + 8 = 13.

Can we find a general formula to compute an directly, as a
function of n?
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Linear recurrence relations

A linear homogeneous recurrence relation of degree k with
constant coefficients is a recurrence relation of the form

an = c1 an−1 + c2 an−2 + . . .+ ck an−k ,

where c1, c2, . . . , ck ∈ R and ck 6= 0.

If we know the k initial conditions

a0 = C0, a1 = C1, . . . , ak−1 = Ck−1,

then we can compute an recursively, for all n ≥ k .

Example (Linear recurrence relations)

{fn} where f0 = f1 = 1, and fn = fn−1 + fn−2 if n > 1.

{Pn} where P0 = 1, and Pn = 1.11Pn−1 if n > 0.

Example (Nonlinear recurrence relations)

a0 = 1, a1 = 1, an = a2
n−1 + an−2 for all n ≥ 2.
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Linear recurrence relations

They occur often in modeling of problems.

We can find a formula to compute an directly from n.

Theorem 1

Consider the recurrence relation

an = c1 an−1 + c2 an−2 + . . .+ ck an−k , a0 = C0, . . . , ak−1 = Ck−1. (1)

Suppose r1, . . . , rt are the distinct roots of rk − c1r
k−1 − . . .− ck = 0

with multiplicities m1, . . . ,mt , respectively, so that mi ≥ 1 for
i = 1, 2, . . . , t and m1 + m2 + . . .+ mt = k . Then a sequence {an} is a
solution of (1) if and only if

an =(α1,0 + α1,1n + . . .+ α1,m1−1n
m1−1)rn1

+ (α2,0 + α2,1n + . . .+ α2,m2−1n
m2−1)rn2

+ . . .+ (αt,0 + αt,1n + . . .+ αt,mt−1n
mt−1)rnt

for n ∈ N, where αi,j are constants for 1 ≤ i ≤ t and 0 ≤ j < mi .
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Linear recurrence relations
Examples

Find the solution to the recurrence relation

an = −3 an−1 − 3 an−2 − an−3

with initial conditions a0 = 1, a1 = −2, and a2 = −1.

Answer. The characteristic equation of the recurrence
relation is r3 + 3r2 + 3r + 1 = 0, which has a single root
r = −1 of multiplicity 3 of the characteristic equation.

⇒ the solutions of this recurrence relation are of the form

an = α1,0(−1)n + α1,1n(−1)n + α1,2n
2(−1)n.

To find the constants α1,0, α1,1, α1,2, use the initial conditions:
a0 = 1 = α1,0

a1 = −2 = −α1,0 − α1,1 − α1,2

a2 = −1 = α1,0 + 2α1,1 + 4α1,2

⇒


α1,0 = 1
α1,1 = 3
α1,2 = −2.

⇒ an = (1 + 3 n − 2 n2)(−1)n.
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Nonhomogeneous Recurrences with Constant Coefficients

Definition

A linear non homogeneous recurrence relation with constant coefficients
is a recurrence relation of the form

an = c1 an−1 + c2 an−2 + . . .+ ck an−k + F (n),

where c1, . . . , ck ∈ R and F (n) is a function non identically zero
depending only on n. The recurrence relation

an = c1 an−1 + c2 an−2 + . . .+ ck an−k

is called the associated recurrence relation.

Examples

1 an = an−1 + 2n is a non homogeneous recurrence relation.
The associated homogeneous relation is an = an−1.

2 an = an−1 + an−2 + n2 + n + 1 is a non homogeneous
recurrence relation. The associated homogeneous relation is
an = an−1 + an−2.
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 23 / 35



Nonhomogeneous Recurrences with Constant Coefficients

Definition

A linear non homogeneous recurrence relation with constant coefficients
is a recurrence relation of the form

an = c1 an−1 + c2 an−2 + . . .+ ck an−k + F (n),

where c1, . . . , ck ∈ R and F (n) is a function non identically zero
depending only on n. The recurrence relation

an = c1 an−1 + c2 an−2 + . . .+ ck an−k

is called the associated recurrence relation.

Examples
1 an = an−1 + 2n is a non homogeneous recurrence relation.

