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Remember that:

Graph = mathematical structure G = (V ,E ) where

V : set of nodes (or vertices)

E : set of edges incident to 2 nodes, or 1 node

Depending on the kind of edges e ∈ E , graphs are of two kinds:

I Undirected: Every edge has one or two endpoints

Graphical representation:
a b or a (loop)e

e

I Directed (or digraphs): Every edge e ∈ E has a source (or start)
end a destination (or end)

Graphical representation:
a b or a (loop)e

e

The directed edges are called arcs.

Simple graph: graph (directed or not) with at most one arc between any
pair of nodes, and no loop.
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Common types of graphs
Taxonomy

G = (V ,E )

e1, e2 ∈ E are parallel edges if they are incident to the same nodes,
and

If G is directed, then start(e1) = start(e2) and
end(e1) = end(e2)

I Multigraph (directed or not):no loops, and if the graph is

undirected: it can have parallel edges
directed: it can have parallel arcs

I Pseudograph: undirected graph that can have loops and
parallel edges.

I Weighted graph: every edge e ∈ E has a weight w(E );
usually w(e) ∈ R.
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Graphical representations of graphs
Illustrative examples

I Simple graphs: draw lines or arcs between the connected
nodes

Simple undirected graph:
a

b c

d

e

Simple directed graph:
a

b c

d

e

I Simple weighted graphs: we indicate the weights along the
corresponding connections

a

e

b c

d

f

2

7

1

5

12

1
4

9

3
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Graphical representations of graphs
Example (continued)

Multigraphs or pseudographs: if we want to distinguish parallel
edges, we can label them:

multigraph:

a

b

c d

e2

e3

e4

e5e6

e1

pseudograph:

a

b

c d

e2

e3

e4

e5e6

e1

e9

e7

e8
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Concrete representations of graphs

1 List of nodes + list of edges

2 Adjacency lists

3 Adjacency matrix

4 Incidence matrix

5 Weight matrix
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Simple graphs
The representation by list of nodes + list of edges

Example

a

b c

d

e

List of nodes V = [a, b, c, d , e]
List of edges E = [{a, b}, {a, c}, {a, d}, {b, c}, {c, e}, {d , e}]
Remarks: {a, b} = {b, a}, {a, c} = {c, a}, a.s.o.

edge ↔ set of nodes adjacent to the edge

a

b c

d

e

List of nodes V = [a, b, c, d , e]
List of arcs E = [(a, b), (c, a), (c, b), (d , a), (e, c), (e, d)]
Remarks: (a, b) 6= (b, a), (a, c) 6= (c, a), a.s.o.

edge ↔ pair (start,end)

Remark

If the graph has no isolated nodes (with 0 neighbors), there is no
need to store the list of nodes V :

I V can be computed from E
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Simple graphs
The representation with adjacency lists

For every node u ∈ V we keep the list of nodes that are adjacent
to u

I If G is undirected, v is adjacent to u of there is an edge with
endpoints u and v .

In undirected graphs, the relation of adjacency is symmetric.

I If G is directed, v is adjacent to u if there is an arc e ∈ E
from u to v , i.e. start(e) = u and end(e) = v .

Example

a

b c

d

e

a 7→ [b, c, d ]
b 7→ [a, c]
c 7→ [a, b, e]

d 7→ [a, e]
e 7→ [c, d ]

a

b c

d

e

a 7→ [b]
b 7→ []
c 7→ [a, b]

d 7→ [a]
e 7→ [c, d ]
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Graphs
The representation with adjacency matrix AG

If G has n nodes, AG = (mij) has dimension n × n and

mij := number of edges from the i-th node to the j-th node.

Remarks

1 Before computing MG from G , be must fix an enumeration of
its nodes: [v1, v2, . . . , vn]

2 If G is undirected, AG is a symmetric matrix

3 If G is a simple graph, AG contains just 0s and 1s
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Undirected graphs
The adjacency matrix AG of an undirected graph G

The adjacency matrix the undirected graph

G :
a

b c

d

e

for the node enumeration [a, b, c , d , e] is

AG =


0 1 1 1 0
1 0 1 0 0
1 1 0 0 1
1 0 0 0 1
0 0 1 1 0


Remark: the matrix AG is symmetric.
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Graphs
The digraph corresponding to a symmetric adjacency matrix

