Automated Theorem Proving, SS 2019. Homework 1 (due March 6, 2019)

- 1. For each of the following formulas determine whether is valid/invalid/satisfiable/unsatisfiable or some combination of these. For (a) and (b) use the truth table method, for the rest use equivalent transformations.
 - (a) $(P \Rightarrow Q) \Rightarrow (\neg Q \Rightarrow \neg P)$
 - (b) $(P \Rightarrow Q) \Rightarrow (Q \Rightarrow P)$
 - (c) $P \lor (P \Rightarrow Q)$
 - (d) $(P \land (Q \Rightarrow P)) \Rightarrow P$
 - (e) $P \lor (Q \Rightarrow \neg P)$
 - (f) $(P \vee \neg Q) \wedge (\neg P \vee Q)$
 - (g) $\neg P \land (\neg (P \Rightarrow Q))$
 - (h) $P \Rightarrow \neg P$
 - (i) $\neg P \Rightarrow P$
- 2. Transform the following into disjunctive normal form
 - (a) $(P \Rightarrow Q) \Rightarrow R$
 - (b) $\neg (P \land Q) \land (P \lor Q)$
- 3. Transform the following into conjunctive normal form
 - (a) $(P \Rightarrow Q) \Rightarrow R$
 - (b) $(\neg P \land Q) \lor (P \land \neg Q)$
- 4. Verify each of the following pairs of equivalent formulas by transforming the formulas on both sides of the sign \equiv into the same normal form:
 - (a) $P \wedge P \equiv P$
 - (b) $P \lor P \equiv P$
 - (c) $(P \Rightarrow Q) \land (P \Rightarrow R) \equiv P \Rightarrow (Q \land R)$
 - (d) $(P \Rightarrow Q) \Rightarrow (P \land Q) \equiv (\neg P \Rightarrow Q) \land (Q \Rightarrow P)$
 - (e) $P \wedge Q \wedge (\neg P \vee \neg Q) \equiv \neg P \wedge \neg Q \wedge (P \vee Q)$
- 5. Define the meta-function $\operatorname{Vars}[\varphi]$ which gives set of propositional variables of the propositional formula φ . (Hint: use the induction principle suggested by the definition of propositional logic formulas.) Examples: $\operatorname{Vars}[\mathbb{F}] = \emptyset$, $\operatorname{Vars}[A] = \{A\}$, $\operatorname{Vars}[P \Rightarrow \mathbb{T}] = \{P\}$, $\operatorname{Vars}[(P \Rightarrow Q) \Rightarrow (P \land Q)] = \{P, Q\}$, $\operatorname{Vars}[Q \Rightarrow Q] = \{Q\}$