Lecture 11

Connectivity: Dijkstra's algorithm.
Flow networks: Maximum flow algorithms

Isabela Dramnesc UVT

Computer Science Department,
West University of Timisoara,
Romania

Isabela Drdmnesc UVT 1/43

Lecture outline

© The problem of lightest paths from a single source in a
weighted digraph
o Dijkstra’s algorithm
@ Flow networks and flows
Maximum flow
Residual networks, augmenting paths

Ford-Fulkerson algorithm
Applications

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Lightest paths from a given source node

Given a simple weighted digraph G = (V/, E) with
w : E — RT and a source node s € V
Find for every node x € V accessible from s, a lightest
path p: s~ x, and its weight w(p)

[s] with w([s]) = 0; [s, x, u] with w([s,x,u]) =8

[s, x] with w([s, x]) = 5; [s, x, u, v] with w([s,x, u,v]) =9

[s, %, y] with w([s,x,y]) =7.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Lightest paths from a given source node

Given a simple weighted digraph G = (V/, E) with
w : E — RT and a source node s € V
Find for every node x € V accessible from s, a lightest
path p: s~ x, and its weight w(p)

[s] with w([s]) = 0; [s, x, u] with w([s,x,u]) =8

[s, x] with w([s, x]) = 5; [s, x, u, v] with w([s,x, u,v]) =9

[s, %, y] with w([s,x,y]) =7.

@ The problem can be solved with Warshall's algorithm:

o Computes the lightest paths that exist between every pair of
nodes

o Runtime complexity O(|V|3); it computes more than needed

Is there a better algorithm, if the source node is fixed?

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 11

Dijkstra’'s Algorithm

Informal description

Proposed by E. Dijkstra in 1956 to solve the previous problem

@ Assign
@ A tentative weight d(x) for a lightest path from source to x.
@ a predecessor node 7(x) of every node x on a lightest path from s to x.
0 ifx=s, w(x) = undef ifx=s
oo ifx#s T s if x#s
where undef is a special value: it indicates the inexistence of a predecessor.
@ Create a set Q of unvisited nodes. Initially, @ := V/, and keep track of a current

Initially, we have d(x) = {

node crt.

© choose crt :=a node form Q with d(crt) = min{d(x) | x € Q}, and remove crt
from Q.

@ For every neighbor x € Q of crt update the tentative values of d(x) and 7(x) as
follows:

If d(crt) + w((crt,x)) < d(x) then d(x) := d(crt) + w((crt, x))
and 7(x) := crt.
This updating step is called relaxation step of the arc (crt, x) € E.
@ If Q = 0 then stop, else goto 3.

Isabela Drdmnesc UVT Graph Theor Wbinatorics — Lecture 11

Dijkstra’s algorithm
Pseudocode for the auxiliary operations

» Initialization
SINGLESOURCEINIT (G, s)
for each v e V

d(v) =00
(v):=s
d(s):=0
7(s) := undef

» Relaxation step for an arc (u, v)

RELAX (U, v)
if d(v) > d(u)+ w((u,v))

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Dijkstra’s algorithm
Pseudocode

D1JKSTRA (G, w, s)

1 SINGLESOURCEINIT(G, s)

2 RQ:=V

3 while Q # 10

u :=EXTRACTMIN(Q)

for every neighbor v of v for which v ¢ @
RELAX (U, v)

D O

Runtime complexity:
> Original algorithm: O(|V/|?)

