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Remember from Lecture 1 that ...

If A is a finite set with n elements then

B An arrangement of r out of n (or r -permutation) of A is an
ordered sequence of elements from A.

B A permutation of A is an ordered sequence of all elements of A.

B A combination of r out of n from A is a subset with r
elements from A.

Example (A = {a1, a2, a3})
B The 2-permutations of A are (order is important!):

〈a1, a2〉, 〈a2, a1〉, 〈a1, a3〉, 〈a3, a1〉, 〈a2, a3〉, 〈a3, a1〉

B The 2-combinations of A are (order is irrelevant!):

{a1, a2}, {a1, a3}, {a2, a3}

B The permutations of A are:

〈a1, a2, a3〉, 〈a1, a3, a2〉, 〈a2, a1, a3〉, 〈a2, a3, a1〉,
〈a3, a1, a2〉, 〈a3, a2, a1〉
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Operations with permutations

In the first part of this lecture we will learn

How to order permutations, such that we can talk about:

B the first permutation, the second permutation, a.s.o.

How to generate directly the k-th permutation

How to find directly the rank of a given permutation.
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Relations of order for r -permutations

Assume A is a finite set with n elements.
1 First, we order the elements of set A

⇒ A = {a1, a2, . . . , an} where
a1 = first element
. . .
an = the n-th element.

⇒ A becomes an ordered set (an alphabet) in which
a1 < a2 < . . . < an.

2 the r -permutations are “words” 〈b1, ..., br 〉 of length r which
we order like the words in a dictionary, for example:

〈a1, a2〉 < 〈a1, a3〉 < 〈a2, a1〉 < . . .

This way of ordering r -permutations is called lexicographic
ordering:

〈b1, . . . , br 〉 < 〈c1, . . . , cr 〉 if there is a position k such that
bi = ci for 1 ≤ i < k , and bk < ck .
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Relations of order for r -permutations
Preliminaries

Let A = {a1, . . . , an} be an ordered set with a1 < . . . < an
and N = {1, 2, . . . , n}.

1 The r -permutations of A are “words” of the form 〈ai1 , . . . , air 〉
with i1, . . . , ir ∈ N.

2 〈ai1 , . . . , air 〉 is an r -permutation of A if and only if (i1, . . . , ir )
is an r -permutation of N.

3 〈ai1 , . . . , air 〉 < 〈aj1 , . . . , ajr 〉 if and only if
〈i1, . . . , ir 〉 < 〈j1, . . . , jr 〉.

⇒ it is sufficient to know how to order and to enumerate the
r -permutations of numbers from the set N.

From now on we will consider only the r-permutations of the
ordered set A = {1, . . . , n}.
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Rank of an r -permutation

The rank of an r -permutation is the position where the
r -permutation occurs in lexicographic order, starting from position
0.

Example (A = {1, 2, 3})

2-permutation rank permutation rank

〈1, 2〉 0 〈1, 2, 3〉 0
〈1, 3〉 1 〈1, 3, 2〉 1
〈2, 1〉 2 〈2, 1, 3〉 2
〈2, 3〉 3 〈2, 3, 1〉 3
〈3, 1〉 4 〈3, 1, 2〉 4
〈3, 2〉 5 〈3, 2, 1〉 5
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Generating the next permutation in lexicographic order

Problem

How can we compute directly (and reasonably fast) the
permutation of N = {1, . . . , n} that is after the permutation
〈p1, . . . , pn〉 in lexicographic order?

Example (N = {1, 2, 3, 4, 5})

permutation next permutation

〈5, 1, 3, 2, 4〉

〈5, 1, 3, 4, 2〉

〈5, 2, 4, 3, 1〉

〈5, 3, 1, 2, 4〉

〈5, 4, 3, 2, 1〉

none
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Operations with permutations
Enumerating the permutations in lexicographic order

The permutation after 〈p1, . . . , pn〉 in lexicographic order can be
computed as follows:

