
JADE Securi ty Add-On GUIDE

1

J A D E S E C U R I T Y G U I D E

USAGE RESTRICTED ACCORDING TO LICENSE AGREEMENT.

last update: 28-February-2005. JADE 3.3

Authors: JADE Board

Copyright (C) 2004 TILAB S.p.A.

JADE - Java Agent DEvelopment Framework is a framework to develop multi-agent systems in compliance with

the FIPA specifications. JADE successfully passed the 1st FIPA interoperability test in Seoul (Jan. 99) and the 2nd FIPA

interoperability test in London (Apr. 01).

Copyright (C) 2000 CSELT S.p.A. (C) 2001 TILab S.p.A. (C) 2002 TILab S.p.A. (C) 2003 TILab S.p.A.

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General

Public License as published by the Free Software Foundation, version 2.1 of the License.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the

implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser

General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write

to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

JADE Securi ty Add-On GUIDE

2

TABLE OF CONTENTS

1 INTRODUCTION 3

1.1 Target Audience 3

1.2 Rationale 3

1.3 Current limitations 4

1.4 Requirements 4

1.5 Document Layout 4

2 JADE SECURITY OVERVIEW 5

2.1 Authentication 5

2.2 Permissions 5

2.3 Message integrity and confidentiality 6

3.1 Starting and administrating a multi-user platform 7
3.1.1 Assigning permissions 8
3.1.2 Starting the main container 9
3.1.3 Starting an agent 10
3.1.4 Attaching a container 11
3.1.5 Authorization 13

3.2 Exchanging signed and encrypted messages 13

ANNEX I: CONFIGURATION PARAMETERS 15

ANNEX II: PLATFORM SERVICES PERMISSIONS 18

JADE Securi ty Add-On GUIDE

3

1 INTRODUCTION

This document describes how to use the JADE-S (Version 2) add-on of the JADE platform

that provides support for security in multi agent systems. It should be noticed that this add-on

completely replaces and extends the first security add-on (JADE-S version 1) distributed with

version 2.61 of JADE. With respect to its previous version, JADE-S Version 2 provides

additional features such as end-to-end message signature and encryption, fixes a number of bugs

and is compatible with the LEAP add-on, which allows running JADE agents on mobile phones.

In the rest of the document the term JADE-S will be used to refer to the Version 2 of the security

add-on.

This guide focuses on starting and administrating a secure platform. Please refer to the

javadoc for a complete description of the APIs that allow accessing security features from the

code.

The version 2 of the JADE-S add-on was developed by the JADE Board and requires the

release 3.2 or later of JADE.

1.1 Target Audience

This document is intended for JADE users who are interested in developing multi-agent

applications that require some degree of security such as guaranteed message integrity and

confidentiality and authorization checks when an agent performs specific actions.

The reader is assumed to be already familiar with JADE. For people new to JADE we

strongly recommend to first read the JADE Administrators Guide and Programmers Guide or the

JADE Programming Tutorial first available on the JADE web site (http://jade.tilab.com).

1.2 Rationale

Distributed systems when deployed in an open environment require a high level of security at

both the infrastructure and application levels. Distributed Multi-Agent systems, leveraging

agent’s autonomy and mobility, require even greater attention to security issues. Depending on

the particular scenario a multi agent system is deployed for, there are a number of security threats

that must be taken into account as highlighted by the examples below.

1) Let us consider an agent-based auction system where each participant is represented by

an agent that places bids to buy goods on behalf of its user. In this scenario agents

compete between each other and a malicious agent could try to kill its competitors to

keep the price as low as possible. Without proper security checks, a simple request to the

AMS would be sufficient to achieve that.

2) Consider a business application where confidential information must be exchanged

between distinct agents. A malicious agent or hacker may sniff the message content or

even tamper it to make, for instance, the receiver agent perform an action different than

the one it had been originally request for.

3) Finally, consider a data mining application based on mobile agents that move across

machines to intensively query a number of databases locally. A malicious agent could go

to a remote host and act as a virus deleting or tampering, for instance, relevant

information in the operating system of the host machine.