The associated homogeneous relation is an = an−1.

2 an = an−1 + an−2 + n2 + n + 1 is a non homogeneous
recurrence relation. The associated homogeneous relation is
an = an−1 + an−2.
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Nonhomogeneous Recurrences with Constant Coefficients

Theorem 2

If {a(p)
n } is a particular solution of

an = c1 an−1 + c2 an−2 + . . .+ ck an−k + F (n),

then every solution is of the form {a(p)
n + a

(h)
n }, where {a(h)

n } is a
solution of the associated homogeneous recurrence relation

an = c1 an−1 + c2 an−2 + . . .+ ck an−k .

We know from Theorem 1 how to compute {a(h)
n }.

Q: How can we find a particular solution {a(p)
n }?
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Nonhomogeneous Recurrences with Constant Coefficients
Finding a particular solution

Theorem 3

If F (n) = (bt n
t + bt−1 n

t−1 + . . .+ b1 t + b0) sn with
b0, . . . , bt−1, bt , s ∈ R then

1 If s is not a root of the characteristic equation of the
associated linear homogeneous recurrence relation, there is a
particular solution of the form

(pt n
t + pt−1 n

t−1 + . . .+ p1 n + p0) sn.

2 If s is a root with multiplicity m of the characteristic equation
of the associated linear homogeneous recurrence relation,
there is a particular solution of the form

nm(ptn
t + pt−1n

t−1 + . . .+ p1 n + p0) sn.
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Nonhomogeneous Recurrences with Constant Coefficients
Example 1

Q: What is the form of the solution of the nonlinear recursive relation

an = 6 an−1 − 9 an−2 + F (n)

when F (n) = n22n?

A: The associated linear homogeneous recurrence relation is

an = 6 an−1 − 9 an−2. It has the characteristic equation

r2 − 6 r + 9 = 0, which has a single root, r = 3, of multiplicity 2.

⇒ the solution of the homogeneous part is a
(h)
n = (b1 n + b0) 3n.

F (n) is of the form Q(n) sn where Q(n) is polynomial of degree

t = 2, and s = 2 is not root of the characteristic equation of the

associated homogeneous recurrence ⇒ by Theorem 3, a particular

solution is of the form a
(p)
n = (p2 n

2 + p1 n + p0) 2n.

From a
(p)
n = 6 a

(p)
n−1 − 9 a

(p)
n−2 + n22n we obtain

2n−2((p2 − 4)n2 + (p1 − 12p2)n + p0 − 6 p1 + 24 p2) = 0

⇒ p0 = 192, p1 = 48, p2 = 4

⇒ an = a
(p)
n + a

(h)
n = (4 n2 + 48 n + 192) 2n + (b1 n + b0) 3n.
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(p)
n = 6 a

(p)
n−1 − 9 a

(p)
n−2 + n22n we obtain

2n−2((p2 − 4)n2 + (p1 − 12p2)n + p0 − 6 p1 + 24 p2) = 0

⇒ p0 = 192, p1 = 48, p2 = 4

⇒ an = a
(p)
n + a

(h)
n = (4 n2 + 48 n + 192) 2n + (b1 n + b0) 3n.
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 26 / 35



Nonhomogeneous Recurrences with Constant Coefficients
Example 2

Q: What is the form of the solution of the nonlinear recursive relation

an = an−1 + n with initial condition a1 = 1?

A: The associated linear homogeneous recurrence relation for an is
an = an−1. It has the characteristic equation r − 1 = 0, thus the
solution of it is of the form

a
(h)
n = c · 1n = c where c ∈ R.

The nonlinear part is F (n) = Q(n) sn where Q(n) = n and s = 1 is

a solution with multiplicity 1 of the characteristic equation of the

associated linear homogeneous recurrence relation ⇒ by Theorem 3,

a particular solution is of the form

a
(p)
n = ns(p1 n + p0) 1n = p1n

2 + p0n.

To find the values of p0 and p1, we know that a
(p)
n = a

(p)
n−1 + n,

which implies n(2 p1 − 1) + (p0 − p1) = 0, which means that

p0 = p1 = 1
2 . Hence a

(p)
n = n2

2 + n
2 = n(n+1)

2 .