If A is a symmetric matrix of size n × n with aij ∈ N for all i , j , an
undirected graph G whose adjacency matrix is A can be built as
follows:

1 Draw n points v1, . . . , vn in plane

2 For every i , j ∈ {1, . . . , n}, draw aij distinct edges between vi
and vj

Example

A =


0 1 0 2
1 0 1 0
0 1 0 1
2 0 1 0

⇒ G :

v1

v2 v3

v4
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Digraphs
The adjacency matrix AG of a digraph G

The adjacency matrix of the digraph

G :
a

b c

d

e

for the enumeration [a, b, c , d , e] of nodes is

AG =


0 1 0 0 0
0 0 0 0 0
1 1 0 0 0
1 0 0 0 0
0 0 1 1 0


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Digraphs
The digraph corresponding to an adjacency matrix

If A is an n × n matrix with aij ∈ N for all i , j , a digraph G whose
adjacency matrix is A can be constructed as follows:

1 Draw n points v1, . . . , vn in the plane

2 For every i , j ∈ {1, . . . , n}, draw aij distinct arcs from vi to vj

Example

A =


0 1 0 2
0 0 1 0
0 1 1 1
1 0 0 0

⇒ G :

v1

v2 v3

v4
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Digraphs with labeled edges
The representation with incidence matrices

We assume given two lists (or enumerations):

V = [v1, . . . , vn] of the nodes of G

L = [e1, . . . , ep] of the labels of edges of G

The incidence matrix MG = (mij) has dimension n × p and

mij =


−1 if start(ej) = vi
1 if end(ej) = vi
0 otherwise.

Example

If V = [a, b, c , d , e], L = [e1, e2, e3, e4, e5, e6, e7, e8] and

MG =


−1 0 0 −1 1 0 0 −1
1 −1 0 0 0 1 0 0
0 1 −1 1 −1 0 0 0
0 0 1 0 0 0 1 1
0 0 0 0 0 −1 −1 0

⇒
e d

c

b

a

e 1
e
2

e 3

e4

e5e 6

e8

e7
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Simple weighted graphs
The representation with weight matrix

The weight matrix WG = (wij) of a simple weighted graph G with
n nodes [v1, . . . , vn] has dimension n × n and

B wii = 0 for all 1 ≤ i ≤ n.

B wij = w({vi , vj}) for every edge {vi , vj} ∈ E , if G is
undirected.

B wij = w((vi , vj)) for every arc (vi , vj) ∈ E , if G is directed.

B wij =∞ otherwise.

Example (Weight digraph with node enumeration [a, b, c , d , e, f ])

G : a

e

b c

d

f

2

7

1

5

12

1

4

9

3

⇒WG =


0 3 ∞ ∞ 4 ∞
∞ 0 2 ∞ ∞ ∞
∞ 9 0 ∞ 1 12
∞ ∞ ∞ 0 ∞ 7
∞ 5 ∞ 1 0 ∞
∞ ∞ ∞ ∞ ∞ 0


Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 10 15 / 25



The representation of graphs
Comparative study

I The representation with list of edges

Adequate for the representation of simple graphs without
isolated nodes, and with |E | � |V |
Space complexity: O(|E |)

I The representation with lists of adjacencies

Allows the fast enumeration of the neighbors of a node
Space complexity: O(|V |+ |E |)

I The representation with adjacency matrix AG = (aij) or with
weight matrix WG = (wij)

Fast test to check direct connection between 2 nodes: O(1)

@(vi , vj) ∈ E if aij = 0 or if wij = ∞
Space complexity: O(|V |2)

- inadequate representation when |E | � |V |2

The representation with incidence matrix MG

I Time complexity: O(|V | · |E |)
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Simple digraphs
Properties of the adjacency matrix AG

We assume that G is a simple (di)graph with n nodes and with the
adjacency matrix AG = (aij)

aij = 0 (or false) if @ arc vi → vj
aij = 1 (or true) if ∃ arc vi → vj

We define:

In : the identity matrix of size n × n

The Boolean operations � (conjunction) and ⊕ (disjunction):
� 0 1

0 0 0
1 0 1

⊕ 0 1

0 0 1
1 1 1

Remarks:
a� b = min(a, b)
a⊕ b = max(a, b)

If U = (uij), V = (vij) are n × n matrices with elements 0 or
1, we define

U ⊕ V = (cij) if cij = uij ⊕ vij for all i , j
U � V = (dij) if dij = (ui1 � v1j)⊕ . . .⊕ (uin � vnj)
Uk = U � . . .� U︸ ︷︷ ︸

k times

for every k > 0
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Simple digraphs
Properties of the adjacency matrix AG (contd.)