JADE Securi ty Add-On GUIDE

4

The JADE-S add-on V2 allows protecting a JADE-based multi agent system against security

attacks such as those presented in the above examples. More in details all the components (agents,

and containers) in a platform are owned by authenticated users, who in turn are authorized by the

platform administrator to perform only certain privileged actions. Each agent owns a public and

private key pair by means of which it can sign and encrypt messages.

1.3 Current limitations

The Version 2 of the security add-on described in this document still contains some

limitations.

 Mobility related permissions are still missing. As a consequence, in order to be secure

(according to the security mechanisms implemented so far), a JADE-S V2 based

platform should not support agent mobility at all. In order to do that it is sufficient not to

start the Agent Mobility Service when launching JADE.

 Pieces of information exchanged between containers (called horizontal commands) are

transferred over secure channels (SSL) but are not signed. A malicious agent or hacker

could issue a fake horizontal command in order to force a remote container to behave in

a way that differs from the original intent.

 Most of the security features are not accessible from agents running on MIDP devices.

Version 3 of the JADE-S add-on providing features addressing the aspects mentioned above

is planned for the end of 2004.

1.4 Requirements

In order to use a JADE platform with installed security features, it is sufficient to download

JADE and the security add-on. In order to compile them the version 1.6 of ANT is required

(http://ant.apache.org).

1.5 Document Layout

Section 2 gives an overview of the three main features provided by JADE-S V2, i.e. user

authentication, agent action authorization and message signature and encryption. Section 3.

provides step-by-step guidance on how to start and administer a secure JADE platform and how

to make agents exchange signed and encrypted messages.

JADE Securi ty Add-On GUIDE

5

2 JADE SECURITY OVERVI EW

This section provides an overview of the security features supported by JADE-S, namely user

authentication, agent actions authorization against agent permissions and message signature and

encryption. The details about option names and configuration files are described in the following.

2.1 Authentication

Authentication provides a guarantee that a user starting a JADE platform, and thereby

generates containers and agents within that platform, is considered legitimate within the secured

scope of the computational system hosting the main container of that platform. Legitimate in the

case of the JADE authentication process implies that the user is known to the system by having at

least one valid identity and associated password.

In general, an authentication system is composed of two main elements: a

“CallbackHandler” that allows the user to provide its username and password and a

“LoginModule” that checks if these username and password are valid.

The JADE authentication mechanism is based on the JAAS (Java Authentication and

Authorization Service, http://java.sun.com/products/jaas) API that enables the enforcement of

differentiated access control on system users. The JAAS mechanism provides a set of de facto

LoginModules; the Unix, NT and Kerberos modules have been implemented in this release. The

Unix and NT modules are Operating System dependent and are designed to use the identity of the

user extracted from the current Operating System session. The Kerberos module is system

independent in operation, but requires system-specific configuration prior to use. All necessary

configuration information that is not detailed in this document can be found on or referenced from

the JAAS homepage as indicated above. In addition to these standard modules, a special

LoginModule is available termed Simple. This allows basic authentication against a plain text

password file held in a system folder and is intended primarily for testing purposes.

The current release also provides several callback mechanisms:

 cmdline – Username and password are provided as JADE configuration parameter,

either as command-line parameter (–owner user:pass), or into the configuration file

(owner=user:pass).

 text – The starting container prompts the user for username and password insertion.

 dialog – The starting container shows a dialog where the user can insert username and

password.

If any problem occurs during authentication, or the user fails to be correctly authenticated

then the system will exit and generate appropriate error messages.

2.2 Permissions

Thanks to the authentication mechanism described in section 2.1, a JADE-S based platform

becomes a multi-user system where all components (containers and agents) are owned by an

authenticated user. All actions that agents can perform in the platform can be permitted or denied

according to a set of rules. By this way it is possible to selectively grant access to platform

services or to application resources. This set of rules is usually described into a file named:

policy.txt, which follows the default Java/JAAS syntax, but uses an extended policy model that

allows greater flexibility into a distributed agent-based scenario.

JADE Securi ty Add-On GUIDE

6

Reflecting the JADE architecture that includes a Main Container and several peripheral

containers, two types of policy files can be used to grant permissions to agents:

1. The MainContainer policy file that specifies platform-wide permissions such as

“Agents owned by user Bob can kill agents owned by user Alice”.

