
JADE WSIG Add-On GUIDE

1

J A D E W E B S E RV I C E S

I N T E G R AT I O N G AT E WAY

(W S I G)

G U I D E

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

Version: 3.0

Last update: 12-Mar-2013.

Authors: JADE Board

Copyright (C) 2007 Telecom Italia

Copyright (C) 2008 Telecom Italia

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with

the FIPA specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA

interoperability test in London (Apr. 01).

Copyright (C) 2000 CSELT S.p.A. (C) 2001 TILab S.p.A. (C) 2002 TILab S.p.A. (C) 2003 TILab S.p.A.

(C) 2004 TILab S.p.A (C) 2005 TILab S.p.A

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General

Public License as published by the Free Software Foundation, version 2.1 of the License.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser

General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write

to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

JADE WSIG Add-On GUIDE

2

TABLE OF CONTENTS

1 INTRODUCTION 3
1.1 Goal 3
1.2 Compliance to standards 3
1.3 Compatibility 3
1.4 Requirements 3

2 ARCHITECTURE 5

3 EXPOSING AGENT SERVICES AS WEB SERVICES 7
3.1 DF Service-Description to WSDL conversion overview 7
3.2 WSDL generation details 8
3.3 Service name prefix 12
3.4 Customizing the WSDL by means of an ontology mapper 12
3.5 Current limitations 17

4 INSTALLATION 19
4.1 Deployment 20
4.2 Configuration 21
4.3 WebSphere Application Server configuration 23
4.4 Security 23

4.4.1 HTTP authentication 23
4.4.2 SSL certificate 24
4.4.3 WS-Security 25

5 ADMINISTRATION GUI 26

6 ADMINISTRATION API
 ERRORE. IL SEGNALIBRO NON È DEFINITO.

6.1 Resources: 29
6.1.1 admin/platform 29
6.1.2 admin/platform/{status} 29
6.1.3 admin/configuration 29
6.1.4 admin/services 30
6.1.5 admin/services/{serviceName} 30
6.1.6 admin/services/{serviceName}/wsdl 30

6.2 XML and JSON code examples 31
6.2.1 Configuration 31
6.2.2 Services 32
6.2.3 Service 32

7 APPENDIX I. DESCRIPTION OF THE EXAMPLES 34

JADE WSIG Add-On GUIDE

3

1 INTRODUCTION

This document describes the Web Service Integration Gateway (WSIG) add-on that provides

support for invocation of JADE agent services from Web service clients. More in details section 2

outlines the architecture of WSIG and shows the mapping between a DF service-description and

the corresponding WSDL, section 3 presents useful indications about deploying and configuring

WSIG and section 4 gives a step-by-step guidance about how to expose agent services as Web

Services by means of WSIG.

The reader is assumed to be familiar with both JADE and the Web Service technology. For

those new to JADE we strongly recommend first reading the JADE Administrators Guide and

Programmers Guide or the JADE Programming Tutorial, available on the JADE web site

(http://jade.tilab.com).

All bugs, issues, contributions and new feature requirements should be posted to the main

JADE bug reporting system, and to the standard JADE mailing lists.

Version 2.0 of the WSIG add-on was developed by the JADE Board and is only guaranteed

to work with JADE release 3.5 or later.

1.1 Goal

The services web, also known as WEB SERVICES, are becoming one of the most important

topics in the panorama of software development and a sort of de facto standard for

interconnecting different applications. The objective of WSIG is to expose services provided by

agents and published in the JADE DF as web services with no or minimal additional effort,

though giving developers enough flexibility to meet specific requirements then may have.

The process involves the generation of a suitable WSDL for each service-description

registered with the DF and possibly the publication of the exposed services in a UDDI registry.

1.2 Compliance to standards

The WSDL service description language defines different binding styles (rpc and document)

and uses (encoded and literal). WSIG supports the most commonly adopted combinations:

 rpc/encoded according to W3C standards (http://www.w3c.org)

 document/literal wrapped in compliance with the WS-I basic profile specification

(http://www.ws-i.org).

Section 4.2 describes which one to use.

All Date fields are encoded according to the ISO-8601 format.

1.3 Compatibility

WSIG 2.0 has been successfully tested with web services clients developed using AXIS 1.1,

1.2 (http://ws.apache.org/axis) and 2.0 (http://ws.apache.org/axis2) and

CXF 2.0 (http://cxf.apache.org) .

1.4 Requirements

The WSIG add-on requires Java JRE v5.0 (http://java.sun.com/javase/), JADE v3.5 or later

and a Servlet container such as Jakarta Tomcat (http://jakarta.apache.org/tomcat/). Furthermore, if

the automatic UDDI publication feature is turned on, a suitable UDDI registry must be available.

The WSIG makes use of the following third party libraries already included in the WSIG

distribution:

http://jade.tilab.com/
http://www.w3c.org/
http://www.ws-i.org/
http://ws.apache.org/axis
http://ws.apache.org/axis2
http://cxf.apache.org/
http://java.sun.com/javase/
http://jakarta.apache.org/tomcat/

JADE WSIG Add-On GUIDE

4

 Apache Axis v1.4 (http://ws.apache.org/axis/)

 Apache Commons (http://jakarta.apache.org/commons/)

 UDDI4J v2.0.5 (http://uddi4j.sourceforge.net/)

 WSDL4J v1.6.2 (http://sourceforge.net/projects/wsdl4j)

 Eclipse EMF v2.3.0 (http://www.eclipse.org/emf/)

http://ws.apache.org/axis/
http://uddi4j.sourceforge.net/
http://www-124.ibm.com/developerworks/projects/wsdl4j/

JADE WSIG Add-On GUIDE

5

2 ARCHITECTURE

The WSIG add-on supports the standard Web services stack, consisting of WSDL for service

descriptions, SOAP message transport and a UDDI repository for publishing Web services using

tModels. As depicted in Figure 1 WSIG is a web application composed of two main elements:

 WSIG Servlet

 WSIG Agent

The WSIG Servlet is the front-end towards the internet world and is responsible for

 Serving incoming HTTP/SOAP requests

 Extracting the SOAP message

 Preparing the corresponding agent action and passing it to the WSIG Agent

Moreover once the action has been served

 Converting the action result into a SOAP message

 Preparing the HTTP/SOAP response to be sent back to the client

The WSIG Agent is the gateway between the Web and the Agent worlds and is responsible for

 Forwarding agent actions received from the WSIG Servlet to the agents actually able to serve

them and getting back responses.