1 Find i such that pi > . . . > pn is the longest decreasing suffix
of 〈p1, . . . , pn〉

2 Find j ≥ i such that pj is the smallest number greater than
pi−1.

3 Permute pj with pi−1, and then reverse the suffix pi , . . . , pn.

Example

〈5, 2, 4, 3, 1〉〈5, 3, 4, 2, 1〉

〈p1, p2, p3, p4, p5〉 = 〈5, 2, 4, 3, 1〉

i = 3 j = 4

swap values of pi−1 = 2 and pj = 3

invert 〈pi , . . . , pn〉 = 〈4, 2, 1〉〈5, 3, 1, 2, 4〉 = next permutation
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Enumeration of permutations in lexicographic order
Pseudocode

NextPermutation(p: int[0 .. n − 1])
i := n − 2;
while (p[i ] > p[i + 1])

i--;
j := n − 1;
while (p[j ] < p[i ])

j--;
// swap p[i ] with p[j ]
tmp := p[i ];
p[i ] := p[j ];
p[j ] := tmp;
// revert (p[i+1], ..., p[n-1])

for (k := 0; k < b(n − i − 1)/2c; k++)
// swap p[i + 1 + k] with p[n − 1− k]
tmp := p[i + 1 + k];
p[i + 1 + k] := p[n − 1− k];
p[n − 1− k] := tmp;

return p;
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Operations with permutations

Problems

1 How to compute directly the rank of a permutation
〈p1, . . . , pn〉 of N = {1, . . . , n} in lexicographic order?

2 How to compute directly the permutation 〈p1, . . . , pn〉 of
N = {1, . . . , n} with rank k?
Note that the rank is a number between 0 and n!− 1.
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Computing the rank of a permutation

Let r be the rank of a permutation 〈p1, . . . , pn〉.
B If p1 = 1 then 0 ≤ r < (n − 1)!
B If p1 = 2 then (n − 1)! ≤ r < 2 · (n − 1)!

. . .
B If p1 = k then (k − 1) · (n − 1)! ≤ r < k · (n − 1)!

. . .
B If p1 = n then (n − 1) · (n − 1)! ≤ r < n · (n − 1)! = n!

⇒ in general, (p1 − 1) · (n − 1)! ≤ r < p1 · (n − 1)!

⇒ rank of 〈p1, . . . , pn〉 = (p1 − 1) · (n − 1)! +
rank of 〈p2, . . . , pn〉 in the
lexicographic enumeration of
the permutations of N − {p1}

⇒ r can be computed recursively.
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⇒ r can be computed recursively.
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Computing the rank of a permutation

Example

The permutation 〈p1, p2, p3, p4, p5〉 = 〈2, 3, 1, 5, 4〉 has rank

r = (2− 1) · (5− 1)!+ rank of 〈3, 1, 5, 4〉 in the lex. order of
the permutations of {1, 3, 4, 5}.

rank of 〈3, 1, 5, 4〉 in the lex. order of the permutations of
{1, 3, 4, 5} coincides with
rank of 〈2, 1, 4, 3〉 in the lex. order of the permutations of
{1, 2, 3, 4}

(the values of all elements p1 = 2 were decreased by 1)

By recursion, we find out that the rank of 〈2, 1, 4, 3〉 is 7.

⇒ rank of 〈2, 3, 1, 5, 4〉 is 24 + 7 = 31.
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Operations with permutations
Pseudocode

Rank(p : int[0 .. n − 1])
if n == 1

return 0

else
q : int[0 .. n − 2];
// adjust p[1..n-1] to become a permutation of {1, ..., n − 1}
// memorized in the array q[0 .. n − 2]
for(i := 1; i ≤ n − 1; i++)

if(p[i ] < p[0])
q[i − 1] = p[i ];

else
q[i − 1] = p[i ]− 1;

return Rank[q] + (p[0]− 1) · (n − 1)!
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Computing the permutation with a given rank

We look for an algorithm to compute directly the permutation
〈p1, . . . , pn〉 with rank r when 0 ≤ r < n!.

We already noticed that if the permutation 〈p1, . . . , pn〉 has
rank r , then (p1 − 1) · (n − 1)! ≤ r < p1 · (n − 1)!

⇒ p1 =

⌊
r

(n − 1)!

⌋
+ 1

⇒ If (q1, . . . , qn−1) is the permutation with rank
r − (p1 − 1) · (n − 1)! then

pi+1 =

{
qi if qi < p1,
qi + 1 if qi ≥ p1.

for all 1 ≤ i < n.
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Minimum change permutations

There are many other orders to generate all permutations,
different from the lexicographic order.

