



# More Data Mining with Weka

Class 3 – Lesson 1

Decision trees and rules

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization **Lesson 3.2 Generating decision rules** 

Lesson 3.1 Decision trees and rules

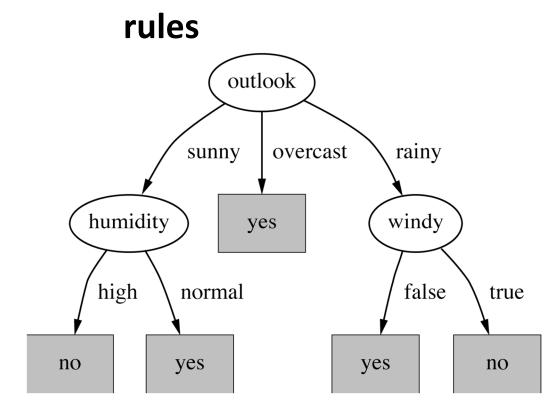
Lesson 3.3 Association rules

**Lesson 3.4 Learning association rules** 

**Lesson 3.5 Representing clusters** 

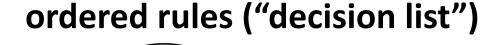
**Lesson 3.6 Evaluating clusters** 

# For any decision tree you can read off an equivalent set of



If outlook = sunny and humidity = high then no If outlook = sunny and humidity = normal then yes if outlook = overcast then yes if outlook = rainy and windy = false then yes if outlook = rainy and windy = true then no

### For any decision tree you can read off an equivalent set of





If outlook = sunny and humidity = high then no If outlook = sunny <del>and humidity = normal</del> then yes if outlook = overcast then yes if <del>outlook = rainy and</del> windy = false then yes <del>if outlook = rainy and windy = true then</del> no

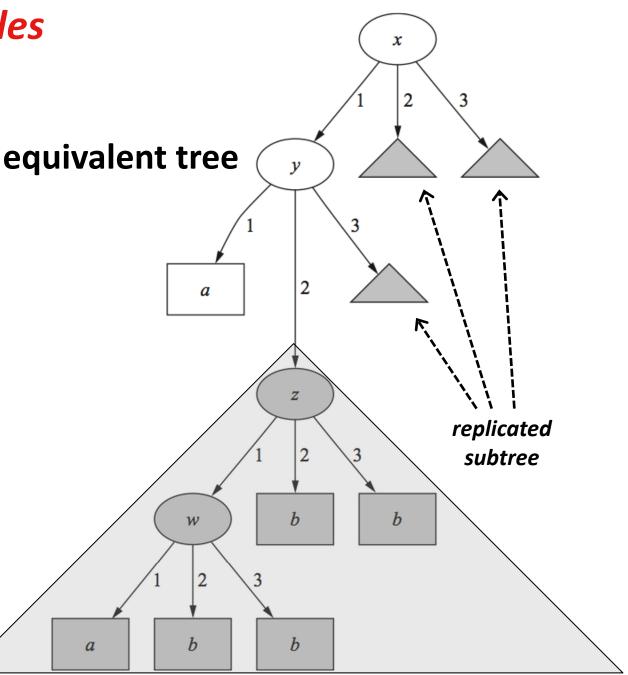
but rules from the tree are overly complex:

If outlook = sunny and humidity = high then no if outlook = rainy and windy = true then no otherwise yes

#### For any set of rules there is an equivalent tree

but it might be very complex

if x = 1 and y = 1 then a if z = 1 and w = 1 then a otherwise b



- Theoretically, rules and trees have equivalent "descriptive power"
- But practically they are very different

... because rules are usually expressed as a decision list, to be executed sequentially, in order, until one "fires"

- People like rules: they're easy to read and understand
- It's tempting to view them as independent "nuggets of knowledge"
- ✤ ... but that's misleading
  - when rules are executed sequentially each one must be interpreted in the context of its predecessors