 Subscribing to the JADE DF to receive notifications about agent registrations/deregistrations.

 Creating the WSDL corresponding to each agent service registered with the DF and publish

the service in a UDDI registry if needed.

JADE WSIG Add-On GUIDE

6

Figure 1. WSIG Architecture

Two main processes are continuously active in the WSIG web application:

- The process responsible for intercepting DF registrations/deregistrations and converting them

into suitable WSDLs. As mentioned, this process is completely carried out by the WSIG Agent

and is described in section 3.1.

- The process responsible for serving incoming web service requests and triggering the

corresponding agent actions. This process is carried out jointly by the WSIG Servlet (performing

the necessary translations) and the WSIG Agent (forwarding requests to agents able to serve

them).

JADE WSIG Add-On GUIDE

7

3 EXPOSING AGENT SERVI CES AS WEB SERVICES

JADE agents publish their services in the DF (Directory Facilitator) providing a structure

called DF-Agent-Description and defined by the FIPA specification (www.fipa.org). A DF-

Agent-Description includes one or more Service-Description each one actually describing a

service provided by the registering agent. A Service-Description typically specifies, among

others, one or more ontologies that must be known in order to access the published service. The

actions the registering agent is actually able to perform are those defined in the specified

ontologies.

In order to expose an agent service as a web service it is sufficient to set the wsig property

to true in the properties of the Service-Description at DF registration time as below

……

ServiceDescription sd = new ServiceDescription();

……

sd.addProperties(new Property(“wsig”, "true"));

……

3.1 DF Service-Description to WSDL conversion overview

Each Service-Description including the wsig property set to true will be mapped to a

WSDL. All actions defined in the ontologies specified in the Service-Description will be mapped

to WSDL operations as depicted in Figure 2.

http://www.fipa.org/

JADE WSIG Add-On GUIDE

8

Operations:

 - Action-1

 …

 …

 - Action-n

Agent
DF Agent

Description

Service

Description

Service

Description

Ontology

Action-1 Action-n

WSDL

…

Figure 2. Mapping between DF Service-Description and WSDL

Whether or not a WSDL is also published in a UDDI registry depends on the WSIG

configuration as will be presented in 4.2.

Similarly when an agent deregisters from the DF, all its services (if any) are automatically

removed from the WSIG.

3.2 WSDL generation details

This section describes in details the default rules that are followed by the WSIG Agent to

generate the WSDL corresponding to a Service-Description including the wsig property set to

true.

 WSDL TNS (Target Name Space) = value of the name slot of the Service-Description

 For each AgentActionSchema defined in the ontology referenced by the ontology slot of

the Service-Description an operation is added in the WSDL with

o operation name = agent action schema name

o operation parameters (name and type
1
) = agent action schema slots (name and type)

o operation result
2
= agent action schema result

1 If the document/literal style is used the type is ignored

2 Since version 3.5 of JADE, it is possible to associate a result to an agent action by means of the
setResult(TermSchema ts) and setResult(TermSchema ts, int cardMin, int cardMax) methods of the
AgentActionSchema class.

JADE WSIG Add-On GUIDE

9

 Agent action result/slots whose schema is a PrimitiveSchema are mapped to basic types

defined in the standard schema http://www.w3.org/2000/10/XMLSchema

 Agent action result/slots whose schema is a ConceptSchema are mapped to complex types

defined within the WSDL itself

 Agent action result/slots whose schema is an AggregateSchema are mapped to complex types

(labeled as ArrayOfTtt where ttt is the type of the aggregate elements) defined within the

WSDL itself

 The same mappings apply recursively in case of complex result/slots.

 If an agent action slot is optional, the related operation parameter is marked with
minOccurs = “0”.

 If the wsdl.writeEnable configuration property is set to true (see 4.2) WSDL file =

value of the name slot of the Service-Description plus the .wsdl extension

The WSDL document is built using network services definition standard elements:

 Types – a container for data type definitions using some type system (such as XSD).

 Message – typed definition of the data being communicated.

 Operation – description of an action supported by the service.

 Port Type – set of operations supported by one or more endpoints.

 Binding – a concrete protocol and data format specification for a particular port type.

 Port – a single endpoint defined as a combination of a binding and a network address.

 Service – a collection of related endpoints.

The WSDL service description language defines different binding styles (rpc and

document) and uses (encoded and literal). WSIG only supports the most commonly adopted

combinations i.e. rpc/encoded and document/literal wrapped. Section 4.2 describes which one

to use. As an example the WSDL corresponding to the sumcomplex (sum of 2 complex numbers)

operation of the MathService included among the WSIG examples is reported below for both

supported styles.

http://www.w3.org/2000/10/XMLSchema

JADE WSIG Add-On GUIDE

10

WSDL for the document/literal wrapped style

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="MathFunctions" targetNamespace="urn:MathFunctions"

xmlns:impl="urn:MathFunctions" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>