Properties

1 If Ak
G = (a

(k)
ij ) for k ≥ 1 then a

(k)
ij = 1 if and only if there is a

path with length k from node vi to vj .

2 Let A∗G = In ⊕ AG ⊕ A2
G ⊕ . . .⊕ An−1

G = (aij). Then

aij = 1 if and only if there is a path with length
j ∈ {1, . . . , n − 1} from node vi to vj .
A∗
G can be computed in O(n4).

A∗
G is called reflexive and transitive closure of AG .

3 vi and vj are connected ⇔ ∃ a simple path vi  vj ⇔ aij = 1.

4 In ⊕ AG ⊕ A2
G ⊕ . . .⊕ Ak+1

G = In ⊕ (In ⊕ AG ⊕ A2
G ⊕ . . .⊕ Ak

G )�AG

⇒ A∗ can be computed in O(n4).

Corollary

The connectivity between all pairs of nodes in a simple digraph can
be checked in O(n4).
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Simple digraphs
Properties of the adjacency matrix AG (contd.)

Properties

1 If Ak
G = (a

(k)
ij ) for k ≥ 1 then a

(k)
ij = 1 if and only if there is a

path with length k from node vi to vj .

2 Let A∗G = In ⊕ AG ⊕ A2
G ⊕ . . .⊕ An−1

G = (aij). Then

aij = 1 if and only if there is a path with length
j ∈ {1, . . . , n − 1} from node vi to vj .
A∗
G can be computed in O(n4).

A∗
G is called reflexive and transitive closure of AG .

3 vi and vj are connected ⇔ ∃ a simple path vi  vj ⇔ aij = 1.

4 In ⊕ AG ⊕ A2
G ⊕ . . .⊕ Ak+1

G = In ⊕ (In ⊕ AG ⊕ A2
G ⊕ . . .⊕ Ak

G )�AG

⇒ A∗ can be computed in O(n4).

Corollary

The connectivity between all pairs of nodes in a simple digraph can
be checked in O(n4).
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Simple digraphs
Better ways to compute A∗

G

Warshall algorithm computes A∗G in O(n3).

Warshall’s main idea

If V = [v1, . . . , vn] is an enumeration of the nodes of G and
vk ∈ V , then every simple path π : vi  vj is of one of the
following two kinds:

1 vk does not appear along π between vi and vj

vi vj

vk

2 vk appears exactly once in π, between vi and vj

vi vj

vk
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Simple digraphs
Warshall algorithm to compute A∗

G

Assumption: AG = (aij) has size n × n

I Compute recursively C [n] = (c
[n]
ij ) where

c
[k]
ij :=

{
aij if k = 0

c
[k−1]
ij ⊕ (c

[k−1]
ik � c

[k−1]
kj ) if k ≥ 1

Properties

1 C [0] = AG

2 c
[k]
ij = 1 if and only if there is a path π : vi  vj where all

intermediary nodes are from the subset {v1, . . . , vk}
3 C [n] = A∗G
4 C [n] can be computed in O(n3).

Isabela Drămnesc UVT Graph Theory and Combinatorics – Lecture 10 20 / 25



Simple weighted digraphs
The lightest paths

Consider the simple digraph G = (V ,E ) with V = {1, . . . , n} and
the weight function w : E → R+

I In G , the weight of a path π : v1 → v2 → . . .→ vp is

w(π) =
∑p−1

i=1 w((vi , vi+1))
(we add up the weights of all arcs of π)

I For every pair of nodes (i , j) from V , we wish to find

a lightest path from node i to node j
(there can be more than one lightest path)
the weight of a lightest path

Remember that the weight matrix of G is WG = (wij) where

wij =


0 if j = i ,
w((i , j)) if (i , j) ∈ E ,
∞ if (i , j) 6∈ E
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Finding the lightest paths in a simple weighted digraph
Warshall algorithm: main idea

Let k ∈ V = {1, . . . , n}, and π : i  j be a lightest path from i to
j . We distinguish two cases:

1 k is not an intermediary node of π

2 k is an intermediary node of π. Then π = i
π1 k

π2 j and
w(π) = w(π1) + w(π2).

