Automated Theorem Proving, SS 2022. Seminar 2

- 1. For each of the following formulas determine whether is valid/invalid/satisfiable/unsatisfiable or some combination of these by using equivalent transformations.
 - (a) $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
 - (b) $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
 - (c) $P \lor (P \Rightarrow Q)$
 - (d) $(P \land (Q \Rightarrow P)) \Rightarrow P$
 - (e) $P \lor (Q \Rightarrow \neg P)$
 - (f) $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow ((P \land Q) \Rightarrow R)$
 - (g) $((Q \Rightarrow P) \land (Q \Rightarrow R)) \Rightarrow ((P \lor Q) \Rightarrow R)$
 - (h) $(P \vee \neg Q) \wedge (\neg P \vee Q)$
 - (i) $\neg P \land (\neg (P \Rightarrow Q))$
 - (i) $P \Rightarrow \neg P$
 - (k) $\neg P \Rightarrow P$
- 2. Write the tables of the boolean functions corresponding to \neg , \land , \lor , \Rightarrow , \Leftrightarrow . Using them, determine the truth value of:
 - The formula $(A \land (A \Rightarrow B)) \Rightarrow B$ under the interpretation $I = \{A \to \mathbb{T}, B \to \mathbb{F}\}.$
 - The formula $(P \Rightarrow Q) \iff (\overline{Q} \Rightarrow \overline{P})$ under the interpretation $I = \{P \to \mathbb{F}, Q \to \mathbb{F}\}.$
 - The formula $((A \vee B) \Rightarrow C) \iff ((A \Rightarrow C) \wedge (B \Rightarrow C))$ under the interpretation $I = \{A \to \mathbb{T}, B \to \mathbb{T}, C \to \mathbb{F}\}.$

(Hint: The tables of boolean functions corresponding to \neg , \land , \lor , \Rightarrow , \Leftrightarrow correspond to the tables which we have outlined in the first lab and used for defining the semantics of logical connectives.)

- 3. Is it possible to have a formula that is both in conjunctive and disjunctive normal form. If so, give 5 examples.
- 4. Prove by reduction to CNF the semantic equivalence between $(A \land B) \Rightarrow C$ and $(A \Rightarrow C) \lor (B \Rightarrow C)$.
- 5. Transform the following into disjunctive normal form
 - (a) $(P \Rightarrow Q) \Rightarrow R$
 - (b) $\neg (P \land Q) \land (P \lor Q)$
- 6. Transform the following into conjunctive normal form
 - (a) $(P \Rightarrow Q) \Rightarrow R$
 - (b) $(\neg P \land Q) \lor (P \land \neg Q)$