> Algorithm improved with a min-priority queue:
O(|E[+ V] log|V])

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Dijkstra’s algorithm

lllustrated example: first while loop

CONVENTION: The nodes not marked yet (those from Q) are
white; the others are gray

Configuration produced by INITIALIZESINGLESOURCE(G, s):

Q = {S7X7.y7 u7 V}
Select s = EXTRACTMIN(Q)

nodes not visited yet:
d:.10 d:oo

Isabela Drdmnesc UVT Graph Theory and Combinatoric ecture 11

Dijkstra’s algorithm

lllustrated example: the second while loop

Select and mark x, and relax all arcs from x to unmarked nodes:
d:oco d8 d14

Isabela Drdmnesc UVT Graph Theory and C E cture 11

Dijkstra’s algorithm

lllustrated example: the third while loop

Isabela Drdmnesc UVT Graph Theory a

Dijkstra’s algorithm

lllustrated example: the fourth while loop

Select and mark u, and relax all arcs from u to unmarked nodes:
d:8 d:9

X T
1

Isabela Drdmnesc UVT Graph Tt

Dijkstra’s algorithm

lllustrated example: the fifth while loop

d(s)=0 m(s) = undef
d(x)=5 m(x)=s
d:0 d(u) =38 m(u) = x
m:undef d(y) —7 7r(y) —x
d(v)=9 w(v) =u

@ Select and mark v
@ There are no arcs left to relax = the algorithm stops.

From the values of m and d we can retrieve lightest paths from s
to all other nodes:

> to s: [s] with weight w([s]) = d(s) =0

» to x: [s, x] with weight w([s, x]) = d(x) =5

> to u: [s, x, u] with weight w([s,x, u]) = d(u) =8

> to y: [s, x,y| with weight w([s,x,y]) =d(y) =7

> to v: [s,x, u, v] with weight w([s,x, u,v]) =d(v) =9

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The tree of lightest paths form source to all other nodes

The function w computed by Dijkstra’s algorithm determines a tree
G, with root s, in which every node x # s has parent 7(x).

Example (The tree G, for the illustrated weighted digraph G)

S
5 |
X2

v
v
Remark

Every branch of G, from the source node s to a node x is a
lightest path from s to x.

Isabela Drdmnesc UVT Graph Theory and Combinatoric ecture 11

References

@ T. H. Cormen, C. E. Leiserson, R. L. Rivest. Section 25.2
from Introduction to Algorithms. MIT Press, 2000.

@ A C++ implementation of Dijkstra’s algorithm can be
downloaded from the website of this lecture (click here)

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

http://web.info.uvt.ro/~mmarin/lectures/TGC/Dijkstra.zip

Flow networks and flows

Intuitive (informal) definitions

Flow network: Oriented graph in which arch represent flows of
material between nodes (volume of liquid, electricity,
a.s.0.)
@ Every edge has a maximum capacity.
@ We wish to determine a flow from a source node
(the producer) to a sink node (the consumer).

Flow ~ the rate of flow of resources along arcs .
The problem of maximum flow: What is the maximum possible

flow of resources from source to destination, without violating any
maximum capacity constraint of the arcs?

Isabela Drdmnesc UVT Graph Theory Combinatorics — Lecture 11

Flow networks

The mathematical model

Definition (Flow network)

An oriented graph G = (V, E), where every arc (u,v) € E has a
capacity ¢(u, v) > 0, and two special nodes:

@ a source s and

@ asink t.
If (u,v) & E, we assume c(u,v) = 0.
We write u ~~ v to indicate the existence of a path from u to v,
and assume that every node v € G is on a path from s to t, i.e.,
there is a path s ~» v ~~ t.

A flow network is a connected graph, thus |[E| > |V/|— 1.

Isabela Drdmnesc UVT Graph Theo! Combinatorics — Lecture 11

Flows

Definition
A flow in a flow network G is a function f : V x V — R that fulfils
the following constraints:

Capacity constraint: For all u,v € V, f(u,v) < c(u,v).
Skew symmetry: For all u,v € V, f(u,v) = —f(v,u).
Flow conservation: For all u € V — {s, t}, Z f(u,v)=0.
veV
f(u,v) is called the net flow from node u to v. The value of a flow

f is defined as |f| = " .\ f(s, v), that is, the total net flow out
of the source.

