
Lecture 11
Connectivity: Dijkstra’s algorithm.

Flow networks: Maximum flow algorithms

Isabela Drămnesc UVT

Computer Science Department,
West University of Timişoara,

Romania

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 1 / 43

Lecture outline

1 The problem of lightest paths from a single source in a
weighted digraph

Dijkstra’s algorithm

2 Flow networks and flows

Maximum flow
Residual networks, augmenting paths
Ford-Fulkerson algorithm
Applications

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 2 / 43

Lightest paths from a given source node

Given a simple weighted digraph G = (V ,E) with
w : E 7→ R+ and a source node s ∈ V

Find for every node x ∈ V accessible from s, a lightest
path ρ : s x , and its weight w(ρ)

Example

s

x

u

y

v
10

5

2

9

1

2 3 4 6
7

[s] with w([s]) = 0;

[s, x] with w([s, x]) = 5;

[s, x , y] with w([s, x , y]) = 7.

[s, x , u] with w([s, x , u]) = 8

[s, x , u, v] with w([s, x , u, v]) = 9

Remark

The problem can be solved with Warshall’s algorithm:

Computes the lightest paths that exist between every pair of
nodes
Runtime complexity O(|V |3); it computes more than needed

Is there a better algorithm, if the source node is fixed?

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 3 / 43

Lightest paths from a given source node

Given a simple weighted digraph G = (V ,E) with
w : E 7→ R+ and a source node s ∈ V

Find for every node x ∈ V accessible from s, a lightest
path ρ : s x , and its weight w(ρ)

Example

s

x

u

y

v
10

5

2

9

1

2 3 4 6
7

[s] with w([s]) = 0;

[s, x] with w([s, x]) = 5;

[s, x , y] with w([s, x , y]) = 7.

[s, x , u] with w([s, x , u]) = 8

[s, x , u, v] with w([s, x , u, v]) = 9

Remark

The problem can be solved with Warshall’s algorithm:

Computes the lightest paths that exist between every pair of
nodes
Runtime complexity O(|V |3); it computes more than needed

Is there a better algorithm, if the source node is fixed?

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 3 / 43

Dijkstra’s Algorithm
Informal description

Proposed by E. Dijkstra in 1956 to solve the previous problem

1 Assign

A tentative weight d(x) for a lightest path from source to x .

a predecessor node π(x) of every node x on a lightest path from s to x .

Initially, we have d(x) =

{
0 if x = s,
∞ if x 6= s

π(x) =

{
undef if x = s
s if x 6= s

where undef is a special value: it indicates the inexistence of a predecessor.

2 Create a set Q of unvisited nodes. Initially, Q := V , and keep track of a current
node crt.

3 choose crt :=a node form Q with d(crt) = min{d(x) | x ∈ Q}, and remove crt
from Q.

4 For every neighbor x ∈ Q of crt update the tentative values of d(x) and π(x) as
follows:

If d(crt) + w((crt, x)) < d(x) then d(x) := d(crt) + w((crt, x))
and π(x) := crt.

This updating step is called relaxation step of the arc (crt, x) ∈ E .

5 If Q = ∅ then stop, else goto 3.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 4 / 43

Dijkstra’s algorithm
Pseudocode for the auxiliary operations

I Initialization

SingleSourceInit(G , s)
for each v ∈ V

d(v) :=∞
π(v) := s

d(s) := 0
π(s) := undef

I Relaxation step for an arc (u, v)

Relax(u, v)
if d(v) > d(u) + w((u, v))

d(v) := d(u) + w((u, v))
π(v) := π(u)

s

u

v

d(u)

d(v)

w((u, v))

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 5 / 43

Dijkstra’s algorithm
Pseudocode

Dijkstra(G ,w , s)
1 SingleSourceInit(G , s)
2 Q := V
3 while Q 6= ∅
4 u :=ExtractMin(Q)

5 for every neighbor v of u for which v 6∈ Q
6 Relax(u, v)

Runtime complexity:

B Original algorithm: O(|V |2)

B Algorithm improved with a min-priority queue:
O(|E |+ |V | · log |V |)

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 6 / 43

Dijkstra’s algorithm
Illustrated example: first while loop

Convention: The nodes not marked yet (those from Q) are
white; the others are gray