Often, we want the fast generation of all permutations:

B This means to generate very fast the next permutation from
the previous one.

B In 1963, Heap discovered an algorithm that generates the next
permutation by exchanging the values of only two elements.

Heap’s algorithm is the fastest known algorithm to
generate all permutations.
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Algorithms for the fast generation of all permutations
Heap’s algorithm: pseudocode

for(i := 1; i ≤ n; i++)
p[i ] := i

for(c := 1; c ≤ n; c++)
1. generate all permutations 〈p[1], . . . , p[n − 1]〉 without modifying p[n];

(at the end of step 1, p contains the last generated permutation)
2. swap the value of p[n] with that of p[f (n, c)]

where f (n, c) =

{
1 if n is odd,
c if n is even.

Remarks

B Heap’s algorithm generates all permutations of {1, . . . , n} in an order different
from the lexicographic order.

B Every permutation differs from the previous one by a transposition (that is, a
swap of the values of 2 elements).

Example

Heap’s algorithm enumerates the permutations of {1, 2, 3} in the following order:

〈1, 2, 3〉, 〈2, 1, 3〉, 〈3, 1, 2〉, 〈1, 3, 2〉, 〈2, 3, 1〉, 〈3, 2, 1〉
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Exercises (part 1)

1 Write a program which reads a sequence of n numbers, and
then it displays:

”a permutation” if the sequence is a permutation of {1, . . . , n}
”not a permutation” otherwise.

2 Write a program which reads numbers n and
r ∈ {0, 1, . . . , n!− 1}, and then it displays the permutation
{1, . . . , n} with rank r .

3 Write a program which reads a permutation of {1, . . . , n} and
it displays the rank of that permutation.

4 Write a program which reads a permutation 〈a1, . . . , an〉 and
computes its inverse, that is, the permutation 〈b1, . . . , bn〉
such that bai = abi = i for all 1 ≤ i ≤ n.
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Exercises (part 2)

1 Write a program which reads a permutation and computes the
next permutation in lexicographic order.

2 Write a program which reads a permutation and computes the
previous permutation in lexicographic order.
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The Pigeonhole Principle

Suppose that a flock of 13 pigeons flies into a set of 12 pigeonholes.

The number of holes is smaller than the number of pigeons ⇒ at
least one pigeonhole must have at least 2 pigeons in it.

The Pigeonhole Principle (or Dirichlet’s Principle)

Let n be a positive integer. If more than n objects are distributed among
n containers, then some container must contain more than one object.
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The pigeonhole principle
Applications in combinatorial reasoning

Establish the existence of a particular configuration or combination
in many situations.

1 Suppose 367 freshmen are enrolled in the lecture on
combinatorics. Then two of them must have the same
birthday.

Proof. There are more freshmen than calendaristic days. By
pigeonhole principle, at least 2 freshmen were born in same
calendaristic day.

2 n boxers did compete in a round-robin tournament. We know
that no contestant was undefeated. Then two boxers must
have the same record in the tournament.

Proof. There are n boxers, and every boxer has between 0
and n − 2 wins. (Note that no boxer has n − 1 wins, because
we know that no boxer was undefeated.)
By pigeonhole principle, at least 2 boxers must have the same
winning record.
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The pigeonhole principle

Generalization: Let m and n be positive integers. If more than m · n
objects are distributed among n containers, then at least one container

must contain at least m + 1 objects.

Proof: by contradiction. If we place at most m objects in all

containers, then the total number of objects would be at most m · n.

Theorem

If a1, a2, . . . , an ∈ R and µ =
a1 + a2 + . . .+ an

n
, then there exist integers

i and j with 1 ≤ i , j ≤ n such that ai ≤ µ and aj ≥ µ.

Proof: by contradiction.

If every element is strictly greater than µ then µ = (a1 + a2+

. . . +an)/n >
n · µ
n

= µ, contradiction ⇒ ∃ai ≤ µ.