The maximum-flow problem

Given a flow network G

Find a flow of maximum value from s to t.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Flow networks and flows
Auxiliary notions

@ The positive net flow entering a node v is

= by flow conservation property: for all nodes v, the positive net
flow entering node v = the positive net flow leaving node v.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Network flow example

(a) A flow network G = (V/, E) with edges labeled with their
capacities. The source is s, and destination is t.

(b) A flow f in the flow network G with value |f| = 19. Only
positive flows are shown. If f(u,v) > 0, edge (u,v) is labeled
with f(u, v)/c(u, v). (The slash notation is used merely to
separate the flow and capacity; it does not indicate division.)
If f(u,v) <0, edge (u,v) is labeled only by its capacity.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Network flows

Removing all negative net flows — the cancelation rule

If vi > v then

vi/a (vi —w)/a
va/co

@ Only positive net flows represent actual shipments.
@ Applications of the cancelation rule

e eliminate negative net flows.

e do not violate the 3 requirements of a network flow:
@ capacity constraint
@ skew symmetry
© flow conservation

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Multiple sources and sinks

@ A maximum-flow problem can have several sources sy, ..., s
and sinks t1,..., tm.

@ Such a problem can be reduced to an equivalent single-source
single-sink maximum-flow problem:
e add a supersource s and a supersink t
o add directed edges (s, s;) with ¢(s,s;) = oo for i =1..m
o add directed edges (t;, t) with c(tj,t) = oo for j =1..n

()

Isabela Drdmnesc UVT Graph Theor Combinatorics — Lecture 11

Multiple sources and sinks

@ A maximum-flow problem can have several sources sy, ..., s
and sinks t1,..., tm.

@ Such a problem can be reduced to an equivalent single-source
single-sink maximum-flow problem:
e add a supersource s and a supersink t
o add directed edges (s, s;) with ¢(s,s;) = oo for i =1..m
o add directed edges (t;, t) with c(tj,t) = oo for j =1..n

Example

Isabela Drdmnesc UVT Graph Theol Combinatorics — Lecture 11

Working with flows
Convention of notation
@ Assume we know:
a flow network G = (V, E)
a function f from V x V to R
sets of nodes X, Y (thatis, X CV, Y C V)

node u € V.
@ Then

o f(X,Y) represents the sum Z Z f(x,y).
xeXyeY

o f(u,X) represents the sum Z f(u, x).
xeX
o f(Y,u) represents the sum Z f(y,u).
yey
o X — u represents the set X — {u}.
Remark. If f is a flow for G = (V, E) then f(u, V) = 0 for all

ue V —{s, t}. This follows from the flow conservation constraint
= f(V —{s,t},V)=0.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Properties of flow networks

Lemma

Let G = (V, E) be a flow network and f a flow in G. Then
o f(X,X)=0forall X C V.
o f(X,Y)=—F(Y,X) forall X,Y C V.
o F(XUY,Z)=f(X,Z)+f(Y,Z) and
F(Z,XUY)=f(Z,X)+f(Z,Y) forall X, Y,Z C V with

XNy =40.
Note that:
|f| = f(s, V) by definition
=f(V,V)—-f(V—-s,V) by previous lemma
=f(V,V —5s) by previous lemma
=f(V,t)+f(V,V —{s,t}) by previous lemma
=f(V,t) by flow conservation

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Operations with flows

If 1, f, are flows in a flow network G and a € R, then

@ the flow sum fi + > of f; and £ is the function from V x V
to R defined by

(A + H)(u,v) = fA(u,v) + f(u,v) forall u,veV.

@ the scalar flow product afy is the function from V x V to R
defined by

(afi)(u,v) :=afi(u,v) forall u,veV.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Operations with flows
Examples

(a) G and f; (b) G and £,

Isabela Drdmnesc UVT Graph Theory and Combinato

Operations with flows
Examples

(a) G and f; (b) G and £,

Isabela Drdmnesc UVT Graph Theory and Combinato

Operations with flows
Examples

Isabela Drdmnesc UVT Graph Theory and Combinato

Operations with flows
Quizzes

A flow must satisfy 3 requirements: capacity constraint, skew
symmetry, and flow conservation.