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :∞
π:s

d :∞
π:s

d :∞
π:s

d :∞
π:s

Configuration produced by InitializeSingleSource(G , s):

Q = {s, x , y , u, v}
Select s = ExtractMin(Q)

Relax all arcs from s to nodes not visited yet:

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :∞
π:s

d :∞
π:s

d :5
π:s

d :∞
π:s

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :10
π:s

d :∞
π:s

d :5
π:s

d :∞
π:s

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 7 / 43

Dijkstra’s algorithm
Illustrated example: the second while loop

Select and mark x , and relax all arcs from x to unmarked nodes:

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :∞
π:s

d :5
π:s

d :∞
π:s

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :14
π:x

d :5
π:s

d :∞
π:s

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :14
π:x

d :5
π:s

d :7
π:x

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 8 / 43

Dijkstra’s algorithm
Illustrated example: the third while loop

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :14
π:x

d :5
π:s

d :7
π:x

Select and mark y , and relax all arcs from y to unmarked nodes:

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :13
π:y

d :5
π:s

d :7
π:x

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 9 / 43

Dijkstra’s algorithm
Illustrated example: the fourth while loop

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :13
π:y

d :5
π:s

d :7
π:x

Select and mark u, and relax all arcs from u to unmarked nodes:

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :9
π:u

d :5
π:s

d :7
π:x

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 10 / 43

Dijkstra’s algorithm
Illustrated example: the fifth while loop

s

x

u

y

v

7

10

5

2

9

1

2 3 4 6
d :0

π:undef

d :8
π:x

d :9
π:u

d :5
π:s

d :7
π:x

d(s) = 0

d(x) = 5

d(u) = 8

d(y) = 7

d(v) = 9

π(s) = undef

π(x) = s

π(u) = x

π(y) = x

π(v) = u

Select and mark v

There are no arcs left to relax ⇒ the algorithm stops.

From the values of π and d we can retrieve lightest paths from s
to all other nodes:

I to s: [s] with weight w([s]) = d(s) = 0

I to x : [s, x] with weight w([s, x]) = d(x) = 5

I to u: [s, x , u] with weight w([s, x , u]) = d(u) = 8

I to y : [s, x , y] with weight w([s, x , y]) = d(y) = 7

I to v : [s, x , u, v] with weight w([s, x , u, v]) = d(v) = 9

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 11 / 43

The tree of lightest paths form source to all other nodes

The function π computed by Dijkstra’s algorithm determines a tree
Gπ with root s, in which every node x 6= s has parent π(x).

Example (The tree Gπ for the illustrated weighted digraph G)

s

x

u y

v

5

23

1

Remark

Every branch of Gπ from the source node s to a node x is a
lightest path from s to x .

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 12 / 43

References

1 T. H. Cormen, C. E. Leiserson, R. L. Rivest. Section 25.2
from Introduction to Algorithms. MIT Press, 2000.

2 A C++ implementation of Dijkstra’s algorithm can be
downloaded from the website of this lecture (click here)

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 13 / 43

http://web.info.uvt.ro/~mmarin/lectures/TGC/Dijkstra.zip

Flow networks and flows
Intuitive (informal) definitions

Flow network: Oriented graph in which arch represent flows of
material between nodes (volume of liquid, electricity,
a.s.o.)

Every edge has a maximum capacity.
We wish to determine a flow from a source node
(the producer) to a sink node (the consumer).

Flow ≈ the rate of flow of resources along arcs .

The problem of maximum flow: What is the maximum possible
flow of resources from source to destination, without violating any
maximum capacity constraint of the arcs?

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 14 / 43

Flow networks
The mathematical model

Definition (Flow network)

An oriented graph G = (V ,E), where every arc (u, v) ∈ E has a
capacity c(u, v) ≥ 0, and two special nodes:

a source s and

a sink t.

If (u, v) 6∈ E , we assume c(u, v) = 0.
We write u v to indicate the existence of a path from u to v ,
and assume that every node v ∈ G is on a path from s to t, i.e.,
there is a path s v t.

Remark

A flow network is a connected graph, thus |E | ≥ |V | − 1.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 15 / 43

Flows

Definition

A flow in a flow network G is a function f : V ×V → R that fulfils
the following constraints:

Capacity constraint: For all u, v ∈ V , f (u, v) ≤ c(u, v).