If every element is strictly smaller than µ then µ = (a1 + a2+

. . . +an)/n <
n · µ
n

= µ, contradiction ⇒ ∃aj ≥ µ.
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The pigeonhole principle
Application 1: Monotonic subsequences

Definition (Monotonic sequence)

A sequence a1, a2, . . . , an is

increasing if a1 ≤ a2 ≤ . . . ≤ an

strictly increasing if a1 < a2 < . . . < an

decreasing if a1 ≥ a2 ≥ . . . ≥ an

strictly decreasing if a1 > a2 > . . . > an

Consider the sequence 3, 5, 8, 10, 6, 1, 9, 2, 7, 4.

What are the increasing subsequences of maximal length?

〈3, 5, 8, 10〉, 〈3, 5, 8, 9〉, 〈3, 5, 6, 7〉, 〈3, 5, 6, 9〉

What are the decreasing subsequences of maximal length?

〈10, 9, 7, 4〉
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The pigeonhole principle
Application 1: Monotonic subsequences (continued)

Theorem

Suppose m, n ∈ N− {0}. A sequence of more than m · n real numbers

must contain either an increasing subsequence of length at least m + 1,

or a strictly decreasing subsequence of length at least n + 1.

Proof.
r1, r2, . . . , rm·n+1

For every 1 ≤ i ≤ m · n + 1, let

ai :=length of longest increasing subseq. starting with ri
di :=length of longest strictly decreasing subseq. starting with ri

For example, if the sequence is 3, 5, 8, 10, 6, 1, 9, 2, 7, 4 then

a2 = 3 (for the subsequence 5, 8, 10 or 5, 8, 9)
d2 = 2 (for the subsequence 5, 1 or 5, 2)
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The pigeonhole principle
Application 1: Monotonic subsequences (Proof continued)

We assume the theorem is false ⇒ 1 ≤ ai ≤ m and 1 ≤ di ≤ n
⇒ the pair (ai , di ) has m · n possible values.
There are m ·n+ 1 such pairs⇒ ∃i < j with (ai , di ) = (aj , dj).
If i < j and (ai , di ) = (aj , dj) then

1 The maximum length of increasing subsequences starting from
ri and from rj is ai .

2 The maximum length of strictly decreasing subsequences
starting from ri and from rj is di .

But this is impossible, because
1 If ri ≤ rj then there there is

ri ≤
length ai︷ ︸︸ ︷
rj ≤ . . .︸ ︷︷ ︸

length ai+1
2 If ri > rj then there is

ri >

length di︷ ︸︸ ︷
rj > . . .︸ ︷︷ ︸

length di+1

.
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The pigeonhole principle
Application 2: Approximating rational numbers

For every real number x ∈ R we define:

The floor of x :
bxc := largest integer m satisfying m ≤ x .

The ceiling of x :
dxe := smallest integer m satisfying x ≤ m.

The fractional part of x :
{x} := x − bxc
An irrational number is a number that can not be obtained by
dividing two integers.

Examples: π = 3.14159265 . . ., e = 2.7182818 . . ., etc.

If α is an irrational number and Q ∈ N− {0}, how close can
we approximate α with a rational number p

q when

1 ≤ q ≤ Q?

How small can

∣∣∣∣∣α− p

q

∣∣∣∣∣ become when 1 ≤ q ≤ Q?
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The pigeonhole principle
Application 2: Approximating rational numbers (2)

Theorem (Dirichlet’s approximation theorem)

If α is an irrational number and Q a positive integer, then there
exists a rational number p/q with 1 ≤ q ≤ Q such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q · (Q + 1)
.

Proof. Divide [0, 1] into Q + 1 subintervals of equal length:[
0,

1

Q + 1

)
,

[
1

Q + 1
,

2

Q + 1

)
, . . . ,

[
Q

Q + 1
, 1

]
and consider the Q + 2 real numbers

r1 = 0, r2 = {α}, {2α}, . . . , rQ+1 = {Qα}, rQ+2 = 1
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The pigeonhole principle
Application 2: Approximating rational numbers (2)

There are Q + 2 objects in Q + 1 intervals

⇒ there is i < j with ri , rj in same interval

⇒ |ri − rj | ≤ 1
Q+1 . Note that (i , j) 6= (1,Q + 2)

We note that

r1 = 0 ·α− 0
ri = (i − 1) ·α− b(i − 1)αc if 2 ≤ i ≤ Q + 1

rQ+2 = 0 ·α− (−1)

⇒ every ri is ui · α− vi with ui , vi ∈ Z, and
if i < j then ui = uj only if (i , j) = (1,Q + 2).

