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Remember that:

Graph = mathematical structure G = (V, E) where
@ V : set of nodes (or vertices)
@ FE : set of edges incident to 2 nodes, or 1 node
Depending on the kind of edges e € E, graphs are of two kinds:

» Undirected: Every edge has one or two endpoints
e

e
Graphical representation: b or 2 (loop)

» Directed (or digraphs): Every edge e € E has a source (or start)

end a destination (or end)
e

e
Graphical representation: ° b or a  (loop)
The directed edges are called arcs.

Simple graph: graph (directed or not) with at most one arc between any
pair of nodes, and no loop.
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Common types of graphs
Taxonomy

G =(V,E)

e1, e € E are parallel edges if they are incident to the same nodes,

and

If G is directed, then start(e;) = start(ez) and
end(e1) = end(ez)

Multigraph (directed or not):no loops, and if the graph is

undirected: it can have parallel edges
directed: it can have parallel arcs

Pseudograph: undirected graph that can have loops and
parallel edges.

Weighted graph: every edge e € E has a weight w(E);
usually w(e) € R.
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Graphical representations of graphs
lllustrative examples

» Simple graphs: draw lines or arcs between the connected

nodes
—c
b AN
Simple undirected graph: ‘ €
a—-—d
pE ¢

N
Simple directed graph: T/ €
a——dd

» Simple weighted graphs: we indicate the weights along the
corresponding connections

2
b@c
a 15/ f
N
e———d
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Graphical representations of graphs

Example (continued)

Multigraphs or pseudographs: if we want to distinguish parallel
edges, we can label them:
€
a/_\ /63\*
multigraph: O \/
a S €4 €9
’\ /63\(7
pseudograph: & g
G
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Concrete representations of graphs

@ List of nodes + list of edges
@ Adjacency lists

© Adjacency matrix

@ Incidence matrix

© Weight matrix
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Simple graphs

The representation by list of nodes + list of edges

Example

b——C¢C List of nodes V = [a, b, c, d, €]
\e List of Edges E = [{aa b}7 {av C}a {37 d}: {b7 C}: {C’ e}: {d) e}]
Y Remarks: {a, b} = {b, a}, {a,c} = {c,a}, as.o.

a d edge > set of nodes adjacent to the edge

b——=cC List of nodes V = [a, b, ¢, d, €]
N List of arcs E = [(av b)7 (C7 a)7 (Cv b)v (d7 a)v (ev C)7 (ev d)]
T € Remarks: (a, b) # (b, a), (a,c) # (c, a), a.s.o.
edge <> pair (start,end)

If the graph has no isolated nodes (with 0 neighbors), there is no
need to store the list of nodes V:

» V can be computed from E
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Simple graphs

The representation with adjacency lists

For every node u € V we keep the list of nodes that are adjacent
to u
» If G is undirected, v is adjacent to u of there is an edge with
endpoints u and v.
e In undirected graphs, the relation of adjacency is symmetric.
» If G is directed, v is adjacent to v if there is an arc e € E
from u to v, i.e. start(e) = u and end(e) = v.

b——=cC a— [b,c,d] dw—|a,e]
AN b+ [a,c] e |c,d]

/ /e c— [a, b, €]

a—-—-d

b——=cC a— [b] d — [a]

/ N b ] e [c,d]
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Graphs
The representation with adjacency matrix Ag

If G has n nodes, Ag = (mj;) has dimension n x n and

mj; := number of edges from the i-th node to the j-th node.

Before computing Mg from G, be must fix an enumeration of
its nodes: [vi, v, ..., vy

@ If G is undirected, Ag is a symmetric matrix

© If G is a simple graph, Ag contains just Os and 1s
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Undirected graphs
The adjacency matrix Ag of an undirected graph G

The adjacency matrix the undirected graph

b——c¢

AN
G: ‘/ €
a—-d

for the node enumeration [a, b, ¢, d, €] is

01110
10100
Ac=1]1 1 0 0 1
1 0001
00110

Remark: the matrix Ag is symmetric.

Isabela Dramnesc UVT Graph Theory and Combinatorics — Lecture 10 10 /25



Graphs
The digraph corresponding to a symmetric adjacency matrix

If A'is a symmetric matrix of size n x n with a;; € N for all 7, j, an
undirected graph G whose adjacency matrix is A can be built as
follows:
© Draw n points vq,..., Vv, in plane
@ Forevery i,j € {1,...,n}, draw aj; distinct edges between v;
and v;

V2

V3

O = O =
= O = O
O = O DN

0
1
0
2

Vi V4
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Digraphs
The adjacency matrix Ag of a digraph G

The adjacency matrix of the digraph

b——=cC
G:T/ >e

a——d

for the enumeration [a, b, ¢, d, €] of nodes is

>
()

|
O =R = OO
OO =L O
= O O O O
= O O O O
O O O O O
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Digraphs
The digraph corresponding to an adjacency matrix

If Alis an n x n matrix with a;; € N for all /, j, a digraph G whose
adjacency matrix is A can be constructed as follows:

© Draw n points v, ..., Vv, in the plane

@ For every i,j € {1,...,n}, draw aj; distinct arcs from v; to v;

010 2 v Tw
00 10 —
A_0111:>G.</N>
1 0 0O Vi «—— V4

~—_ 7
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Digraphs with labeled edges

The representation with incidence matrices

We assume given two lists (or enumerations):
@ V =|[wv,..., V] of the nodes of G
o L =]eq,...,ep| of the labels of edges of G

The incidence matrix Mg = (mj;) has dimension n x p and
—1 if start(ej) = v;

mj=<¢ 1 ifend(e)=v
0  otherwise.