@ Which properties are not preserved by flow sums?
@ Which properties are not preserved by scalar flow products?

© Show that, if f, f> are flows and 0 < o < 1, then
afi+(1—a)fis a flow.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Residual networks

Assumptions: a flow network G = (V, E); flow f in G.
@ The residual capacity of an edge (u, v) is
cr(u,v) = c(u,v) — f(u,v).
@ The residual network of G induced by f is the flow network
Gr = (V, Er) where Ef = {(u,v) € V x V| ¢r(u,v) > 0},
and the capacity of every edge is (u, v) is cf(u, v).

Example

(a) G and f (b) Gr

Remark. In general, |Ef| < 2|E]|.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Flows in residual networks
Properties

Assume a flow network G, a flow f in G, and the residual network Gr. If
f’is a flow in Gr then f 4 f is a flow in G with value |f + f'| = |f| 4 |f’|.
Proor.
@ Skew symmetry holds because (f + f')(u,v) = f(u,v)+f'(u,v) =
—f(v,u) — f'(vyu) = =(f(v,u) + f'(v,u)) = =(f + ") (v, v).
@ For the capacity constraints, note that f'(u, v) < ¢r(u, v) for all

u,v € V, therefore (f + f')(u,v) = f(u,v) + f'(u,v) <
f(u,v)+ (c(u,v) — f(u,v)) = c(u, v).

@ For flow conservation, we note that

ST+ uv) = S (Fu, v) + £ (u,v))

veVv vev
= Z f(u,v) + Z f(u,v) =0+0=0.
vev vev

Finally, we have

[F =3 (F+f)s,v) = D (Fs,)+ £ (s,v) = D fls,v)+ D F(s,v) = [f] + |F'].

vev vev vev vev

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Augmenting paths

An augmenting path for a flow network G and a flow f is a simple
path from s to t in the residual network Gf.

Example (Augmented path)

REMARKS.

@ Each edge (u, v) of an augmenting path admits additional
positive net flow without violating the capacity of the edge.

@ In this example, we could ship up to 4 units more from s to t
along the highlighted augmenting path, without violating any
capacity constraint (Note: the smallest residual capacity on
the highlighted augmenting path is 4).

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Augmenting paths (continued)

@ The residual capacity of an augmenting path p is given by
cr(p) := min{cr(u, v) | (u,v) is on p}.

Lemma

Let G = (V, E) be a flow network with flow f, p an augmenting
path in Gf, and f, : V x V — R defined by
cr(p) if (u,v)is on p,
fo(u,v) == ¢ —cr(p) if (v,u)ison p,
0 otherwise.
Then f, is a flow in G¢ with value |f,| = c¢(p) > 0.

Corollary

Let G = (V, E) be a flow network with flow f, and p be an
augmenting path in Gr. Let f, be the flow defined as in the
previous lemma. Then f + f, is a flow in G with value

'] = [Fl + |fo| > |£].

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The Ford-Fulkerson method

Yields a maximum flow for a given flow network G:

FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p
3 augment flow f along p

4 return f

@ The Ford-Fulkerson method works because the following result
holds:

A flow is maximum if and only if its residual network
contains no augmenting path.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The Ford-Fulkerson method

Yields a maximum flow for a given flow network G:

FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow f to 0

2 while there exists an augmenting path p
3 augment flow f along p

4 return f

@ The Ford-Fulkerson method works because the following result
holds:

A flow is maximum if and only if its residual network
contains no augmenting path.

> We shall prove this fact.
Auxiliary notions: cut, capacity of a cut.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Definition

A cut (S, T) of a flow network G = (V/, E) is a partition of V into
Sand T =V —Ssuchthat s€ S and t € T. The net flow across
the cut (S, T) is (S, T). The capacity of the cut (S, T) is

c(S, 7).