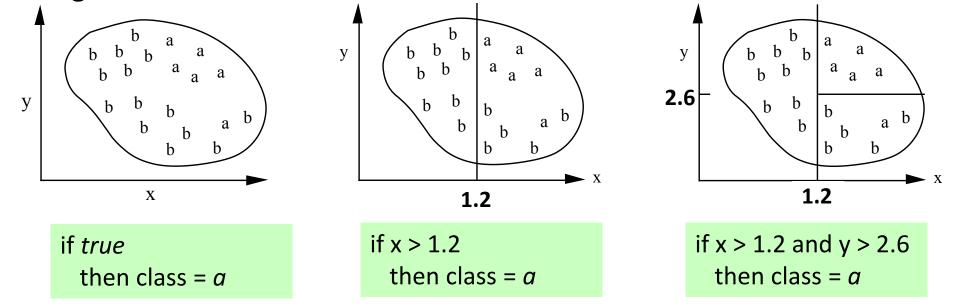
- Create a decision tree (top-down, divide-and-conquer); read rules off the tree
  - One rule for each leaf
  - Straightforward, but rules contain repeated tests and are overly complex
  - More effective conversions are not trivial

#### Alternative: covering method (bottom-up, separate-and-conquer)

- For each class in turn find rules that cover all its instances (excluding instances not in the class)
- 1. Identify a useful rule
- 2. Separate out all the instances it covers
- 3. Then "conquer" the remaining instances in that class

### **Generating a rule**

Generating a rule for class a



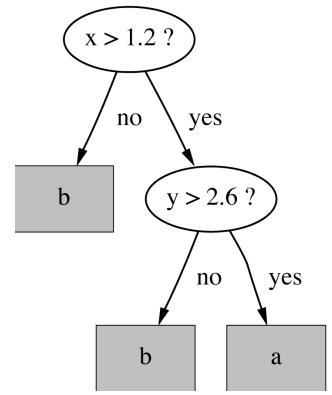
Possible rule set for class b:

if  $x \le 1.2$  then class = b if  $\frac{x > 1.2}{x > 1.2}$  and  $y \le 2.6$  then class = b

Could add more rules, get "perfect" rule set

### **Rules vs. trees**

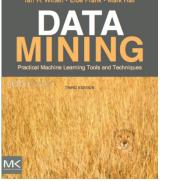
- Corresponding decision tree
  - produces exactly the same predictions
- ✤ Rule sets *can* be more perspicuous
  - E.g. when decision trees contain replicated subtrees
- ✤ Also: in multiclass situations,
  - covering algorithm concentrates on one class at a time
  - decision tree learner takes all classes into account



### Simple bottom-up covering algorithm for creating rules: PRISM

```
For each class C
     Initialize E to the instance set
     While E contains instances in class C
          Create a rule R that predicts class C
             (with empty left-hand side)
          Until R is perfect
              or there are no more attributes to use)
               For each attribute A not mentioned in R, and each value v
                   Consider adding the condition A = v to the left-hand side of R
                   Select A and v to maximize the accuracy
                      (break ties by choosing the condition with the largest p)
               Add A = v to R
          Remove the instances covered by R from E
```

- Decision trees and rules have the same expressive power
   ... but either can be more perspicuous than the other
- Rules can be created using a bottom-up covering process
- Rule sets are often "decision lists", to be executed in order
  - if rules assign different classes to an instance, the first rule wins
  - rules are not really independent "nuggets of knowledge"
- Still, people like rules and often prefer them to trees



#### **Course text**

Section 4.4 *Covering algorithms: constructing rules* 





# More Data Mining with Weka

Class 3 – Lesson 2

Generating decision rules

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization **Lesson 3.2 Generating decision rules** 

Lesson 3.1 Decision trees and rules

Lesson 3.3 Association rules

**Lesson 3.4 Learning association rules** 

**Lesson 3.5 Representing clusters** 

**Lesson 3.6 Evaluating clusters** 

### **1.** Rules from partial decision trees: PART

- Make a rule
- Remove the instances it covers
- Continue, creating rules for the remaining instances