Skew symmetry: For all u, v ∈ V , f (u, v) = −f (v , u).

Flow conservation: For all u ∈ V − {s, t},
∑
v∈V

f (u, v) = 0.

f (u, v) is called the net flow from node u to v . The value of a flow
f is defined as |f | =

∑
v∈V f (s, v), that is, the total net flow out

of the source.

The maximum-flow problem

Given a flow network G

Find a flow of maximum value from s to t.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 16 / 43

Flow networks and flows
Auxiliary notions

The positive net flow entering a node v is∑
u∈V

f (u,v)>0

f (u, v)

The positive net flow leaving a node v is∑
u∈V

f (v ,u)>0

f (v , u)

⇒ by flow conservation property: for all nodes v , the positive net
flow entering node v = the positive net flow leaving node v .

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 17 / 43

Network flow example

s

v1

v2

v3

v4

t
16

13

10 4

12

14

7

20

4

9

(a)

s

v1

v2

v3

v4

t
11/16

8/13

10 1/4

12/12

11/14

7/7

15/20

4/4

4/
9

(b)

(a) A flow network G = (V ,E) with edges labeled with their
capacities. The source is s, and destination is t.

(b) A flow f in the flow network G with value |f | = 19. Only
positive flows are shown. If f (u, v) > 0, edge (u, v) is labeled
with f (u, v)/c(u, v). (The slash notation is used merely to
separate the flow and capacity; it does not indicate division.)
If f (u, v) ≤ 0, edge (u, v) is labeled only by its capacity.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 18 / 43

Network flows
Removing all negative net flows – the cancelation rule

If v1 ≥ v2 then

x y x y

v1/c1

v2/c2

(v1 − v2)/c1

v2

cancellation

Only positive net flows represent actual shipments.

Applications of the cancelation rule

eliminate negative net flows.
do not violate the 3 requirements of a network flow:

1 capacity constraint
2 skew symmetry
3 flow conservation

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 19 / 43

Multiple sources and sinks

A maximum-flow problem can have several sources s1, . . . , sm
and sinks t1, . . . , tm.

Such a problem can be reduced to an equivalent single-source
single-sink maximum-flow problem:

add a supersource s and a supersink t
add directed edges (s, si) with c(s, si) =∞ for i = 1..m
add directed edges (tj , t) with c(tj , t) =∞ for j = 1..n

Example

s1

s2

s3

s4

s5

s1

s2

s3

s4

t1

t2

t3

10

12

5

8

14

7

11

2

3

15

6

20

13

18

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 20 / 43

Multiple sources and sinks

A maximum-flow problem can have several sources s1, . . . , sm
and sinks t1, . . . , tm.

Such a problem can be reduced to an equivalent single-source
single-sink maximum-flow problem:

add a supersource s and a supersink t
add directed edges (s, si) with c(s, si) =∞ for i = 1..m
add directed edges (tj , t) with c(tj , t) =∞ for j = 1..n

Example

s1

s2

s3

s4

s5

s1

s2

s3

s4

t1

t2

t3

10

12

5

8

14

7

11

2

3

15

6

20

13

18

s

s1

s2

s3

s4

s5

s1

s2

s3

s4

t1

t2

t3

t

∞
∞
∞
∞
∞

∞

∞

∞

10

12

5

8

14

7

11

2

3

15

6

20

13

18

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 20 / 43

Working with flows
Convention of notation

Assume we know:

a flow network G = (V ,E)
a function f from V × V to R
sets of nodes X ,Y (that is, X ⊆ V , Y ⊆ V)
node u ∈ V .

Then

f (X ,Y) represents the sum
∑
x∈X

∑
y∈Y

f (x , y).

f (u,X) represents the sum
∑
x∈X

f (u, x).

f (Y , u) represents the sum
∑
y∈Y

f (y , u).

X − u represents the set X − {u}.