 <xsd:schema targetNamespace="urn:MathFunctions" xmlns:impl="urn:MathFunctions"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><xsd:annotation/><xsd:element

name="sumcomplex"><xsd:complexType><xsd:sequence><xsd:element name="firstComplexElement"

type="impl:complex"/><xsd:element name="secondComplexElement"

type="impl:complex"/></xsd:sequence></xsd:complexType></xsd:element><xsd:complexType

name="complex"><xsd:sequence><xsd:element name="real" type="xsd:float"/><xsd:element

minOccurs="0" name="immaginary"

type="xsd:float"/></xsd:sequence></xsd:complexType><xsd:element

name="sumcomplexResponse"><xsd:complexType><xsd:sequence><xsd:element

name="sumcomplexReturn"

type="impl:complex"/></xsd:sequence></xsd:complexType></xsd:element></xsd:schema>

 </wsdl:types>

 <wsdl:message name="sumcomplexRequest">

 <wsdl:part name="parameters" element="impl:sumcomplex">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="sumcomplexResponse">

 <wsdl:part name="parameters" element="impl:sumcomplexResponse">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="MathFunctionsPort">

 <wsdl:operation name="sumcomplex">

 <wsdl:input message="impl:sumcomplexRequest">

 </wsdl:input>

 <wsdl:output message="impl:sumcomplexResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="MathFunctionsBinding" type="impl:MathFunctionsPort">

 <wsdlsoap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="sumcomplex">

 <wsdlsoap:operation soapAction="urn:MathFunctionsAction"/>

 <wsdl:input>

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output>

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="MathFunctionsService">

 <wsdl:port name="MathFunctionsPort" binding="impl:MathFunctionsBinding">

 <wsdlsoap:address location="http://localhost:8080/wsig/ws/MathFunctions"/>

 </wsdl:port>

JADE WSIG Add-On GUIDE

11

 </wsdl:service>

</wsdl:definitions>

WSDL for the rpc/encoded style

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions name="MathFunctions" targetNamespace="urn:MathFunctions"

xmlns:impl="urn:MathFunctions" xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

 <wsdl:types>

 <xsd:schema targetNamespace="urn:MathFunctions" xmlns:impl="urn:MathFunctions"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"><xsd:annotation/><xsd:complexType

name="complex"><xsd:sequence><xsd:element name="real" type="xsd:float"/><xsd:element

minOccurs="0" name="immaginary"

type="xsd:float"/></xsd:sequence></xsd:complexType></xsd:schema>

 </wsdl:types>

 <wsdl:message name="sumcomplexRequest">

 <wsdl:part name="firstComplexElement" type="impl:complex">

 </wsdl:part>

 <wsdl:part name="secondComplexElement" type="impl:complex">

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="sumcomplexResponse">

 <wsdl:part name="sumcomplexReturn" type="impl:complex">

 </wsdl:part>

 </wsdl:message>

 <wsdl:portType name="MathFunctionsPort">

 <wsdl:operation name="sumcomplex">

 <wsdl:input message="impl:sumcomplexRequest">

 </wsdl:input>

 <wsdl:output message="impl:sumcomplexResponse">

 </wsdl:output>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:binding name="MathFunctionsBinding" type="impl:MathFunctionsPort">

 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="sumcomplex">

 <wsdlsoap:operation soapAction="urn:MathFunctionsAction"/>

 <wsdl:input>

 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:input>

 <wsdl:output>

 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

 </wsdl:output>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="MathFunctionsService">

 <wsdl:port name="MathFunctionsPort" binding="impl:MathFunctionsBinding">

 <wsdlsoap:address location="http://localhost:8080/wsig/ws/MathFunctions"/>

 </wsdl:port>

 </wsdl:service>

JADE WSIG Add-On GUIDE

12

</wsdl:definitions>

3.3 Service name prefix

Considering the mapping described in the previous section it is clear that if two agents

register two Service-Descriptions with the same name there is a conflict due to the fact that two

WSDL definitions have the same name. To avoid this conflict it is possible to use the wsig-

prefix Service-Description property (as exemplified in the code snippet below) to specify a

label that will be used to prefix both the Target Name Space and the WSDL file name (if

generated).

……

ServiceDescription sd = new ServiceDescription();

……

sd.addProperties(new Property(“wsig”, "true"));

sd.addProperties(new Property(“wsig-prefix”, "prefix"));

……

3.4 Customizing the WSDL by means of an ontology mapper

In many cases it is highly desirable to customize the exposed web services operations. For

instance in case of an action with several optional slots that are only used in particular conditions,

one may wish to expose an operation with only those parameters that are meaningful when the

operation is invoked by an external Web Service client. Similarly in many cases an agent may be

able to support (or may whish to expose as web service operations) only a subset of the actions

included in an ontology. In other cases, it would be appreciated the possibility of personalizing

the response of the web service operation adding slots (we recall that in Jade ontologies only

actions with just one output parameter are allowed) or modifying parameters format.

To meet these customization requirements the WSIG add-on provides a flexible mechanism

based on so called “ontology mapper” classes. An ontology mapper is a class providing:

1) a set of methods with the following signature

 public <action-class> to<action-name>(<parameters>) {

 …

 }

used to customize the SOAP request associated to the specific operation.

2) a set of inner classes with the following structure

 @ResultConverter({

 @ApplyTo(action="<action-name>",operation="<op-name>")

 …

 })

 public class Xxx {

 …

 }

 used to customize the SOAP response associated to the specific operation.

JADE WSIG Add-On GUIDE

13

3) a set of inner classes with the following structure

 @FaultConverter({

 @ApplyTo(action="<action-name>",operation="<op-name>")

 …

 })

 public class Yyy {

 …

 }

 used to customize the SOAP FAULT response associated to the specific operation.

When an ontology mapper is specified in a DF Service-Description, for each action my-action

defined in the ontology referenced by the Service-Description and associated to an AgentAction

class MyActionClass, the WSIG agent searches for a method with signature

public MyActionClass toMyAction(…)

in the mapper class. If one such method is found, the slots of the my-action action are ignored

and the parameters of the toMyAction() method are used (names and types) as parameters of

the my-action web service operation. Furthermore if the toMyAction(...) method is

annotated with the @OperationName annotation (available in the wsigAnnotations.jar

package), the value of the name attribute of that annotation will be used (instead of my-

action) to name the exposed web service operation.