A\

Example

S — {57 Vi, VZ}
T= {V37 Va, t}

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Properties of cuts

The net flow across a cut (S, T) if £(S,T) = |f]|.

For any flow f and any cut (S, T), we have |f| < ¢(S. T).

Max-flow min-cut theorem

If fis a flow in a flow network G = (V/, E) with source s and sink
t, then the following conditions are equivalent:

@ f is a maximum flow in G.
@ Gr contains no augmenting paths.
Q |f| =c(S, T) for some cut (S, T) of G.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The max-flow min-cut theorem
Proof

(1) = (2) By contradiction: Assume f is a maximum flow in G
and that G¢ has an augmenting path p. Then f + f,
would be a flow in G with value strictly larger than
|f], contradicting the assumptions.

(2) = (3) Suppose Gf has no augmenting path from s to t. Let
S ={v € V| there exists a path from s to v in Gr}

and T=V —S. Then (5, T) is a cut because s € S
and t ¢ S. For each pair of nodes (u,v) € S x T we
have v(u, v) = c¢(u, v) because otherwise (u,v) € Ef
and v € S. It follows that |f| = (S, T) = ¢(S, T).

(3) = (1) We know that |f| < ¢(S, T) for all cuts (S, T) of G.
Therefore, the condition |f| = ¢(S, T) implies that f
is @ maximum flow.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The max-flow min-cut theorem

Why is this theorem called “max flow min-cut”?

Assume
Q@ G=(V,E)is a flow network,
@ f is a maximum flow in G,
@ (5, T)is a cut of G with minimum capacity.
Then
o |f| =c(S', T') for some cut (S, T') of G. Since
c(S5,T) < c(S, T (by assumption 3), we have
c(S,T) < |f|.
@ By Previous corollary, |f| < capacity of any cut; in particular
] < fe(S, T)I.
= |f| = ¢(S, T). This means that

> Value of maximum flow in G = minimum capacity of cut of G.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The basic Ford-Fulkerson algorithm

FORD-FULKERSON(G, s, t)

1 for each edge (u,v) € E(G)

2 f(u,v):=0

3 f(v,u):=0

4 while 3 path p from s to t in Gy

5 ¢f:=min{cr(u,v) | (u,v)isin p}
6 for each edge (u,v) in p

7 f(u,v):= f(u,v)+ cr(p)

8 f(v,u) = —f(u,v)

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The basic Ford-Fulkerson algorithm
Running example

Residual network G¢ with New flow that results from
augmented path (line 4) adding f, to f

Exercise: draw the graphs for the remaining steps of Ford-Fulkerson
algorithm.

Isabela Drdmnesc UVT Graph Theory and Combinatorics ecture 11

The basic Ford-Fulkerson algorithm
Complexity analysis

@ The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The basic Ford-Fulkerson algorithm
Complexity analysis

@ The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

@ ASSUMPTION: all edge capacities are integral numbers (that
is, 0,1,2,...).

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The basic Ford-Fulkerson algorithm
Complexity analysis

@ The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.
@ ASSUMPTION: all edge capacities are integral numbers (that
is, 0,1,2,...).
o If the capacities are rational numbers, we can make them all
integer, with an appropriate scaling transformation.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

The basic Ford-Fulkerson algorithm
Complexity analysis

@ The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

@ ASSUMPTION: all edge capacities are integral numbers (that
is, 0,1,2,...).

o If the capacities are rational numbers, we can make them all
integer, with an appropriate scaling transformation.

@ A straightforward implementation of FORD-FULKERSON
algorithm runs in time O(|E| - |f*|) where f* is the maximum
flow found by the algorithm.