⇒ |ri − rj | = |(ui − uj)α− (vi − vj)| = |ui − uj |︸ ︷︷ ︸
q∈[1,Q]

·|α− vi − vj
ui − uj︸ ︷︷ ︸

p
q

| ≤ 1
Q+1 .

Thus

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q · (Q + 1)
.
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 2 27 / 35



The pigeonhole principle
Application 2: Approximating rational numbers (2)

There are Q + 2 objects in Q + 1 intervals

⇒ there is i < j with ri , rj in same interval

⇒ |ri − rj | ≤ 1
Q+1 . Note that (i , j) 6= (1,Q + 2)

We note that

r1 = 0 ·α− 0
ri = (i − 1) ·α− b(i − 1)αc if 2 ≤ i ≤ Q + 1

rQ+2 = 0 ·α− (−1)

⇒ every ri is ui · α− vi with ui , vi ∈ Z, and
if i < j then ui = uj only if (i , j) = (1,Q + 2).

⇒ |ri − rj | = |(ui − uj)α− (vi − vj)| = |ui − uj |︸ ︷︷ ︸
q∈[1,Q]

·|α− vi − vj
ui − uj︸ ︷︷ ︸

p
q

| ≤ 1
Q+1 .

Thus

∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q · (Q + 1)
.
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The Principle of Inclusion and Exclusion
Illustrative example

Suppose there are 50 beads in a drawer: 25 are glass, 30 are
red, 20 are spherical, 18 are red glass, 12 are glass spheres, 15
are red spheres, and 8 are red glass spheres. How many beads
are neither red, nor glass, nor spheres?
Answer: use a Venn diagram with 3 overlapping sets: G of
glass beads, R of red beads, and S of spherical beads.

Observation. |G ∪ R ∪ S | =
|G |+ |R|+ |S | − |G ∩ R| − |G ∩ S | − |R ∩ S |+ |G ∩ R ∩ S |.
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The Principle of Inclusion and Exclusion

Assumptions:

N: a universal set

a1, . . . , ar : properties of the elements of set N

N(ai1ai2 . . . aim): the number of objects of N which have
properties ai1 , ai2 , . . . , aim simultaneously.

N0: the number of objects having none of these properties.

Theorem (Principle of Inclusion and Exclusion)

N0 = N −
∑
i

N(ai ) +
∑
i<j

N(aiaj)−
∑

i<j<k

N(aiajak) + . . .

+ (−1)m
∑

i1<···<im

N(ai1 . . . aim) + . . .+ (−1)rN(a1a2 . . . ar ).
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The Principle of Inclusion and Exclusion
Application 1: The Euler ϕ function

ϕ(n):= number of integers 1 ≤ m < n with gcd(m, n) = 1.

Example: ϕ(24) = 8 because there are 8 integers between 1
and 23 that have no factor in common with 24:
1,5,7,11,13,17,19,23.

ϕ(n) is very important in number theory.
ϕ(n) can be computed using the principle of inclusion and
exclusion:

Suppose n = pn1
1 . . . pnrr where p1, . . . , pr are distinct prime

numbers, and ni > 0 for 1 ≤ i ≤ r .
Let ai be the property ”smaller than n and divisible by pi”
(1 ≤ i ≤ r)
⇒ ϕ(n) = N0 =

n −
∑
i

N(ai ) +
∑
i<j

N(aiaj) + . . .+ (−1)rN(a1 . . . ar ).

N(ai1 . . . , aim) is the number of elements < n divisible by

pi1 · . . . · pim ⇒ N(ai1 . . . aim) =
n

pi1 · . . . · pim
.
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The Principle of Inclusion and Exclusion
Application 1: The Euler ϕ function

ϕ(n) = n −
∑
i

n

pi
+
∑
i<j

n

pipj
+ . . .+ (−1)n

n

p1p2 . . . pr

= n
r∏

i=1

(
1− 1

pi

)
.

Example: ϕ(24) = ϕ(23 · 3) = 24 ·
(

1− 1

2

)
·
(

1− 1

3

)
= 8.
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The principle of inclusion and exclusion
Application 2: counting prime numbers

How many prime numbers are between 1 and n?