It is possible to use the annotations @Slot e @AggregateSlot (availables in jade.jar package)

to specify if a parameter is mandatory and, for the aggregates, the cardinality and the type of the

contained element.

// <soapenv:Body>

// <Add>

// <first>?</first>

// <second>?</second>

// <!--Optional-->

// <third>?</third>

// </Add>

// </soapenv:Body>

@OperationName(name="Add")

public Sum toSum(@Slot(mandatory=true) float first,

 @Slot(mandatory=true) float second,

 @Slot(mandatory=false) Float third){

 ……

}

……

// <soapenv:Body>

// <Multiplication>

// <!--1 to 5 repetitions-->

// <float>?</float>

// </Multiplication>

// </soapenv:Body>

public Multiplication toMultiplication(

 @AggregateSlot(cardMin=1, cardMax=5, type=Float.class) List numbers) {

 ……

}

JADE WSIG Add-On GUIDE

14

Several methods to<action-name> can be declared, provided that the name of the web-

service operation (declared in the @OperationName) is unique.

When the web service operation is invoked, the WSIG agent extracts the operation parameters

from the SOAP message and uses them to call the toMyAction() method of the ontology

mapper. This method is responsible for building the MyActionClass action object that will be

forwarded to the target agent.

By means of the @SuppressOperation annotation (available in the

wsigAnnotations.jar package) it is then possible not to expose as web service operation a

given ontology action, as exemplified in the code snippet below.

@SuppressOperation

public MyActionClass toMyAction() {

 return null;

}

After the processing of the action performed by the target agent, the WSIG checks if the mapper

contains a ResultConverter related to the specific operation and, in this case, uses it to prepare the

SOAP response message.

The Result Converter is an inner-class of the mapper annotated as it follows:

 @ResultConverter({

 @ApplyTo(action="<action-name>",operation="<op-name-1>"),

 @ApplyTo(action="<action-name>",operation="<op-name-2>")

 …

 })

 where the multiple annotation @ApplyTo (available in the wsigAnnotations.jar

package) specifies the association between a specific web-service operation <op-name-xxx>

(handled by the ontological action <action-name>) and the ResultConverter. The same

ResultConverter can be applied to several operations and/or actions.

If the operation attribute is not specified, the ResultConverter is applied to the all web-service

operations associated to the ontological action <action-name>.

Any name can be used for an inner class representing a ResultConverter (even if, the

ResultConverter suffix is recommended) and its structure is the one typical of the java beans. The

constructor, instead, must have one of the following signature:

 public Xxx(<ontology-result-type> yyy) {

 …

 }

or

 public Xxx(<ontology-result-type> yyy, ACLMessage message) {

 …

 }

JADE WSIG Add-On GUIDE

15

where the <ontology-result-type> is the java type returned by the execution of the

ontological action. Such java type can be defined by means of setResult(...), for

traditional ontologies, or by means of the @Result(...)annotation for bean-ontologies. (Refer

to the Jade documentation for details).

In the inner-class all methods, having the following signature:

 public <java-type> get<element-name>(){…}

 public boolean is<element-name>(){…}

contribute to the construction of the response message. Each method creates, in the SOAP

message, an element, named <element-name>, whose value is the one returned by the

evaluation of the method itself.

// <soapenv:Body>

// <AddResponse>

// <result>4</result>

// <squareRoot>2</squareRoot>

// <power>16</power>

// </AddResponse>

// </soapenv:Body>

@ResultConverter({

 @ApplyTo(action="add")

})

public class AddResultConverter {

 private double result;

 public AddResultConverter(double ontologyResult) {

 this.result = ontologyResult;

 }

 public double getResult() {

 return result;

 }

 public double getSquareRoot() {

 return Math.sqrt(result);

 }

 public double getPower() {

 return Math.pow(result, 2.0);

 }

}

The ResultConverter methods can be annotated using the @Slot, @AggregateSlot and

@SuppressSlot annotations for further customizing the output message. The meanings of the

@Slot, @AggregateSlot annotations have been described above; the @SuppressSlot

annotation, instead, allows to suppress a get/is method in the construction of the output

message.

When executor agent responds FAILURE, REFUSE or NOT_UNDERSTOOD the WSIG checks

if the mapper contains a FaultConverter related to the specific operation and, in this case, uses it

to prepare the SOAP FAULT response message.

The Fault Converter is an inner-class of the mapper annotated as it follows:

 @FaultConverter({

JADE WSIG Add-On GUIDE

16

 @ApplyTo(action="<action-name>",operation="<op-name-1>"),

 @ApplyTo(action="<action-name>",operation="<op-name-2>")

 …

 })

The significance of the annotations is the same as the ResultConverter. The same FaultConverter

can be applied to several operations and/or actions.

If the operation attribute is not specified, the FaultConverter is applied to the all web-service

operations associated to the ontological action <action-name>.

Any name can be used for an inner class representing a FaultConverter (even if, the

FaultConverter suffix is recommended) but its internal structure must be the following:

 public Xxx(ACLMessage fauilureMessage) {

 …

 }

 public String getFaultCode() {

 return;

 }

 public String getFaultString() {

 return;

 }

 public String getFaultActor() {

 return;

 }

// <soapenv:Body>

// <soapenv:Fault>

// <faultCode>Server</faultCode>

// <faultString>My message</faultString>

// <faultActor>My actor</faultActor>

// </soapenv:Fault>

// </soapenv:Body>

@FaultConverter({

 @ApplyTo(action="add")

})

public class AddFaultConverter {

 public AddFaultConverter(ACLMessage message) {

 }

 public String getFaultCode() {

 return SOAPException.FAULT_CODE_SERVER;

 }

 public String getFaultString() {

 return "My message";

JADE WSIG Add-On GUIDE

17

 }

 public String getFaultActor() {

 return "My actor";

 }

}

Summarizing, the role of an ontology mapper is twofold;

 At service registration time, to define the I/O parameters (and possibly the name) of the

web service operations to be exposed.