2. The peripheral container policy files (one per container) that specify container-

specific permissions (such as “Agents owned by user Bob can kill agents owned by

user Alice on the local container”).

Container policy files also regulate the access to local resources (JVM, file system, network,

etc...). A list of permissions that can be used into policies can be found at Annex II, Several

examples of policies can be found in this document and into the ’add-

ons/security/examples’ directory.

2.3 Message integrity and confidentiality

Signature and encryption guarantee a certain level of security when sending an ACL

message both to an agent running on the same or a foreign platform. Signatures are a well-known

safeguard to ensure the integrity of a message (confidence that data has not been tampered with

during transmission) and the identity of the message originator. Encryption, on the other hand,

ensures confidentiality of the message by protecting message data from eavesdropping

(confidence that only the intended receiver will be able to read the clear message). As background

information, an ACL message is composed of two parts: the envelope, which contains transport

related information and the payload, which contains the actual sensitive data.

Transport Message

to

date

from

acl-representation

Message Envelope

Message Payload

 Figure 1. Structure of a FIPA ACL Message

In JADE-S “Signature” and “Encryption” always apply to the entire payload in order to protect all

the important pieces of information contained in the slots of the ACL message (content, protocol,

ontology, etc.). The security-related information (such as the signature, the algorithm or the key)

is then placed into the envelope. As shown in the messaging.SecureSenderAgent and

messaging.SecureReceiverAgent included in the examples directory, users do not need to

deal with the actual signature and encryption mechanisms, but just need to request a message to

be signed or check whether a received message has been signed. Note that if some problems

occur whilst signing, encrypting, verifying or decrypting a message, the message is discarded and

a failure notice is returned to the sender as a FAILURE message from the AMS. The immediate

JADE Securi ty Add-On GUIDE

7

implication is that each time an agent receives a signed message, the signature is valid (i.e. the

agent does not need to check the signature again).

3 HOW TO USE JADE-S V.2

In conformance with the new JADE kernel architecture based on the concept of service, each

one dealing with a specific aspect, the security support is implemented as a set of JADE Services.

Regarding security there are four relevant services:

 jade.core.security.SecurityService: This service is in charge of the

authentication mechanism and also provides all functionality common to all security

related services such as crypto engines and management of agent key pairs.

 jade.core.security.permission.PermissionService: This service is in

charge of checking that agents performing actions such as sending messages, moving to

other containers and requesting the AMS to create/kill other agents are actually

authorized to do that.

 jade.core.security.signature.SignatureService: This service is in

charge of signing messages when requested by the sender and verify the validity of

incoming signed messages.

 jade.core.security.encryption.EncryptionService: This service is in

charge of encrypting messages when requested by the sender and decrypt incoming

encrypted messages.

Therefore, in order to start a JADE-S based secure platform it is necessary to launch JADE

activating the SecurityService and, depending on the application needs, the SignatureService,

the EncryptionService and/or the PermissionService. As an example, the command line below

starts a platform where agents can send signed messages (see also the JADE Administrator’s

Guide for a detailed explanation on activating JADE services).

java –cp <jade-classes>;<jade-s-classes> jade.Boot –gui –services

jade.core.security.SecurityService;jadecore..security.signature.SignatureService

3.1 Starting and administrating a multi-user platform

This section provides step-by-step guidance on how to start and administrate a secure

platform where each component (container and agents) is owned by an authenticated user. This is

done by illustrating the Startup example included in the examples.Startup directory. In this

example two users “alice” and “bob” own the Main Container and a peripheral container

respectively and some agents on them. They and their agents are granted with different

permissions (see 3.1.1) and as a consequence certain actions will be forbidden. We use the Simple

LoginModule for authentication so that no special system configuration is required to run the

example. As mentioned in 2.1 this LoginModule stores valid usernames and passwords in a text

JADE Securi ty Add-On GUIDE

8

file in clear and is there only for testing and exemplifying purposes. The content of the password

file examples/startup/main/passwords.txt is reported below. User information is

provided in the form <username> <password> with each user information on a separate line.