If V= [a7 b,c,d,e], L= [61,62,63,64,65,66, €7, e8] and

1 -1 0 0 0 1 0 ©
Mg=]o 1 -1 1 -1 0 0 0
o 0 1 0 0 0 1 1
0o 0 0 0 0 -1 -1 0
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Simple weighted graphs
The representation with weight matrix

The weight matrix Wg = (wj;) of a simple weighted graph G with

n nodes [vi, ..., Vv,] has dimension n x n and
> w;=0foralll1<i<n.

> wjj = w({vj, v;}) for every edge {v;,v;} € E, if G is

undirected.

> wij = w((vj, vj)) for every arc (v, v;) € E, if G is directed.

> wjj = oo otherwise.

Example (Weight digraph with node enumeration [a, b, c, d, e, f])

2
pZ 9 0 3 oo
’b/ \{5 oo 0 2
G:a 5 7 f = We = © 9 0
\7 /\/\ 0o 00 00
e 1 d 0 5 [e’s)
0o 00 o0

g =28 83

4
o
1
(0.0
0
(o.]

°8 Vg8 8
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The representation of graphs
Comparative study

» The representation with list of edges
e Adequate for the representation of simple graphs without
isolated nodes, and with |E| < |V/|
e Space complexity: O(|E])
» The representation with lists of adjacencies
o Allows the fast enumeration of the neighbors of a node
o Space complexity: O(|V| + |E|)
» The representation with adjacency matrix Ag = (ajj) or with
weight matrix Wg = (wj))
o Fast test to check direct connection between 2 nodes: O(1)
o Hvi,v;) € Eifa;=0orif wj=o0
o Space complexity: O(|V|?)
- inadequate representation when |E| < |V/|?
@ The representation with incidence matrix Mg
» Time complexity: O(|V|- |E|)
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Simple digraphs
Properties of the adjacency matrix Ag

We assume that G is a simple (di)graph with n nodes and with the
adjacency matrix Ag = (ajj)

o a; =0 (or false) if # arc v; = v;

@ a; =1 (or true) if Jarc v; = v;
We define:

@ [, : the identity matrix of size n x n

@ The Boolean operations @ (conjunction) and & (disjunction):

©|0 1 @©(0 1 Remarks:
0|0 O 0|0 1 a® b= min(a, b)
110 1 1111 a® b= max(a,b)

o If U= (uj), V = (vj) are n x n matrices with elements 0 or
1, we define

o Ua V =(cj)if ¢j = uj® v forall i,j
° U()V:(du) ifd,'j:(U,'1®V1J')EB...€B(U,',,®V,U')
o Uk=U®...o U forevery k >0
S ——
k times
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Simple digraphs

Properties of the adjacency matrix A¢ (contd.)

O If AL = (a\})) for k > 1 then 2/ = 1if and only if there is a

path with length k from node v; to v;.
Q Let AL = [, B Ac DAL D ... AL = (3;). Then
e 3; = 1 if and only if there is a path with length
Jj€A{1,...,n— 1} from node v; to v;.
o A% can be computed in O(n*).
o Ag is called reflexive and transitive closure of Ag.

© v; and v; are connected < d a simple path v; ~ v; & 3;; = 1.

Q@ LOACDAZD .. 0AM = L0 (LOACDALD ... AL) O Ag
= A* can be computed in O(n%).
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Simple digraphs

Properties of the adjacency matrix A¢ (contd.)

O If Ak = (a,(jk)) for k > 1 then al(jk) = 1 if and only if there is a
path with length k from node v; to v;.

Q@ Lt AL =1, 0AcDAZ®...0 AL =(3;). Then
e 3; = 1 if and only if there is a path with length
Jj€A{1,...,n— 1} from node v; to v;.
o A% can be computed in O(n*).
o Ag is called reflexive and transitive closure of Ag.

© v; and v; are connected < d a simple path v; ~ v; & 3;; = 1.

Q@ LOACDAZD .. 0AM = L0 (LOACDALD ... AL) O Ag
= A* can be computed in O(n%).

Corollary

The connectivity between all pairs of nodes in a simple digraph can
be checked in O(n%).
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Simple digraphs

Better ways to compute Ag

Warshall algorithm computes A% in O(n?).