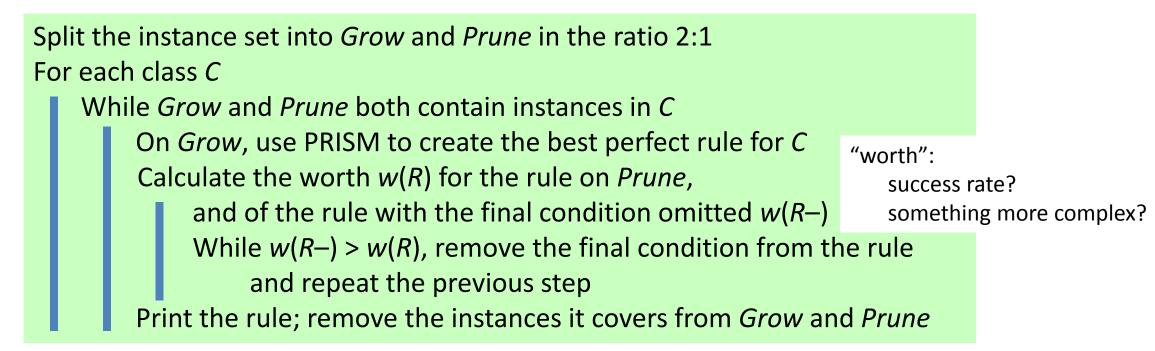
# Separate and conquer

#### To make a rule, build a tree!

- Build and prune a decision tree for the current set of instances
- Read off the rule for the largest leaf
- Discard the tree (!)

(can build just a partial tree, instead of a full one)

### 2. Incremental reduced-error pruning



... followed by a fiendishly complicated global optimization step – RIPPER

**Diabetes** dataset

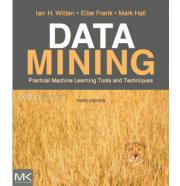
- ✤ J48 74% 39-node tree
- ✤ PART 73% 13 rules (25 tests)
- ✤ JRip 76% 4 rules (9 tests)

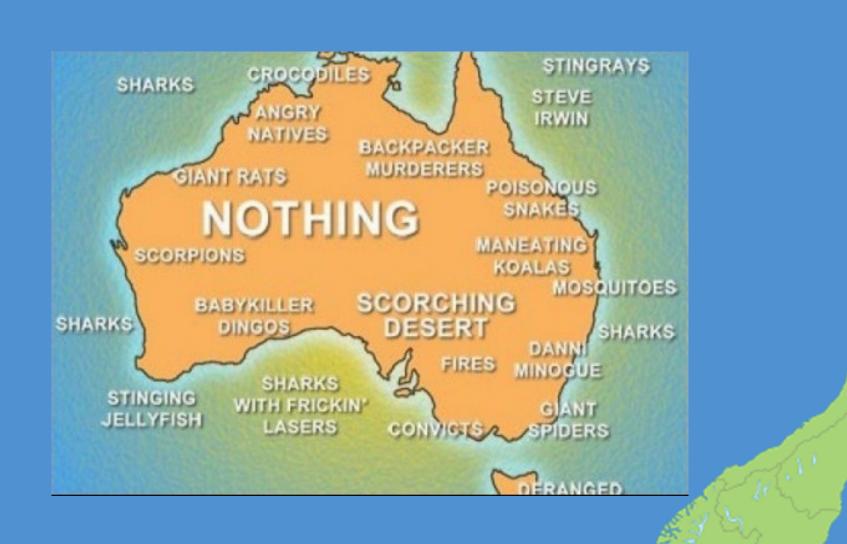
plas  $\geq$  132 and mass  $\geq$  30 –> tested\_positive age  $\geq$  29 and insu  $\geq$  125 and preg  $\leq$  3 –> tested\_positive age  $\geq$  31 and pedi  $\geq$  0.529 and preg  $\geq$  8 and mass  $\geq$  25.9 –> tested\_positive –> tested\_negative