Remark. If f is a flow for G = (V ,E) then f (u,V) = 0 for all
u ∈ V − {s, t}. This follows from the flow conservation constraint
⇒ f (V − {s, t},V) = 0.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 21 / 43

Properties of flow networks

Lemma

Let G = (V ,E) be a flow network and f a flow in G . Then

f (X ,X) = 0 for all X ⊆ V .

f (X ,Y) = −f (Y ,X) for all X ,Y ⊆ V .

f (X ∪ Y ,Z) = f (X ,Z) + f (Y ,Z) and
f (Z ,X ∪ Y) = f (Z ,X) + f (Z ,Y) for all X ,Y ,Z ⊆ V with
X ∩ Y = ∅.

Note that:

|f | = f (s,V) by definition

= f (V ,V)− f (V − s,V) by previous lemma

= f (V ,V − s) by previous lemma

= f (V , t) + f (V ,V − {s, t}) by previous lemma

= f (V , t) by flow conservation

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 22 / 43

Operations with flows

Definition

If f1, f2 are flows in a flow network G and α ∈ R, then

the flow sum f1 + f2 of f1 and f2 is the function from V × V
to R defined by

(f1 + f2)(u, v) := f1(u, v) + f2(u, v) for all u, v ∈ V .

the scalar flow product αf1 is the function from V × V to R
defined by

(α f1)(u, v) := α f1(u, v) for all u, v ∈ V .

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 23 / 43

Operations with flows
Examples

s

v1

v2

v3

v4

t
11/16

8/13

10 1/4

12/12

11/14

7/7

15/20

4/4

4/
9

(a) G and f1

s

v1

v2

v3

v4

t
1/16

6/13

10 1/4

2/12

9/14

7/7

5/20

2/4

4/
9

(b) G and f2

s

v1

v2

v3

v4

t
12/16

14/13

10 1/4

14/12

20/14

7/7

20/20

6/4

4/
9

(c) G and f1 + f2

s

v1

v2

v3

v4

t
.5/16

3/13

10 .5/4

1/12

4.5/14

3.5/7

2.5/20

1/4

2/
9

(d) G and α f2 when α = 1
2

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 24 / 43

Operations with flows
Examples

s

v1

v2

v3

v4

t
11/16

8/13

10 1/4

12/12

11/14

7/7

15/20

4/4

4/
9

(a) G and f1

s

v1

v2

v3

v4

t
1/16

6/13

10 1/4

2/12

9/14

7/7

5/20

2/4

4/
9

(b) G and f2

s

v1

v2

v3

v4

t
12/16

14/13

10 1/4

14/12

20/14

7/7

20/20

6/4

4/
9

(c) G and f1 + f2

s

v1

v2

v3

v4

t
.5/16

3/13

10 .5/4

1/12

4.5/14

3.5/7

2.5/20

1/4

2/
9

(d) G and α f2 when α = 1
2

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 24 / 43

Operations with flows
Examples

s

v1

v2

v3

v4

t
11/16

8/13

10 1/4

12/12

11/14

7/7

15/20

4/4

4/
9

(a) G and f1

s

v1

v2

v3

v4

t
1/16

6/13

10 1/4

2/12

9/14

7/7

5/20

2/4

4/
9

(b) G and f2

s

v1

v2

v3

v4

t
12/16

14/13

10 1/4

14/12

20/14

7/7

20/20

6/4

4/
9

(c) G and f1 + f2

s

v1

v2

v3

v4

t
.5/16

3/13

10 .5/4

1/12

4.5/14

3.5/7

2.5/20

1/4

2/
9

(d) G and α f2 when α = 1
2

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 24 / 43

Operations with flows
Quizzes

A flow must satisfy 3 requirements: capacity constraint, skew
symmetry, and flow conservation.

1 Which properties are not preserved by flow sums?

2 Which properties are not preserved by scalar flow products?

3 Show that, if f1, f2 are flows and 0 ≤ α ≤ 1, then
α f1 + (1− α) f2 is a flow.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 25 / 43

Residual networks

Assumptions: a flow network G = (V ,E); flow f in G .

The residual capacity of an edge (u, v) is
cf (u, v) := c(u, v)− f (u, v).

The residual network of G induced by f is the flow network
Gf = (V ,Ef) where Ef = {(u, v) ∈ V × V | cf (u, v) > 0},
and the capacity of every edge is (u, v) is cf (u, v).

