Automated Theorem Proving, SS 2021. Seminar 1

- 1. Give an example of a mathematical result which had a important impact on real life.
- 2. Give an example of a software failure which had an important negative impact in real life.
- 3. For each of the following formulas determine whether is valid/invalid/satisfiable/unsatisfiable or some combination of these. Use the truth table method and then use equivalent transformations.
 - (a) $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
 - (b) $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
 - (c) $P \lor (P \Rightarrow Q)$
 - (d) $(P \land (Q \Rightarrow P)) \Rightarrow P$
 - (e) $P \lor (Q \Rightarrow \neg P)$
 - (f) $((P \Rightarrow Q) \land (Q \Rightarrow R)) \Rightarrow ((P \land Q) \Rightarrow R)$
 - (g) $((Q \Rightarrow P) \land (Q \Rightarrow R)) \Rightarrow ((P \lor Q) \Rightarrow R)$
 - (h) $(P \vee \neg Q) \wedge (\neg P \vee Q)$
 - (i) $\neg P \land (\neg (P \Rightarrow Q))$
 - (i) $P \Rightarrow \neg P$
 - (k) $\neg P \Rightarrow P$
- 4. Define the meta-function $\operatorname{Vars}[\varphi]$ which gives set of propositional variables of the propositional formula φ . (Hint: use the induction principle suggested by the definition of propositional logic formulas.) Examples: $\operatorname{Vars}[\mathbb{F}] = \emptyset$, $\operatorname{Vars}[A] = \{A\}$, $\operatorname{Vars}[P \Rightarrow \mathbb{T}] = \{P\}$, $\operatorname{Vars}[(P \Rightarrow Q) \Rightarrow (P \land Q)] = \{P, Q\}$, $\operatorname{Vars}[Q \Rightarrow Q] = \{Q\}$
- 5. Using the induction principle from the syntactic definition of propositional formulae, define the meta-function $L[\varphi]$ which gives the length of the propositional formula φ .
- 6. Using the induction principle from the syntactic definition of propositional formulae, define the meta-function $D[\varphi]$ which gives the depth of the propositional formula φ (that is the depth of the tree which represents the formula).
- 7. Using the induction principle from the syntactic definition of propositional formulae and the definitions above, prove that $D[\varphi] < L[\varphi]$ for any propositional formula φ . (Where $L[\varphi]$ gives the length of the propositional formula φ .)