An useful auxiliary data structure:

A matrix of paths P [k] = (p
[k]
ij ) where

p
[k]
ij :=


• special value: @ path i  j through

intermediary nodes from {1, . . . , k}
π a lightest path from i to j through

intermediary nodes from {1, . . . , k}
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Finding the lightest paths in a simple weighted digraph
Warshall algorithm: main idea

Let k ∈ V = {1, . . . , n}, and π : i  j be a lightest path from i to
j . We distinguish two cases:

1 k is not an intermediary node of π

2 k is an intermediary node of π. Then π = i
π1 k

π2 j and
w(π) = w(π1) + w(π2).

An useful auxiliary data structure:

A matrix of paths P [k] = (p
[k]
ij ) where

p
[k]
ij :=


• special value: @ path i  j through

intermediary nodes from {1, . . . , k}
π a lightest path from i to j through

intermediary nodes from {1, . . . , k}
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Finding the lightest paths in a simple weighted digraph
Warshall algorithm: the recursive formula of computation

We assume that WG = (wij)

p
[k]
ij :=


• if k = 0 and wij =∞
[i , j ] if k = 0 and wij <∞
p-min(p

[k−1]
ij , p

[k−1]
ik � p

[k−1]
kj ) if k ≥ 1

where p
[k−1]
ik � p

[k−1]
kj denotes the concatenation of the paths

p
[k−1]
ik and p

[k−1]
kj . If both exist (i.e., they are not •), and •

otherwise.

Remark

If p
[n]
ij = •, there is no path from node i to j . Otherwise, p

[n]
ij is a

lightest path from node i to j .
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Finding the lightest paths in a simple weighted digraph
Warshall algorithm: pseudocode

Compute recursively and simultaneously two matrices:

W [k] =
(
w

[k]
ij

)
and P [k] =

(
p

[k]
ij

)
for 0 ≤ k ≤ n

w
[k]
ij =

{
wij if k = 0,

max
(
w

[k−1]
ij ,min{w [k−1]

ik ,w
[k−1]
kj }

)
otherwise.

p
[k]
ij =


• if k = 0 and w

[0]
ij =∞,

[i , j ] if k = 0 and w
[0]
ij 6=∞,

w
[k−1]
ij if k > 0 and w

[k−1]
ij ≤ w

[k−1]
ik + w

[k−1]
kj ,

w
[k−1]
ik � w

[k−1]
kj otherwise.

Remark

W [n] and P [n] can be computed in O(n3).
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A special case of Warshall algorithm
Finding the shortest paths in a simple digraph

All arcs are assumed to have weight 1

v5 v4

v3

v2

v1 P
[0]
G =


• • [v1, v3] • •

[v2, v1] • • • •
• • • • [v3, v5]
• • [v4, v3] • •

[v5, v1] • • [v5, v4] •

 ,

P
[1]
G =


• • [v1, v3] • •

[v2, v1] • [v2, v1, v3] • •
• • • • [v3, v5]
• • [v4, v3] • •

[v5, v1] • [v5, v1, v3] [v5, v4] •

,

P
[2]
G = P

[1]
G , P

[3]
G =


• • [v1, v3] • [v1, v3, v5]

[v2, v1] • [v2, v1, v3] • [v2, v1, v3, v5]
• • • • [v3, v5]
• • [v4, v3] • [v4, v3, v5]

[v5, v1] • [v5, v1, v3] [v5, v4] •

, P
[4]
G = P

(3)
G ,

P
[5]
G =


[v1, v3, v5, v1] • [v1, v3] [v1, v3, v5, v4] [v1, v3, v5]

[v2, v1] • [v2, v1, v3] [v2, v1, v3, v5, v4] [v2, v1, v3, v5]
[v3, v5, v1] [v3, v5, v1, v3] [v3, v5, v1, v3] • [v3, v5]

[v4, v3, v5, v1] • [v4, v3] [v4, v3, v5, v4] [v4, v3, v5]
[v5, v1] • [v5, v1, v3] [v5, v4] [v5, v1, v3, v5]


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