Reason: the while loop of lines 4-8 is executed at most |f*|

times, because the flow values increase by at least 1 in each
iteration.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Complexity analysis
An example which takes ©(E - |f*|) time

e A maximum flow * in flow network (a) has |f*| = 2000000. A
poorly chosen augmented path, with capacity 1, is highlighted.

e (b) and (c) illustrate resulting residual networks, after
augmenting with the previously highlighted augmenting path.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Complexity analysis
An example which takes ©(E - |f*|) time

e A maximum flow * in flow network (a) has |f*| = 2000000. A
poorly chosen augmented path, with capacity 1, is highlighted.

e (b) and (c) illustrate resulting residual networks, after
augmenting with the previously highlighted augmenting path.

@ Time complexity is improved if p in line 4 is computed with a
breadth-first search, that is, if p is a shortest path from s to t
in the residual network, where each edge has unit distance
(weight) = Edmonds-Karp algorithm with runtime complexity
o(|V|-|EP2).

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions

Application 1: Maximum bipartite matching

Let B = (V41 U V1, E) be a bipartite graph between subsets V; and
Vo of V (Note: VinVv, = @)

Definition

A matching in B is a set of edges M C E such that for all nodes v
of G, at most one edge of M is incident on v. A maximum
matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M’, we have |M| > [M'|.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions

Application 1: Maximum bipartite matching

Let B = (V41 U V1, E) be a bipartite graph between subsets V; and
Vo of V (Note: VinVv, = @)

Definition

A matching in B is a set of edges M C E such that for all nodes v
of G, at most one edge of M is incident on v. A maximum
matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M’, we have |M| > [M'|.

A maximum bipartite matching of B = (V1 U V5, E) can be found
as follows:

@ Extend B with 2 new nodes: s (supersource) and t
(supersink). Orient all edges of G from V; to Vo. Add edges
from s to all sources of G, and from all sinks of G to t. All
edges in the extended network have capacity 1.

@ Compute a maximum flow in the newly constructed flow
network with source s and sink t.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions

Application 1: Maximum bipartite matching

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions
Application 1: Maximum bipartite matching

Example

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions
Application 1: Maximum bipartite matching

Example

Maximum matChing C — {(X27Y1)7 (X37_y2)7 (X47y4)7 (X57Y3)}

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions
Application 1: Maximum bipartite matching

Example

Maximum matChing C — {(X27Y1)7 (X37_y2)7 (X47y4)7 (X57y3)}

Theorem

Let G be the flow network constructed for a bipartite graph

B = (V41UW,E), and f a maximum flow in G computed with
Ford-Fulkerson logarithm. Then the set of edges (u, v) of f with u € V,
v € Vo and f(u,v) =1 is a maximum matching of B.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions

Application 2: Maximum flow with minimum cost

Problem

G = (V, E): flow network in which every edge (u, v) has a
capacity c(u, v) and a unit cost k(u,v) > 0.

A maximum flow with minimum cost in G is a maximum flow f in
G such that the sum

Z f(u,v)-k(u,v)

(u,v)EE

is minimum.

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

Applications and extensions

Application 2: Maximum flow with minimum cost

Solution: Adjustment of Edmonds-Karp algorithm

@ Attach costs to all edges of the residual networks of a flow f:
o edge (u,v) has cost k(u, v) if c(u,v) > f(u, v) in the original
flow network
e edge (u,v) has cost —k(u, v) if f(u,v) <0 in the original flow
network

@ Instead of shortest simple path from source s to sink t, this
algorithm finds a path p from s to t with minimum cost in the
residual network.

e p can be found with Bellman-Ford algorithm.
@ Next, the flow is incremented along path p with the maximum
possible value (=minimum of the differences between capacity
and flow, for every arc of p).

Isabela Drdmnesc UVT Graph Theory and Combinatorics — Lecture 11

References

Chapter 27 from

@ T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms. MIT Press, 2000.

Isabela Drdmnesc UVT Graph Theory and Combinatorics ecture 11