alice alice

bob bob

3.1.1 Assigning permissions

For assigning rights the JAAS policy file syntax is used. Rights can be granted to code, users

and agents and are identified by a principal of type jade.security.Name. The policy file for

this example has to grant several privileges in order to run the examples. Firstly the JADE code

has to be granted all JAVA security permissions:

grant codebase

 "file:<JADEROOT>/add-ons/security/lib/JadeSecurity.jar" {

 permission java.security.AllPermission; };

grant codebase "file: <JADEROOT>/lib/jade.jar" {

 permission java.security.AllPermission;};

grant codebase "file: <JADEROOT>/lib/jadeTools.jar" {

 permission java.security.AllPermission; };

Additionally the user “alice” has to be granted several privileges. Below the policy required

to create/kill platforms, containers and agents.

grant principal jade.security.Name "alice" {

 permission jade.security.PlatformPermission "", "create,kill";

 permission jade.security.ContainerPermission "", "create,kill";

 permission jade.security.AgentPermission "", "create,kill";

 permission jade.security.AgentPermission "", "suspend,resume";

 permission jade.security.AMSPermission "", "register, deregister,

modify";

 permission jade.security.MessagePermission "", "send-to";

};

The user “bob” is granted the permissions to create a simple container, create agents owned

by bob on containers owned by bob and whose name starts with “bob-“ All agents running under

the user “bob” are granted the right to send messages to all other agents in the container.

Additionally “bob” is granted the permission to register and deregister agents with the AMS.

JADE Securi ty Add-On GUIDE

9

grant principal jade.security.Name "bob" {

 permission jade.security.ContainerPermission "container-owner=bob",

"create, kill";

 permission jade.security.AgentPermission "agent-owner=bob,container-

owner=bob,agent-name=bob-*", "create";

 permission jade.security.AgentPermission "agent-owner=bob",

"kill,suspend,resume";

 permission jade.security.AMSPermission "agent-owner=bob",

"register,deregister,modify";

 permission jade.security.MessagePermission "", "send-to";

};

3.1.2 Starting the main container

Having configured the password and policy file we can now start the Main container owned

by user “alice”. All JADE related parameters can either be passed as command line options or via

configuration file. In this example, since there are several parameters, we use the

examples/startup/main/main.conf configuration file.

An explanation of the security-related configuration parameters follows.

Security services

services = jade.core.security.SecurityService;\

jade.core.security.permission.PermissionService;\

jade.core.security.signature.SignatureService;

In order to exploit the security support the SecurityService, PermissionService and

SignatureService must be activated. It should be noticed that requests (e.g. to create or kill other

agents) to the AMS are always automatically signed so that the AMS can be sure about the

identity of the requester. The EncryptionService is not required unless agents need to exchange

confidential messages (see 3.2) and therefore is not activated in this example.

Policy file

java.security.policy = policy.txt

This parameter indicates the location of the policy containing permission information. Note

that this is a JAVA and not a JADE specific parameter. In this case, the policy.txt file described in

3.1.1 is indicated.

Login module

jade.security.authentication.loginmodule = Simple

jade.security.authentication.loginsimplecredfile = passwords.txt

As already mentioned we use the Simple LoginModule and the passwords.txt password file.

In addition to the above parameters the JAAS framework requires a proper configuration

regarding which login module to use.

java.security.auth.login.config=jaas.conf

JADE Securi ty Add-On GUIDE

10

Within the JAAS configuration file the following line has to be added defining the login

module to be used for simple authentication.

Simple {

 jade.core.security.authentication.SimpleLoginModule required;

};

Callback handler
jade.security.authentication.logincallback = Cmdline

This parameter indicates the callback handler in charge of retrieving the username and

password of the user that is starting this Main Container. Since we specify CmdLine the username

and password are given as configuration parameters as well. Note the syntax

<username>:<password>
owner = alice:alice

Since user “alice” owns this Main Container, agents activated at bootstrap time are owned by user

“alice” as well.

Finally moving to the examples\startup\main directory and typing

java <jade-libs>;<jade-s-lib> jade.Boot -conf main.conf

starts the Main Container owned by user “alice”.