 At service invocation time, to create the objects representing the actions the target agent

is actually requested to perform and to convert the result returned by the target agent in a

customized structure.

It should be noted that parameters of the toXXX() methods and the return types of the methods

metodi getXXX() or isXXX(), defined by the ResultConverter in an ontology mapper class,

must be either primitive types, complex types or array of the above types.

WSIG annotations (@OperationName, @SuppressOperation,

@ResultConverter e @ApplyTo) are available including in the project classpath the library

wsigAnnotations.jar. When necessary this library can be found in the folder add-

ons/wsig/utils. (See chapter 4 - INSTALLATION for details).

The other annotation (@Slot, @AggregateSlot e @SuppressSlot) are available in the

jade.jar library.

In order to specify an ontology mapper the wsig-mapper service description property must be

used as exemplified in the code snippet below.

……

ServiceDescription sd = new ServiceDescription();

……

sd.addProperties(new Property(“wsig”, "true"));

sd.addProperties(new Property(“wsig-

mapper”,”com.tilab.wsig.examples.MathOntologyMapper"));

……

The MathOntologyMapper class included among the examples packaged with the WSIG

distribution provides an example of ontology mapper class.

3.5 Current limitations

Version 2.0 of the WSIG add-on has the following known limitations.

 The JADE main container must be already up and running when the WSIG web application is

started.

 Even if a Service-Description can reference several ontologies, WSIG is able to handle only

one.

JADE WSIG Add-On GUIDE

18

 In rpc/encoded style the MULTIREF soap request is not supported. Note that AXIS 1.x use

this formalism as default In order to create AXIS 1.x based clients able to access Web

services exposed by WSIG it is necessary to disable the MULTIREF option (see the AXIS

documentation for details).

JADE WSIG Add-On GUIDE

19

4 INSTALLATION

The Web Service Integration Gateway is a JADE add-on and, as such, requires JADE 3.5 or

later to be already installed. Furthermore, being WSIG a web application, it is necessary to have a

Servlet Container such as Apache Tomcat, properly installed and configured (the details on

servlet container installation and configuration are out of the scope of this document).

In order to install the WSIG add-on the following steps must be performed.

Download the WSIG distribution file from the add-ons area of the JADE web site

(http://jade.tilab.com).

Unzip the WSIG distribution file in the JADE home directory. You should end-up with a

directory structure like that depicted in Figure 3.

jade/

 |---add-ons

 | |--- ...

 | |---wsig/

 |---bin/

 |---context/

 |---examples/

 | |---src/

 | |---xml/

 |---lib/

 |---src/

 |---utils

 |---webapp

 |---webModule/

 | |---conf/

 | |---WEB-INF/

 | | |---classes/

 | | |---lib/

 | |---wsdl/

 |---build.xml

 |---build.properties

 |---License

 |---COPYING

Figure 3. WSIG directory structure

A brief description of the content of each directory is presented hereafter.

 bin: contains a number of startup scripts both in bat (Windows) and sh (Linux/Unix) form.

 context: contains the WSIG web application context file that can be used for customized

installations

 examples: contains the source files of the WSIG example (MathAgent)

 lib: contains third party libraries used by the WSIG add-on (including the related licenses)

mentioned in 1.4

http://jade.tilab.com/

JADE WSIG Add-On GUIDE

20

 src: contains the WSIG source code

 utils: contains the WSIG annotations library (wsigAnnotation.jar)

 webapp: contains the WSIG webapp with nothing custom configurations (wsig.war)

 webModule: contains the structure of the WSIG web application as it will appear in the

wsig.war file.

 build.xml/build.properties: this is the ANT build file by means of which it is

possible to compile, and deploy the WSIG web application as will be described in the

following section

4.1 Deployment

As mentioned WSIG is a web application that must be deployed in a servlet container such

as Apache Tomcat and will be executed within the JVM of the servlet container. As a

consequence both the WSIG own classes, the third party libraries used by WSIG, and all

ontologies and mapper classes the WSIG will have to deal with must be included in the

WSIG web application classpath.

Considering the above requirement the typical process to deploy the WSIG add-on in a real

application involves the following steps:

1. Prepare the WSIG web application content in the webModule directory. This step

can be performed by means of the build target of the ANT build file included in

the WSIG distribution.

2. Copy ontology and mapper application specific jar files in the

webModule/WEB-INF/lib directory.

3. Edit the webModule/conf/wsig.properties file to specify required WSIG

configurations as will be described in 4.2.

4. Edit the webModule/WEB-INF/web.xml file to specify required WSIG

security configurations as will be described in 4.24.

5. Create the WSIG war file by zipping the content of the webModule directory. This

step can be performed by means of the war target of the ANT build file included in

the WSIG distribution. The produced war file is put in the webapp directory.

6. Copy the WSIG war file (wsig.war) into the webapps directory of the servlet

container.

Alternatively one can:

1. Create the (application agnostic) WSIG war file by means of the war-base target

of the ANT build file included in the WSIG distribution.

2. Copy the WSIG war file (wsig.war) into the webapps directory of the servlet

container.

3. Copy application specific ontology and mapper jar files directly in the

wsig/WEB-INF/lib directory of the servlet container.

4. Edit WSIG configurations wsig.properties directly in the wsig/conf

directory of the servlet container as will be described in 4.2.

5. Edit the web.xml directly in the wsig/webModule/WEB-INF directory of the

servlet container as will be described in 4.24.