Example

s

v1

v2

v3

v4

t
11/16

8/13

10 1/4

12/12

11/14

7/7

15/20

4/4

4/
9

(a) G and f

s

v1

v2

v3

v4

t

5

11

5

8

11 3

12

11

3

7

5

15

4

5

4
(b) Gf

Remark. In general, |Ef | ≤ 2 |E |.
Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 26 / 43

Flows in residual networks
Properties

Assume a flow network G , a flow f in G , and the residual network Gf . If

f ′ is a flow in Gf then f + f ′ is a flow in G with value |f + f ′| = |f |+ |f ′|.

Proof.

Skew symmetry holds because (f + f ′)(u, v) = f (u, v) + f ′(u, v) =
−f (v , u)− f ′(v , u) = −(f (v , u) + f ′(v , u)) = −(f + f ′)(v , u).

For the capacity constraints, note that f ′(u, v) ≤ cf (u, v) for all
u, v ∈ V , therefore (f + f ′)(u, v) = f (u, v) + f ′(u, v) ≤
f (u, v) + (c(u, v)− f (u, v)) = c(u, v).

For flow conservation, we note that∑
v∈V

(f + f ′)(u, v) =
∑
v∈V

(f (u, v) + f ′(u, v))

=
∑
v∈V

f (u, v) +
∑
v∈V

f ′(u, v) = 0 + 0 = 0.

Finally, we have

|f + f ′| =
∑
v∈V

(f + f ′)(s, v) =
∑
v∈V

(f (s, v) + f ′(s, v)) =
∑
v∈V

f (s, v) +
∑
v∈V

f ′(s, v) = |f | + |f ′|.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 27 / 43

Augmenting paths

An augmenting path for a flow network G and a flow f is a simple
path from s to t in the residual network Gf .

Example (Augmented path)

s

v1

v2

v3

v4

t

5

11

5

8

11 3

12

11

3

7

5

15

4

5

4

Remarks.

Each edge (u, v) of an augmenting path admits additional
positive net flow without violating the capacity of the edge.

In this example, we could ship up to 4 units more from s to t
along the highlighted augmenting path, without violating any
capacity constraint (Note: the smallest residual capacity on
the highlighted augmenting path is 4).

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 28 / 43

Augmenting paths (continued)

The residual capacity of an augmenting path p is given by

cf (p) := min{cf (u, v) | (u, v) is on p}.

Lemma

Let G = (V ,E) be a flow network with flow f , p an augmenting
path in Gf , and fp : V × V → R defined by

fp(u, v) :=


cf (p) if (u, v) is on p,
−cf (p) if (v , u) is on p,

0 otherwise.
Then fp is a flow in Gf with value |fp| = cf (p) > 0.

Corollary

Let G = (V ,E) be a flow network with flow f , and p be an
augmenting path in Gf . Let fp be the flow defined as in the
previous lemma. Then f + fp is a flow in G with value
|f ′| = |f |+ |fp| > |f |.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 29 / 43

The Ford-Fulkerson method

Yields a maximum flow for a given flow network G :

Ford-Fulkerson-Method(G , s, t)
1 initialize flow f to 0
2 while there exists an augmenting path p
3 augment flow f along p
4 return f

The Ford-Fulkerson method works because the following result
holds:

A flow is maximum if and only if its residual network
contains no augmenting path.

. We shall prove this fact.

Auxiliary notions: cut, capacity of a cut.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 30 / 43

The Ford-Fulkerson method

Yields a maximum flow for a given flow network G :

Ford-Fulkerson-Method(G , s, t)
1 initialize flow f to 0
2 while there exists an augmenting path p
3 augment flow f along p
4 return f

The Ford-Fulkerson method works because the following result
holds:

A flow is maximum if and only if its residual network
contains no augmenting path.

. We shall prove this fact.

Auxiliary notions: cut, capacity of a cut.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 30 / 43

Cuts

Definition

A cut (S ,T) of a flow network G = (V ,E) is a partition of V into
S and T = V − S such that s ∈ S and t ∈ T . The net flow across
the cut (S ,T) is f (S ,T). The capacity of the cut (S ,T) is
c(S ,T).