- PART is quick and elegant
  - repeatedly constructing decision trees and discarding them is less wasteful than it sounds
- Incremental reduced-error pruning is a standard technique
  - using Grow and Prune sets
- Ripper (JRip) follows this by complex global optimization
  - makes rules that classify all class values except the majority one
  - last rule is a default rule, for the majority class
  - usually produces fewer rules than PART

#### **Course text**

Section 6.2 Classification rules









# More Data Mining with Weka

Class 3 – Lesson 3

Association rules

lan H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Lesson 3.1 Decision trees and rules

**Lesson 3.2 Generating decision rules** 

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization **Lesson 3.3 Association rules** 

Lesson 3.4 Learning association rules

**Lesson 3.5 Representing clusters** 

**Lesson 3.6 Evaluating clusters** 

- With association rules, there is no "class" attribute
- Rules can predict any attribute, or combination of attributes
- Need a different kind of algorithm: "Apriori"

| Here are some association rules for the weather data: |
|-------------------------------------------------------|
|-------------------------------------------------------|

| 1. outlook = overcast                                   | ==> | play = yes        |
|---------------------------------------------------------|-----|-------------------|
| 2. temperature = cool                                   | ==> | humidity = normal |
| <ol><li>humidity = normal &amp; windy = false</li></ol> | ==> | play = yes        |
| 4. outlook = sunny & play = no                          | ==> | humidity = high   |
| 5. outlook = sunny & humidity = high                    | ==> | play = no         |
| 6. outlook = rainy & play = yes                         | ==> | windy = false     |
| 7. outlook = rainy & windy = false                      | ==> | play = yes        |
| 8. temperature = cool & play = yes                      | ==> | humidity = normal |
| 9. outlook = sunny & temperature = hot                  | ==> | humidity = high   |
| 10. temperature = hot & play = no                       | ==> | outlook = sunny   |
|                                                         |     |                   |

| Outlook  | Temp | Humidity | Windy | Play |
|----------|------|----------|-------|------|
| sunny    | hot  | high     | false | no   |
| sunny    | hot  | high     | true  | no   |
| overcast | hot  | high     | false | yes  |
| rainy    | mild | high     | false | yes  |
| rainy    | cool | normal   | false | yes  |
| rainy    | cool | normal   | true  | no   |
| overcast | cool | normal   | true  | yes  |
| sunny    | mild | high     | false | no   |
| sunny    | cool | normal   | false | yes  |
| rainy    | mild | normal   | false | yes  |
| sunny    | mild | normal   | true  | yes  |
| overcast | mild | high     | true  | yes  |
| overcast | hot  | normal   | false | yes  |
| rainy    | mild | high     | true  | no   |

- Support: number of instances that satisfy a rule
- Confidence: proportion of instances that satisfy the left-hand side for which the right-hand side also holds
- Specify minimum confidence, seek the rules with greatest support??

support confidence

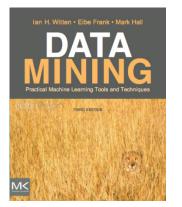
| 1. outlook = overcast                                   | ==> | play = yes        | 4 | 100% |
|---------------------------------------------------------|-----|-------------------|---|------|
| 2. temperature = cool                                   | ==> | humidity = normal | 4 | 100% |
| <ol><li>humidity = normal &amp; windy = false</li></ol> | ==> | play = yes        | 4 | 100% |
| 4. outlook = sunny & play = no                          | ==> | humidity = high   | 3 | 100% |
| <ol><li>outlook = sunny &amp; humidity = high</li></ol> | ==> | play = no         | 3 | 100% |
| 6. outlook = rainy & play = yes                         | ==> | windy = false     | 3 | 100% |
| 7. outlook = rainy & windy = false                      | ==> | play = yes        | 3 | 100% |
| 8. temperature = cool & play = yes                      | ==> | humidity = normal | 3 | 100% |
| 9. outlook = sunny & temperature = hot                  | ==> | humidity = high   | 2 | 100% |
| 10. temperature = hot & play = no                       | ==> | outlook = sunny   | 2 | 100% |
|                                                         |     |                   |   |      |