JADE WSIG Add-On GUIDE

21

Eventually, it is also possible to customize and deploy a WSIG application following these

steps:

1. Prepare a zip file, containing the configuration file and the libraries and the classes,

used in the ontologies and in the mappers

2. Use the ant target customize-war to build the webapp war.

The structure of the zip file is showed in Figure 4, where both the configuration files (

 (wsig.properties e web.xml) and the folders (lib e classes) are optionals.

myZip/

 |---wsig.properties

 |---web.xml

 |---lib/

 | |---myLib1.jar

 | |---myLib2.jar

 |---classes/

 | |---myClass1.class

 | |---myPackage/

 | | |---myClass2.class

Figure 4. Customize-zip directory structure

When invoked, the ant target customize-war interactively asks to the user the path of the zip

file and produces, in the webapp folder, the WSIG war, ready to be deployed and customized

using the libraries, the classes and the configurations files, included in the zip file.

The ant target customize-war can also been called from an ant file, programmatically

setting the zip file path, as follows in the example:

<target name="my-custom-target">

 <property name="wsig.dir" value="<WSIG-installation-path>"></property>

 <ant antfile="${wsig.dir}/build.xml"

 dir="${wsig.dir}"

 target="customize-war">

 <property name="zipPath" value="<zip-path>"></property>

 </ant>

</target>

4.2 Configuration

All WSIG configurations can be set by editing the conf/wsig.properties file. This

file includes both the configurations of the JADE container that will host the WSIG agent (such

as the host and port of the Main Container) and the WSIG specific configurations. For the

JADE WSIG Add-On GUIDE

22

configurations of the JADE container the reader is redirected to the JADE Administrator’s guide

since all JADE configuration options can be used. WSIG specific configurations are summarized

in Table 1.

Parameter Description Default value

JADE configuration section

host Host name of JADE main-container localhost

port Port of JADE main-container 1099

container-name Name of WSIG container WSIG-Container

local-port Port of WSIG container Automatically assigned by

platform

SL-preserve-java-types Enable the java type preservation in message

communications

false

WSIG configuration section

wsig.servicesURL URL to invoke the WSIG services http://<webapp-url>/ws

wsig.agent Fully qualified class name of the WSIG agent in

case one needs to extend/modify the base

functionality of the WSIGAgent class

com.tilab.wsig.agent.WSIGAgent

wsig.style Defines the style to use. Supported values are

rpc (indicates rpc/encoded) and document

(indicates document/literal wrapped)

document

wsig.timeout Timeout (in milliseconds) for the execution of

agent actions corresponding to WSIG

invocations

30000

wsdl.localNamespacePrefix TNS prefix used in WSDL construction impl

wsdl.writeEnable Tells WSIG whether or not to store generated

WSDL descriptions to .wsdl filess

false

wsdl.directory The directory, relative to the WSIG web

application root (webModule) where to store

generated WSDL files. Has no effect if

wsdl.writeEnable is set to false

wsdl

UDDI registry configuration section

uddi.enable Flag that specifies whether or not generated

WSDLs must be published in a UDDI registry

too. If this option is set to false all other options

in this section are ignored

false

uddi.queryManagerURL UDDI inquiry URL

uddi.lifeCycleManagerURL UDDI publication URL

uddi.businessKey UDDI business key

uddi.userName UDDI username

uddi.userPassword UDDI password

UDDI4j configuration section

org.uddi4j.logEnabled Flag used to turn on/off UDDI4j logs true

org.uddi4j.TransportClassName The class implementing the protocol used to

interact with the UDDI registry

org.uddi4j.transport.ApacheAxisTr

ansport

Ontologies section

onto.<ontology-name>

JADE WSIG Add-On GUIDE

23

Table 1. WSIG configuration properties

The ontologies section includes a number of application specific properties describing the

ontologies the WSIG will have to deal with. In particular for each such ontology there must be a

property of the form

onto.<ontology-name>=<ontology-fully-qualified-classname>

For instance if the WSIG is expected to expose as web services agent services referring to the

math-ontology implemented by the com.tilab.wsig.examples.MathOntology

class, the wsig.properties file must include a property of the form

onto.math-ontology=com.tilab.wsig.examples.MathOntology

4.3 WebSphere Application Server configuration

Only when deploying WSIG applications on IBM WebSphere Application Server (WAS) 6.0

or 6.1, you must configure the server to use the application's class loader before the container or

system class loaders; this will ensure that the WSDL4J classes that are in /WEB-INF/lib directory

will be loaded before those in $WAS_HOME/lib.

If you are developing and deploying your application through IBM Rational Application

Developer (RAD), you can make the required changes by setting the class loader mode to

PARENT_LAST.

If you are installing your application through the WAS admin console, select Enterprise

Applications > Your Application > Class loading and update detection. You should then check

the boxes labeled as follows:

- Classes loaded with application class loader first

- Single class loader for application

Making these changes should not affect your other applications.

4.4 Security

WSIG supports HTTP authentication, SSL certificates and WS-Security UsernameToken and

Timestamp types.

4.4.1 HTTP authentication

The following steps are necessary to enable HTTP authentication:

1) Add to the WEB-INF/web.xml file the sections security-constraint,

login-config and security-role, as follows:

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>WSIG</web-resource-name>

 <url-pattern>/ws/*</url-pattern>

 </web-resource-collection>

 <auth-constraint>

JADE WSIG Add-On GUIDE

24

 <role-name>wsig-role</role-name>

 </auth-constraint>

 </security-constraint>

 <login-config>

 <auth-method>BASIC</auth-method>

 <realm-name>WSIG authentication</realm-name>

 </login-config>

 <security-role>

 <description>The role that is required to login to WSIG</description>

 <role-name>wsig-role</role-name>

 </security-role>

The authentication scope can be extended to the whole WSIG application (administration

console an SOAP services) or just applied to the SOAP services: this can be done

modifying the url-pattern parameter. Possible values are:

 <url-pattern>/*</url-pattern>: to the whole WSIG application

 <url-pattern>/ws/*</url-pattern>: only to the SOAP services

2) Add to the user configuration section of the servlet container the relation between the

wsig-role and the authentication credentials. For Apache Tomcat, in example, that

can be done, adding to the tomcat-users.xml file the following row:
<user username="my-username" password="my-password"

roles="wsig-role"/>.