Example

s

v1

v2

v3

v4

t
11/16

8/13

10 1/4

12/12

11/14

7/7

15/20

4/4

4/
9

← S T →

S = {s, v1, v2}
T = {v3, v4, t}

f (S ,T) = f (v1, v3)+f (v2, v3)+f (v2, v4) = 12+(−4)+11 = 19
c(S ,T) = c(v1, v3) + c(v2, v4) = 12 + 14 = 26

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 31 / 43

Properties of cuts

Lemma

The net flow across a cut (S ,T) if f (S ,T) = |f |.

Corollary

For any flow f and any cut (S ,T), we have |f | ≤ c(S ,T).

Max-flow min-cut theorem

If f is a flow in a flow network G = (V ,E) with source s and sink
t, then the following conditions are equivalent:

1 f is a maximum flow in G .

2 Gf contains no augmenting paths.

3 |f | = c(S ,T) for some cut (S ,T) of G .

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 32 / 43

The max-flow min-cut theorem
Proof

(1)⇒ (2) By contradiction: Assume f is a maximum flow in G
and that Gf has an augmenting path p. Then f + fp
would be a flow in G with value strictly larger than
|f |, contradicting the assumptions.

(2)⇒ (3) Suppose Gf has no augmenting path from s to t. Let

S = {v ∈ V | there exists a path from s to v in Gf }

and T = V − S . Then (S ,T) is a cut because s ∈ S
and t 6∈ S . For each pair of nodes (u, v) ∈ S × T we
have v(u, v) = c(u, v) because otherwise (u, v) ∈ Ef

and v ∈ S . It follows that |f | = f (S ,T) = c(S ,T).

(3)⇒ (1) We know that |f | ≤ c(S ,T) for all cuts (S ,T) of G .
Therefore, the condition |f | = c(S ,T) implies that f
is a maximum flow.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 33 / 43

The max-flow min-cut theorem
Why is this theorem called “max flow min-cut”?

Assume

1 G = (V ,E) is a flow network,

2 f is a maximum flow in G ,

3 (S ,T) is a cut of G with minimum capacity.

Then

|f | = c(S ′,T ′) for some cut (S ′,T ′) of G . Since
c(S ,T) ≤ c(S ′,T ′) (by assumption 3), we have
c(S ,T) ≤ |f |.
By Previous corollary, |f | ≤ capacity of any cut; in particular
|f | ≤ |c(S ,T)|.

⇒ |f | = c(S ,T). This means that

B Value of maximum flow in G = minimum capacity of cut of G .

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 34 / 43

The basic Ford-Fulkerson algorithm

Ford-Fulkerson(G , s, t)
1 for each edge (u, v) ∈ E (G)
2 f (u, v) := 0
3 f (v , u) := 0
4 while ∃ path p from s to t in Gf

5 cf := min{cf (u, v) | (u, v) is in p}
6 for each edge (u, v) in p
7 f (u, v) := f (u, v) + cf (p)
8 f (v , u) := −f (u, v)

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 35 / 43

The basic Ford-Fulkerson algorithm
Running example

s

v1

v2

v3

v4

t
16

13

10 4

12

14

7

20

4

9(a)

Residual network Gf with
augmented path (line 4)

s

v1

v2

v3

v4

t
4/16

13

10 4

4/12

4/14

7

20

4/4

4/
9

New flow that results from
adding fp to f

s

v1

v2

v3

v4

t
12

4

13

10 4

8

4

10

4

7

20

4

5

4(b) s

v1

v2

v3

v4

t
11/16

13

7/10 4

4/12

11/14

7/7

7/20

4/4

4/
9

s

v1

v2

v3

v4

t
5

11

13

3 11

8

4

3

11

7

13

7

4

5

4(c)

Exercise: draw the graphs for the remaining steps of Ford-Fulkerson

algorithm.
Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 36 / 43

The basic Ford-Fulkerson algorithm
Complexity analysis

The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

Assumption: all edge capacities are integral numbers (that
is, 0,1,2,. . .).

If the capacities are rational numbers, we can make them all
integer, with an appropriate scaling transformation.

A straightforward implementation of Ford-Fulkerson
algorithm runs in time O(|E | · |f ∗|) where f ∗ is the maximum
flow found by the algorithm.

Reason: the while loop of lines 4-8 is executed at most |f ∗|
times, because the flow values increase by at least 1 in each
iteration.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 37 / 43

The basic Ford-Fulkerson algorithm
Complexity analysis

The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

Assumption: all edge capacities are integral numbers (that
is, 0,1,2,. . .).