3.1.3 Starting an agent

By specifying in the configuration file to start a JADE RMA called alice-rma as below,

agents=alice-rma:jade.tools.rma.rma

The JADE GUI should appear as in Figure 2. Note that “alice” appears in the owner column

in the right part of the GUI when selecting an agent.

JADE Securi ty Add-On GUIDE

11

Figure 2. The JADE GUI

3.1.4 Attaching a container

In this section the necessary steps to attach a container to a JADE agent platform will be

shown. The files for the example can be found in the directory examples/startup/cont-1.

For the container, which has to be started, a set of configurations has to be done. The

configuration file contains the services that have to be started. services=\

jade.core.security.SecurityService;\

jade.core.security.permission.PermissionService;\

jade.core.security.signature.SignatureService;\

jade.core.event.NotificationService

java.security.policy=policy.txt

Now a policy file, which is specific for this container, has to be created. Here again the

JADE Securi ty Add-On GUIDE

12

permission grants for the JADE source code have to be made explicit. Moreover the full set of

permission are granted to user bob. Additionally the generic principal “*” (i.e. everyone) is

granted with the right to send message.

It should be noticed that the container policy file is only valid locally.

grant codebase

 "file:<JADEROOT>jade/add-ons/security/lib/jadeSecurity.jar" {

 permission java.security.AllPermission; };

grant codebase "file: <JADEROOT>/lib/jade.jar" {

 permission java.security.AllPermission;};

grant codebase "file: <JADEROOT>/lib/jadeTools.jar" {

 permission java.security.AllPermission; };

grant principal jade.security.Name "bob" {

 permission jade.security.AgentPermission "",

 "create, kill";

 permission jade.security.AgentPermission "",

 "suspend, resume";

 permission jade.security.AMSPermission "",

 "register,deregister,modify";

};

grant principal jade.security.Name "*" {

 permission jade.security.MessagePermission "",

 "send-to";

};

A new JADE container can be started by specifying the following command line arguments:

java -jade.Boot -conf cont-1.conf

JADE Securi ty Add-On GUIDE

13

After executing this command, since the Dialog callback handler is specified in the cont-

1.conf file, a window should appear requesting the user to enter username and password. Now

when entering the user information of “bob”, the container will start up.

3.1.5 Authorization

In the illustrated example, user “alice” has full platform wide permissions, but is not granted

any permission on container cont-1 (a part from the right of sending messages). As a

consequence, using alice-rma it will be possible to create and kill agents owned by alice or bob on

the main container. When trying to create an agent on container cont-1 on the other hand, and

authorization error should occur and the following dialog window should appear..

Similarly, since bob is only granted the right to create agents owned by bob on containers

owned by bob and whose name starts with “bob-“, trying to create an agent that does not have all

these characteristics (e.g. an agent called “a” or an agent on the main container that is owned by

alice) should result in the same error.

3.2 Exchanging signed and encrypted messages

Since signing and/or encrypting a message clearly slow down the performances of agent

communication, messages are neither encrypted nor signed by defaults. It is the responsibility of

the agent sending a message to explicitly request the platform to sign and/or encrypt a message.

This is done by means of the setUseSignature() and setUseEncryption() methods of

the SecurityHelper that can be retrieved (as for all ServiceHelpers) by means of the

getHelper() method of the Agent class.

The example included in the examples.messaging directory shows in details how to send

signed and/or encrypted messages. More in details the SecureSenderAgent and

SecureReceiverAgent show the sending part and the receiving part respectively and should be

used together. In order to start them just launch a JADE main container with the security service,

signature service and encryption service and specifying the SingleUser authentication type as

below.

java –cp <jade-classes>;<jade-s-classes>;<example-classes> jade.Boot -gui

-services

jade.core.security.SecurityService;jade.core.security.signature.SignatureService;

jade.core.security.encryption.EncryptionService

-jade_security_authentication_loginmodule SingleUser s:messaging.SecureSenderAgent

r:messaging.SecureReceiverAgent

JADE Securi ty Add-On GUIDE

14

It should be noticed that the same code works also in the case that the receiver lives in a

remote platform.