4.4.2 SSL certificate

The following steps are necessary to enable SSL certificate authentication:

1) Add to the WEB-INF/web.xml file the security-constraint section, as

follows:

 <security-constraint>

 <web-resource-collection>

 <web-resource-name>WSIG</web-resource-name>

 <url-pattern>/ws/*</url-pattern>

 </web-resource-collection>

 <user-data-constraint>

 <transport-guarantee>CONFIDENTIAL</transport-guarantee>

 </user-data-constraint>

 </security-constraint>

The authentication scope can be extended to the whole WSIG application (administration

console an SOAP services) or just applied to the SOAP services: this can be done

modifying the url-pattern parameter. Possible values are:

 <url-pattern>/*</url-pattern>: to the whole WSIG application

 <url-pattern>/ws/*</url-pattern>: only to the SOAP services

2) Properly configure and add the keystore to the servlet container: for Apache Tomcat,

in example, adding or modifying the following row:

<Connector port="8443" keystoreFile="<keystore-path>"

JADE WSIG Add-On GUIDE

25

keystorePass="store-password"/>

in the server.xml file.

A new keystore can be generated, exploiting the specific tool provided by the java JDK by

means of the following command:

keytool -genkey -alias wsig -keypass <store-password> -

keystore wsig.bin -storepass <store-password>

This command generates a new keystore, named wsig.bin, protected by the store-

password.

4.4.3 WS-Security

The WS-Security can be enabled, properly configuring the wss section in the WSIG

configuration file conf/wsig.prop. The WS-Security is applied just to the SOAP services.

The supported criteria are:

 UsernameToken of PasswordText type that can be configured as it follows

 wss.username=<my-wss-username>

 wss.password=<my-wss-password>

 Timestamp that can be configured as it follows:

 wss.timeToLive=<my-wss-timeToLive> (value in seconds)

JADE WSIG Add-On GUIDE

26

5 ADMINISTRATION GUI

The WSIG add-on comes with a simple administration Web GUI by means of which it is

possible to check the exposed web services. If the standard installation described in section 4 is

followed the WSIG administration GUI can be reached at the http://localhost:8080/wsig URL.

As depicted in Figure 4 the main page shows the list of exposed web services and the

configuration parameters.

Figure 4. The WSIG Administration GUI

http://localhost:8080/wsig

JADE WSIG Add-On GUIDE

27

By clicking on a service in the services list the relevant information about that service will be

shown. These include the agent providing the service, the referenced ontology, the mapper and

prefix if any, the list of available operations and a link to the WSDL (see Figure 5).

Figure 5. WSIG Administration GUI: Service details

The WSIG GUI also includes a test page by means of which it is possible to trigger SOAP

requests towards an exposed web service. This is done by pasting an XML request message in the

SOAP Request area and clicking on the Send button. The response message will appear in the

SOAP Response area (see Figure 6). A number of XML request messages referring to the

MathAgent example are included in the examples/xml directory of the WSIG distribution.

JADE WSIG Add-On GUIDE

28

Figure 6. WSIG Administration GUI: Test page

JADE WSIG Add-On GUIDE

29

6 ADMINISTRATION API

The next chapter will present the reference to the REST API of the Web Service Integration

Gateway (WSIG) add-on. This allows the user to manage the platform using simple HTTP

methods. In addition, every resource will be presented with its respective methods, description

and possible representations.

6.1 RESOURCES:

6.1.1 /admin/platform

6.1.2 admin/platform/{status}

6.1.3 admin/configuration

Method: GET
URL: http://localhost:8080/wsig/admin/platform

Description: retrieves the status of the WSIG platform as a String. ACTIVE if it
is running normally, DOWN if it has been shut down properly, or UNKNOW in
any other case.

 Available response representations:
 200 OK

Method: PUT
URL: http://localhost:8080/wsig/admin/platform{status}

Description: The template parameter is used to turn on or shutdown the WSIG
platform passing “connect” or “disconnect “ respectively.

Template
Parameter

description

status connect/disconnect

 Available response representations:
 200 OK

Method: GET
URL: http://localhost:8080/wsig/admin/configuration

Description: retrieves the current configuration parameters of the WSIG
platform

 Available response representations:
 200 OK + (XML/JSON) Configuration

JADE WSIG Add-On GUIDE

30

6.1.4 /admin/services

6.1.5 /admin/services/{serviceName}

6.1.6 /admin/services/{serviceName}/wsdl

Method: PUT
URL: http://localhost:8080/wsig/admin/configuration

Description: updates the current configuration parameters of the WSIG
platform whit the information passed in the request body.

Request Body: (XML/JSON) Configuration

 Available response representations:
 200 OK

Method: GET
URL: http://localhost:8080/wsig/admin/services

Description: returns the list of services running in the WSIG platform

 Available response representations:
 200 OK + (XML/JSON) services

Method: GET
URL: http://localhost:8080/wsig/admin/services/{serviceName}

Description: returns the information of the service which name has been
specified in “serviceName”

 Available response representations:
 200 OK + (XML/JSON) service

Method: GET
URL: http://localhost:8080/wsig/admin/services/{serviceName}/wsdl

Description: returns the *.wsdl file that represents the service which name has
been specified in “serviceName”