Remark: If n is not prime, then n = a · b with 1 < a ≤ b
⇒ a2 ≤ n, so a ≤

√
n and n must be divisible by a prime

number p ≤
√
n.

⇒ Criterion to count the prime numbers < n:

Start with the set of integers N = {1, . . . , n} and count
N0 = the number of elements left when multiples of prime
numbers p ≤

√
n are excluded from the set.

The number obtained is not exactly what we want because

we did not count the prime numbers ≤
√
n

we did count 1

The number we are looking for is

N0 + r − 1

where r is the number of prime numbers ≤
√
n.
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 2 32 / 35



The principle of inclusion and exclusion
Application 2: counting prime numbers

How many prime numbers are between 1 and n?

Remark: If n is not prime, then n = a · b with 1 < a ≤ b
⇒ a2 ≤ n, so a ≤

√
n and n must be divisible by a prime

number p ≤
√
n.

⇒ Criterion to count the prime numbers < n:

Start with the set of integers N = {1, . . . , n} and count
N0 = the number of elements left when multiples of prime
numbers p ≤

√
n are excluded from the set.

The number obtained is not exactly what we want because

we did not count the prime numbers ≤
√
n

we did count 1

The number we are looking for is

N0 + r − 1

where r is the number of prime numbers ≤
√
n.
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The principle of inclusion and exclusion
Application 2: counting prime numbers

How many prime numbers are between 1 and 120?

The largest prime number ≤
√

120 is 7

Start with the universal set N = {n ∈ N | 1 ≤ n ≤ 120} and
remove from N all elements divisible by a prime number ≤ 7.
This means, we remove from N the elements with properties

a1 = ”is divisible by p1 = 2”
a2 = ”is divisible by p2 = 3”
a3 = ”is divisible by p3 = 5”
a4 = ”is divisible by p4 = 7”

and obtain a set M with N0 elements.

Q: Is N0 the number we want to compute?

A: Almost correct, except that:

M contains all prime numbers between 1 and 120, except
p1 = 2, p2 = 3, p3 = 5, p4 = 7.
M contains 1, which is not prime.

The number of prime numbers ≤ 120 is N0 + 4− 1.
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Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 2 33 / 35



The principle of inclusion and exclusion
Application 2: counting prime numbers

How many prime numbers are between 1 and 120?

The largest prime number ≤
√

120 is 7
Start with the universal set N = {n ∈ N | 1 ≤ n ≤ 120} and
remove from N all elements divisible by a prime number ≤ 7.
This means, we remove from N the elements with properties

a1 = ”is divisible by p1 = 2”
a2 = ”is divisible by p2 = 3”
a3 = ”is divisible by p3 = 5”
a4 = ”is divisible by p4 = 7”

and obtain a set M with N0 elements.

Q: Is N0 the number we want to compute?

A: Almost correct, except that:

M contains all prime numbers between 1 and 120, except
p1 = 2, p2 = 3, p3 = 5, p4 = 7.
M contains 1, which is not prime.

The number of prime numbers ≤ 120 is N0 + 4− 1.
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The principle of inclusion and exclusion
Application 2: counting prime numbers (continued)

How many prime numbers are between 1 and 120?

N0 = 120−
4∑

i=1

N(ai ) +
∑
i<j

N(aiaj)−
∑

i<j<k

N(aiajak) +N(a1a2a3a4)

Note that N(ai1 . . . aim) =
⌊

120
pi1 ·...·pim

⌋
(why?)

For example:

N(a1) = b120/2c = 60, N(a2) = b120/3c = 40,
N(a3) = b120/5c = 24, N(a4) = b120/7c = 17
N(a1a2) = b120/(2 · 3)c = 20, N(a1a3) = b120/(2 · 5)c = 12,
. . .
N(a1a2a3a4) = b120/(2 · 3 · 5 · 7)c = b120/210c = 0

⇒ N0 = 120− (60 + 40 + 24 + 17) + (20 + 12 + 8 + 8 + 5 + 3)−
(4 + 2 + 1 + 1) + 0 = 27.

The number we are looking for is 27 + 4− 1 = 30
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