JADE Securi ty Add-On GUIDE

15

 ANNEX I: CONFIGURATI ON PARAMETERS

Please note that when specifying services as start up parameter, the services, which are

installed by default, have to be installed manually if needed. These are:

 jade.core.mobility.AgentMobilityService;

 jade.core.event.NotificationService

Parameter Name: services

Synopsis Services to be started by the JADE platform.

Values jade.core.security.SecurityService

jade.core.security.permission.PermissionService

jade.core.jade.core.security.signature.SignatureService

jade.core.security.encryption.EncryptionService

Parameter Name: jade.security.policy

Synopsis Location of the policy file containing permissions.

Values policy.txt (default value)

Parameter Name: jade.security.authentication.logincallback

Synopsis Method that is used to specify how a user can authenticate.

Values Cmdline user information is specified as a command line

parameter of jade.Boot

Text prompt for the user to enter information

Dialog show a dialog window to ender user information

(default value)

Parameter Name: Owner

Synopsis When jade.security.authentication.logincallback is specified

with the CmdLine option this parameter is used to specify the

user

Values User information in the form <username>:<password>.

JADE Securi ty Add-On GUIDE

16

Parameter Name: jade.security.authentication.loginsimplecredfile

Synopsis Path to the file where to find credentials when using simple

Authentication

Values passwords.txt (default value)

Parameter Name: jade.security.authentication.loginmodule

Synopsis Select which JAAS or custom login module will be used for

verifying user’s password.

Values Simple (default value)

NT

Unix

Kerberos

Parameter Name: jade.security.AsymAlgorithm

Synopsis The default asymmetric algorithm that is used to generate a

key pair.

Values RSA (default value)

DSA

…

Parameter Name: jade.security.AsymKeySize

Synopsis Sets the default key size for public/private keys.

Values 512 (default value)

1024

2048

Parameter Name: jade.security.SymAlgorithm

Synopsis Sets the default symmetric algorithm used when the message

has to be encrypted

Values AES (default value)

Blowfish

DES

DESede

TripleDES

PBEWith<digest>And<encryption>

e.g. PBEWithMD5AndDES

PBEWith<prf>And<encryption>

e.g. PBEWithHmacSHA1 AndDESede

JADE Securi ty Add-On GUIDE

17

Parameter Name: jade.security.SymKeySize

Synopsis Sets the default key size of the secret key used when a

message has to be encrypted

Values DES: keysize must be equal to 56

TripleDES: keysize must be equal to 112 or 168

AES: 128 (default value), 192, 256

Blowfish: keysize must be a multiple of 8, and can only

range from 32 to 448, inclusive

Parameter Name: jade.security.SignAlgorithm

Synopsis Sets the default algorithm that is used when messages have to

be signed.

Values SHA1withRSA

MD5withRSA

SHA1withDSA

DSA

…

JADE Securi ty Add-On GUIDE

18

ANNEX II : PLATFORM S ERVICES PERMISSIONS

Permission actions Target Constrains

jade.security.AgentPermission create

kill

agent-owner

agent-name

container-owner

agent-class (local container only)

suspend

resume

agent-owner

agent-name

agent-class (local container only)

jade.security.MessagePermission send-to agent-owner

agent-name

jade.security.PlatformPermission create

kill

jade.security.ContainerPermission create

kill

container-owner

Policy Syntax:

grant principal jade.security.Name "<principalName>" {

 permission <permissionClass> "<targetConstrains>",

 "<actions>";

};

Principal OK
permissionClass

(actions)

a
g
e
n
t
-
c
l
a
s
s
=
.
.
.

a
g
e
n
t
-
o
w
n
e
r
=
.
.
.

Target Constrains

x
y
z

=

.
.
.

JADE Securi ty Add-On GUIDE

19

Example #1:

grant principal jade.security.Name "alice" {

 permission jade.security.ContainerPermission "", "create";

 permission jade.security.AgentPermission "agent-class=jade.core.Agent",

 "create,kill";

 permission jade.security.AMSPermission "agent-class=*, agent-owner=*",

 "register,deregister,modify";

 permission jade.security.MessagePermission "agent-owner=alice",

 "send-to";

};

Alice can create remote containers, can create and kill any agent of type: ‘jade.core.Agent’.

She (and her agents) also has the permission to send messages to agents owned by “alice”.