 Available response representations:
 200 OK + WSDL file

JADE WSIG Add-On GUIDE

31

6.2 XML AND JSON CODE EXAMPLES

6.2.1 Configuration

XML Format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<configuration>

 <jadeMainHost>localhost</jadeMainHost>

 <jadeMainPort>1099</jadeMainPort>

 <jadeContainerName>WSIG-Container</jadeContainerName>

 <containerLocalPort>1200</containerLocalPort>

 <WSIGAgentClass>com.tilab.wsig.agent.WSIGAgent</WSIGAgentClass>

 <WSIGVersion>2.9 - revision 1955 of 2013/02/26

15:46:51</WSIGVersion>

 <WSIGServicesURL>http://localhost:8080/wsig/ws</WSIGServicesURL>

 <WSIGAdminURL>http://localhost:8080/wsig</WSIGAdminURL>

 <WSIGTimeOut>30000</WSIGTimeOut>

 <WSIGJavaTypePreservation />

 <WSDLHierarchicalComplexType>false</WSDLHierarchicalComplexType>

 <WSDLLocalNameSpace>impl</WSDLLocalNameSpace>

 <WSDLStyle>document</WSDLStyle>

 <WSDLWriteEnable>false</WSDLWriteEnable>

<WSDLWritePath>C:\Users\Administrator\wtpwebapps\wsig\wsdl</WSDLWritePat

h>

 <uddiEnable>false</uddiEnable>

 <uddiQueryManager />

 <uddiLifeCycleManager />

 <uddiBusinessKey />

 <uddiUserName />

 <uddiPassword />

 <uddiTModel />

</configuration>

JSON Format:

{

 "jadeMainHost": "localhost",

 "jadeMainPort": "1099",

 "jadeContainerName": "WSIG-Container",

 "containerLocalPort": "1200",

 "WSIGAgentClass": "com.tilab.wsig.agent.WSIGAgent",

 "WSIGVersion": "2.9 - revision 1955 of 2013/02/26 15:46:51",

 "WSIGServicesURL": "http://localhost:8080/wsig/ws",

 "WSIGAdminURL": "http://localhost:8080/wsig",

 "WSIGTimeOut": "30000",

 "WSIGJavaTypePreservation": "",

JADE WSIG Add-On GUIDE

32

 "WSDLHierarchicalComplexType": "false",

 "WSDLLocalNameSpace": "impl",

 "WSDLStyle": "document",

 "WSDLWriteEnable": "false",

 "WSDLWritePath":

"C:\\Users\\Administrator\\wtpwebapps\\wsig\\wsdl",

 "uddiEnable": "false",

 "uddiQueryManager": "",

 "uddiLifeCycleManager": "",

 "uddiBusinessKey": "",

 "uddiUserName": "",

 "uddiPassword": "",

 "uddiTModel": ""

}

6.2.2 Services

XML Format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<services>

 <service>MathFunctions</service>

 <service>BeanMathFunctionsMapper</service>

</services>

JSON Format:

{

 "service": ["MathFunctions", "BeanMathFunctionsMapper"]

}

6.2.3 Service

XML Format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<service>

 <name>MathFunctions</name>

 <prefix>-</prefix>

 <mapperClass>-</mapperClass>

 <hierarchicalComplexType>false</hierarchicalComplexType>

 <jadeOntology>wsig_math-ontology</jadeOntology>

 <jadeAgent>MathAgent1@WSIGTestPlatform</jadeAgent>

 <uddiServiceKey>-</uddiServiceKey>

<wsdlUrl>http://localhost:8080/wsig/ws/MathFunctions?WSDL</wsdlUrl>

 <operations>

JADE WSIG Add-On GUIDE

33

 <operation>abs</operation>

 <operation>getAgentInfo</operation>

 <operation>multiplication</operation>

 <operation>diff</operation>

 <operation>printTime</operation>

 <operation>getRandom</operation>

 <operation>sum</operation>

 <operation>compareNumbers</operation>

 <operation>convertDate</operation>

 <operation>getComponents</operation>

 <operation>sumComplex</operation>

 <operation>printComplex</operation>

 </operations>

</service>

JSON Format:

{

 "name": "MathFunctions",

 "prefix": "-",

 "mapperClass": "-",

 "hierarchicalComplexType": "false",

 "jadeOntology": "wsig_math-ontology",

 "jadeAgent": "MathAgent1@WSIGTestPlatform",

 "uddiServiceKey": "-",

 "wsdlUrl": "http://localhost:8080/wsig/ws/MathFunctions?WSDL",

 "operations": {

 "operation": ["abs", "getAgentInfo", "multiplication",

 "diff", "printTime", "getRandom", "sum",

 "compareNumbers", "convertDate",

"getComponents",

 "sumComplex", "printComplex"] }

}

JADE WSIG Add-On GUIDE

34

7 APPENDIX I . DESCRIPT ION OF THE EXAMPLES

The WSIG add-on comes with some examples that aim at clarifying how to exploit it to

expose agent services as web services. These examples refer to a minimal MathOntology

defining concepts and actions dealing with simple mathematical operations such as SUM, and

MULTIPLICATION of possibly COMPLEX numbers. The bin directory includes .bat and

.sh scripts to start these examples.

In order to try the WSIG examples the following steps should be performed (the same

sequence of steps apply to the .sh scripts in case you are working on a Linux/Unix machine).

 Launch the runJade.bat script to start the JADE Main Container

 Create the WSIG web application including the WSIG examples by means of the

war-examples target of the ANT build file included in the WSIG distribution.

 Deploy the webapps/wsig.war file (produced in the previous step) in Tomcat.

 Start Tomcat

 Look at the JADE administration GUI (RMA): a new container including the WSIG

agent should appear.

 Launch the runMathAgent.bat script to start (in a new container) an agent

registering a service (called MathService) referring to the MathOntology

 Launch the runMathAgentPrefix.bat script to start (in a new container) an

agent registering the same MathService but specifying a prefix

 Launch the runMathAgentMapper.bat script to start (in a new Container) an

agent registering another service (called MathServiceMapper) and specifying an

ontology mapper.

 Use the WSIG test console or the runSoapClient.bat script to perform web

service invocations on the services exposed by the agents started in the previous

steps. The directory examples/xml contains several raw SOAP requests to be

used to query that services.