By Theorem 2, we have an = a
(p)
n + a

(h)
n = c + n(n+1)

2 . Also, we

have 1 = a1 = c + 1·2
2 = c + 1, so c = 0. Thus an = n(n+1)

2 .
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Divide-and-Conquer algorithms and recurrences

How do they work?

Divide a problem into one or more instances of the same
problem, but of smaller size.

Conquer the problem by using the solutions of the smaller
problems to find a solution of the original problem.

Typical examples:

1 Binary search for an element in a sorted list.

2 Sorting a list by successively splitting the list into halves, and
sort each half separately.

3 . . .
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Divide-and-Conquer recurrence relations

Phases of a divide-and-conquer algorithm

Divide a problem of size n into b subproblems of size n/b.

Remark. In reality, not all subproblems have exactly the
same size: some have size dn/be, other have size bn/bc.

Assumptions

f (n/b) := number of operations required to solve problems of
size n/b
a := number of subproblems that have to be solved.
g(n) := number of extra operations required to combine the
solutions of subproblems into a solution of the initial problem
(the conquer step)

⇒ f (n) = a f (n/b) + g(n).

This is called a divide-and-conquer recurrence relation.
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Divide-and-Conquer
Example: Binary Search

Search an item in a sorted sequence of n items, as follows:

Split the initial sorted sequence into 2 sorted sequences of size
n/2, and choose the subsequence in which to search further
⇒ one subproblem of size n/2,

2 comparisons are needed to determine:
1 which half of the sequence to use, and
2 if there are any elements in the list.

⇒ divide-and-conquer relation

f (n) = f (n/2) + 2.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 4 30 / 35



Divide-and-Conquer
Example: MergeSort

procedure MergeSort(L = a1, . . . , an)
if n > 1 then
m = bn/2c
L1 = a1, . . . , am
L2 = am+1, . . . , an
L := merge(MergeSort(L1),MergeSort(L2))

/* L is now sorted into elements in nondecreasing order */

procedure merge(L1, L2: sorted list)
L :=empty list
while L1 and L2 are both non-empty

remove smaller of first element of L1 and L2 from the list it is in,
and put it at the right end of L.

if removal of this element makes one list empty
then remove all elements from the other list and append them to L.
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Divide-and-Conquer
Example: Merge-sort (continued)

Merging the sorted lists 2,3,5,6 and 1,4.
First list Second list Merged list Comparison

2,3,5,6 1,4 1 < 2
2,3,5,6 4 1 2 < 4

3,5,6 4 1,2 3 < 4
5,6 4 1,2,3 4 < 5
5,6 1,2,3,4

1,2,3,4,5,6

Remarks

1 MergeSort uses fewer than n comparisons to merge 2 lists with
n/2 elements each.

2 The number of comparisons used by MergeSort to sort a list of n
elements is less than M(n), where

M(n) = 2M(n/2) + n.
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Divide-and-Conquer relations
Estimating the size of solutions

Theorem 4

Let f be an increasing function that satisfies the recurrence relation

f (n) = a f (n/b) + c

whenever n is divisible by b, where a ≥ 1, b is an integer greater
than 1, and c ∈ R is positive. Then

f (n) is

{
O(nlogb(a)) if a > 1
O(log n) if a = 1.

Furthermore, when n = bk , where k is a positive integer, then

f (n) = C1 n
logb a + C2,

where C1 = f (1) + C/(a− 1) and C2 = −c/(a− 1).
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Divide-and-Conquer relations
Estimating the size of solutions

Theorem 5 (Master Theorem)

Let f be an increasing function that satisfies the recurrence relation

f (n) = a f (n/b) + c nd

whenever n = bk , where k is a positive integer, a ≥ 1, b is an
integer greater than 1, and c , d ∈ R with c > 0 and d ≥ 0. Then

f (n) is


O(nd) if a < bd ,
O(nd log n) if a = bd ,
O(nlogb a) if a > bd .

Example (Complexity of MergeSort)

M(n) = aM(n/b) + c nd where a = b = 2, c = d = 1
⇒ M(n) is O(n log n).
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