If the capacities are rational numbers, we can make them all
integer, with an appropriate scaling transformation.

A straightforward implementation of Ford-Fulkerson
algorithm runs in time O(|E | · |f ∗|) where f ∗ is the maximum
flow found by the algorithm.

Reason: the while loop of lines 4-8 is executed at most |f ∗|
times, because the flow values increase by at least 1 in each
iteration.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 37 / 43

The basic Ford-Fulkerson algorithm
Complexity analysis

The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

Assumption: all edge capacities are integral numbers (that
is, 0,1,2,. . .).

If the capacities are rational numbers, we can make them all
integer, with an appropriate scaling transformation.

A straightforward implementation of Ford-Fulkerson
algorithm runs in time O(|E | · |f ∗|) where f ∗ is the maximum
flow found by the algorithm.

Reason: the while loop of lines 4-8 is executed at most |f ∗|
times, because the flow values increase by at least 1 in each
iteration.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 37 / 43

The basic Ford-Fulkerson algorithm
Complexity analysis

The running time depends on how the augmenting path p is
computed in line 4 of the algorithm.

Assumption: all edge capacities are integral numbers (that
is, 0,1,2,. . .).

If the capacities are rational numbers, we can make them all
integer, with an appropriate scaling transformation.

A straightforward implementation of Ford-Fulkerson
algorithm runs in time O(|E | · |f ∗|) where f ∗ is the maximum
flow found by the algorithm.

Reason: the while loop of lines 4-8 is executed at most |f ∗|
times, because the flow values increase by at least 1 in each
iteration.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 37 / 43

Complexity analysis
An example which takes Θ(E · |f ∗|) time

s

u

v

t
1000000

1000000

1

1000000

1000000

(a)

s

u

v

t

999999

1

1000000

1

1000000

999999

1

(b)

s

u

v

t

999999

1

999999

1
1

999999
1

999999

1

(c)

A maximum flow f ∗ in flow network (a) has |f ∗| = 2000000. A
poorly chosen augmented path, with capacity 1, is highlighted.

(b) and (c) illustrate resulting residual networks, after
augmenting with the previously highlighted augmenting path.

Time complexity is improved if p in line 4 is computed with a
breadth-first search, that is, if p is a shortest path from s to t
in the residual network, where each edge has unit distance
(weight) ⇒ Edmonds-Karp algorithm with runtime complexity
O(|V | · |E |2).

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 38 / 43

Complexity analysis
An example which takes Θ(E · |f ∗|) time

s

u

v

t
1000000

1000000

1

1000000

1000000

(a)

s

u

v

t

999999

1

1000000

1

1000000

999999

1

(b)

s

u

v

t

999999

1

999999

1
1

999999
1

999999

1

(c)

A maximum flow f ∗ in flow network (a) has |f ∗| = 2000000. A
poorly chosen augmented path, with capacity 1, is highlighted.

(b) and (c) illustrate resulting residual networks, after
augmenting with the previously highlighted augmenting path.

Time complexity is improved if p in line 4 is computed with a
breadth-first search, that is, if p is a shortest path from s to t
in the residual network, where each edge has unit distance
(weight) ⇒ Edmonds-Karp algorithm with runtime complexity
O(|V | · |E |2).

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 38 / 43

Applications and extensions
Application 1: Maximum bipartite matching

Let B = (V1 ∪ V 1,E) be a bipartite graph between subsets V1 and
V2 of V (Note: V1 ∩ V2 = ∅.)

Definition

A matching in B is a set of edges M ⊆ E such that for all nodes v
of G , at most one edge of M is incident on v . A maximum
matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M ′, we have |M| ≥ |M ′|.

A maximum bipartite matching of B = (V1 ∪ V2,E) can be found
as follows:

1 Extend B with 2 new nodes: s (supersource) and t
(supersink). Orient all edges of G from V1 to V2. Add edges
from s to all sources of G , and from all sinks of G to t. All
edges in the extended network have capacity 1.

2 Compute a maximum flow in the newly constructed flow
network with source s and sink t.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 39 / 43

Applications and extensions
Application 1: Maximum bipartite matching

Let B = (V1 ∪ V 1,E) be a bipartite graph between subsets V1 and
V2 of V (Note: V1 ∩ V2 = ∅.)