Warshall's main idea

If V =[vi,...,vp] is an enumeration of the nodes of G and

vk € V, then every simple path 7 : v; ~» v; is of one of the
following two kinds:

© vk does not appear along 7 between v; and v;

@ vi appears exactly once in 7, between v; and v;
O, )
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Simple digraphs
Warshall algorithm to compute Ag

Assumption: Ag = (ajj) has size n x n

» Compute recursively Cl"l = (clg-"]) where

K ._ ) @i re?
Ay dorsdrrogn s

Q cld = A.
Q c,.[jk] = 1 if and only if there is a path 7 : v; ~» v; where all
intermediary nodes are from the subset {vi,..., v}

Q clnl = AL
@ CI"l can be computed in O(n?).
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Simple weighted digraphs
The lightest paths

Consider the simple digraph G = (V, E) with V ={1,...,n} and
the weight function w : E — RT
» In G, the weight of apath m:vi = vo = ... = vy is
o w(m) = 375 w((vi, vis1))
o (we add up the weights of all arcs of 7)
» For every pair of nodes (i,;) from V, we wish to find

e a lightest path from node / to node j
(there can be more than one lightest path)
o the weight of a lightest path

Remember that the weight matrix of G is Wg = (wjj) where

0 if j =i,
wij = w((i,j)) if(i,j) € E,
0 if (i,/) & E
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Finding the lightest paths in a simple weighted digraph

Warshall algorithm: main idea

Let k€ V={1,...,n}, and 7w : i ~> j be a lightest path from i to
J. We distinguish two cases:

@ k is not an intermediary node of 7

@ k is an intermediary node of 7. Then 7 =i <5 k 23 j and
w(m) = w(m) + w(m).
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Finding the lightest paths in a simple weighted digraph

Warshall algorithm: main idea

Let k€ V={1,...,n}, and 7w : i ~> j be a lightest path from i to
J. We distinguish two cases:

@ k is not an intermediary node of 7

@ k is an intermediary node of 7. Then 7 =i <5 k 23 j and
w(m) = w(m) + w(m).

An useful auxiliary data structure:

o A matrix of paths P = (pI[.f]) where

e special value: 7 path i ~» j through

K] intermediary nodes from {1,..., k}
Pim =Y = a lightest path from i to j through
intermediary nodes from {1,..., k}
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Finding the lightest paths in a simple weighted digraph

Warshall algorithm: the recursive formula of computation

We assume that Wg = (w;)

if k=0and wjj =00

P,[Jk] _ [i, ] if k=0 and w;; < o0
. k=1 k-1 k=1]\ .
p—m/n(pl[j ],p,[k I pLj ]) ifk>1
where p[k U p,[(k U denotes the concatenation of the paths
p,[k U and p[k U If both exist (i.e., they are not e), and e

otherwise.

[] i

If pjj = e, there is no path from node i to j. Otherwise, pjj
lightest path from node / to j.
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Finding the lightest paths in a simple weighted digraph

Warshall algorithm: pseudocode

Compute recursively and simultaneously two matrices:

Wikl — (WI-J[-k]) and P = (pl[.f]) for0< k<n

» w; if k=0,
Wit =\ max (W’_B_kfl]7 min{W,-[,fill, Wll(jf’ll}) otherwise.

. if k=0 and W) = oo,
pl = [, J] if k=0 and W}[.O] + o0,
! [l if k> 0 and wF Y < Wl gl
b1 _ k-1l .
Wi = Wy otherwise.

Wl and Pl can be computed in O(n?).
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A special case of Warshall algorithm

Finding the shortest paths in a simple digraph

All arcs are assumed to have weight 1

@ . o [vi,v3] . °
[vo,v1] o ° ° .
@ @ Pg)] = . ° ° . [vs,vs] |,
° o [va,v3] ° .
@ @ [vs,v1] @ . [vs, va] .
. . [vi, v3] . .
" [vo,vi] o  [vo,v1,w3] . .
Pg = . . . . [vs, vs] |,
. . [va, vs] . .
[vs,vi] o [vs,v1,v3] [vs, va] .
: . o [v,v] . [vi, vs, vs]
v2,v1] e [v2,vi,v3] . [va, vi1, vs, vs]
P[Gz] = Pg], Pg] = . . . . [v3, vs] , Pg] = P?),
. o [va,v3] . [va, v3, vs]
[vs,vi] o [vs,vi,v3] [vs, va] °
[v1, v3, v5, v1] ° [v1, v3] [v1, v, vs, v4] [v1,v3, vs]
- [va, vi] ° [vo, vi, v3] [va,vi,v3,vs,va] [vo,vi,v3, vs]
Pe=| [vs,vs,vi] [v3,vs,v1,v3] [v3,vs,v1, vs] . [v3, vs]
[va, v3, v5,v1] ° [va, v3] [va, v3, vs, va4] [va, v3, vs]
[vs, v1] ° [vs, vi, vs] [vs, va] [vs, vi, v3, v5]
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