Definition

A matching in B is a set of edges M ⊆ E such that for all nodes v
of G , at most one edge of M is incident on v . A maximum
matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M ′, we have |M| ≥ |M ′|.

A maximum bipartite matching of B = (V1 ∪ V2,E) can be found
as follows:

1 Extend B with 2 new nodes: s (supersource) and t
(supersink). Orient all edges of G from V1 to V2. Add edges
from s to all sources of G , and from all sinks of G to t. All
edges in the extended network have capacity 1.

2 Compute a maximum flow in the newly constructed flow
network with source s and sink t.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 39 / 43

Applications and extensions
Application 1: Maximum bipartite matching

Example

x1

x2

x3

x4

x5

y1

y2

y3

y4

s t

Maximum matching C = {(x2, y1), (x3, y2), (x4, y4), (x5, y3)}

Theorem

Let G be the flow network constructed for a bipartite graph

B = (V1 ∪ V2,E), and f a maximum flow in G computed with

Ford-Fulkerson logarithm. Then the set of edges (u, v) of f with u ∈ V1,

v ∈ V2 and f (u, v) = 1 is a maximum matching of B.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 40 / 43

Applications and extensions
Application 1: Maximum bipartite matching

Example

x1

x2

x3

x4

x5

y1

y2

y3

y4

s t

Maximum matching C = {(x2, y1), (x3, y2), (x4, y4), (x5, y3)}

Theorem

Let G be the flow network constructed for a bipartite graph

B = (V1 ∪ V2,E), and f a maximum flow in G computed with

Ford-Fulkerson logarithm. Then the set of edges (u, v) of f with u ∈ V1,

v ∈ V2 and f (u, v) = 1 is a maximum matching of B.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 40 / 43

Applications and extensions
Application 1: Maximum bipartite matching

Example

x1

x2

x3

x4

x5

y1

y2

y3

y4

s t

Maximum matching C = {(x2, y1), (x3, y2), (x4, y4), (x5, y3)}

Theorem

Let G be the flow network constructed for a bipartite graph

B = (V1 ∪ V2,E), and f a maximum flow in G computed with

Ford-Fulkerson logarithm. Then the set of edges (u, v) of f with u ∈ V1,

v ∈ V2 and f (u, v) = 1 is a maximum matching of B.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 40 / 43

Applications and extensions
Application 1: Maximum bipartite matching

Example

x1

x2

x3

x4

x5

y1

y2

y3

y4

s t

Maximum matching C = {(x2, y1), (x3, y2), (x4, y4), (x5, y3)}

Theorem

Let G be the flow network constructed for a bipartite graph

B = (V1 ∪ V2,E), and f a maximum flow in G computed with

Ford-Fulkerson logarithm. Then the set of edges (u, v) of f with u ∈ V1,

v ∈ V2 and f (u, v) = 1 is a maximum matching of B.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 40 / 43

Applications and extensions
Application 2: Maximum flow with minimum cost

Problem

G = (V ,E): flow network in which every edge (u, v) has a
capacity c(u, v) and a unit cost k(u, v) ≥ 0.
A maximum flow with minimum cost in G is a maximum flow f in
G such that the sum ∑

(u,v)∈E

f (u, v) · k(u, v)

is minimum.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 41 / 43

Applications and extensions
Application 2: Maximum flow with minimum cost

Solution: Adjustment of Edmonds-Karp algorithm

Attach costs to all edges of the residual networks of a flow f :

edge (u, v) has cost k(u, v) if c(u, v) > f (u, v) in the original
flow network
edge (u, v) has cost −k(u, v) if f (u, v) < 0 in the original flow
network

Instead of shortest simple path from source s to sink t, this
algorithm finds a path p from s to t with minimum cost in the
residual network.

p can be found with Bellman-Ford algorithm.

Next, the flow is incremented along path p with the maximum
possible value (=minimum of the differences between capacity
and flow, for every arc of p).

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 42 / 43

References

Chapter 27 from

T. H. Cormen, C. E. Leiserson, R. L. Rivest. Introduction to
Algorithms. MIT Press, 2000.

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 11 43 / 43