| •••• | lte | <b>mset</b> set of attribute-value pairs, e.g.      |             |            |
|------|-----|-----------------------------------------------------|-------------|------------|
|      |     | humidity = normal & windy = false & play = yes      | support = 4 | ł          |
| •••  | 7 p | otential rules from this itemset:                   |             | C. 1       |
|      |     |                                                     | support     | confidence |
|      |     | If humidity = normal & windy = false => play = yes  | 4           | 4/4        |
|      |     | If humidity = normal & play = yes => windy = false  | 4           | 4/6        |
|      |     | If windy = false & play = yes => humidity = normal  | 4           | 4/6        |
|      |     | If humidity = normal =>> windy = false & play = yes | 4           | 4/7        |
|      |     | If windy = false => humidity = normal & play = yes  | 4           | 4/8        |
|      |     | If play = yes => humidity = normal & windy = false  | 4           | 4/9        |
|      |     | ==> humidity = normal & windy = false & play = yes  | 4           | 4/14       |

- Generate high-support itemsets, get several rules from each
- Strategy: iteratively reduce the minimum support until the required number of rules is found with a given minimum confidence

There are far more association rules than classification rules

- need different techniques
- Support and Confidence are measures of a rule
- Apriori is the standard association-rule algorithm
- Want to specify minimum confidence value and seek rules with the most support
- Details? see next lesson



#### **Course text**

Section 4.5 *Mining association rules* 





# More Data Mining with Weka

Class 3 – Lesson 4

Learning association rules

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Lesson 3.2 Generating decision rules

Lesson 3.1 Decision trees and rules

Lesson 3.3 Association rules

**Lesson 3.4 Learning association rules** 

Lesson 3.5 Representing clusters

**Lesson 3.6 Evaluating clusters** 

### Strategy

- specify minimum confidence
- iteratively reduce support until enough rules are found with > this confidence

7 potential rules from a single itemset:

support confidence

| If humidity = normal & windy = false => play = yes  | 4 4/4  |
|-----------------------------------------------------|--------|
| If humidity = normal & play = yes => windy = false  | 4 4/6  |
| If windy = false & play = yes => humidity = normal  | 4 4/6  |
| If humidity = normal =>> windy = false & play = yes | 4 4/7  |
| If windy = false ==> humidity = normal & play = yes | 4 4/8  |
| If play = yes ==> humidity = normal & windy = false | 4 4/9  |
| ==> humidity = normal & windy = false & play = yes  | 4 4/14 |

- 1. Generate itemsets with support 14 (none)
- 2. find rules with > min confidence level (Weka default: 90%)
- 3. continue with itemsets with support 13 (none)
  - ... and so on, until sufficient rules have been generated

- Weather data has 336 rules with confidence 100%!
  - but only 8 have support  $\geq$  3, only 58 have support  $\geq$  2
- Weka: specify minimum confidence level (minMetric, default 90%) number of rules sought (numRules, default 10)
- Support is expressed as a proportion of the number of instances
- Weka runs Apriori algorithm several times starts at upperBoundMinSupport (usually left at 100%) decreases by delta at each iteration (default 5%) stops when numRules reached

... or at <a>lowerBoundMinSupport</a> (default 10%)

Minimum support: 0.15 (2 instances) Minimum metric <confidence>: 0.9 Number of cycles performed: 17 Generated sets of large itemsets: Size of set of large itemsets L(1): 12 Size of set of large itemsets L(2): 47 Size of set of large itemsets L(3): 39 Size of set of large itemsets L(4): 6

Best rules found:

1. outlook = overcast 4 ==> play = yes 4

- ✤ 17 cycles of Apriori algorithm:
  - support = 100%, 95%, 90%, ..., 20%, 15%
  - 14, 13, 13, ..., 3, 2 instances
  - only 8 rules with conf > 0.9 & support  $\ge$  3
- to see itemsets, set outputItemSets
  - they're based on the final support value, i.e. 2

```
12 one-item sets with support \geq 2
```

```
outlook = sunny 5
outlook = overcast 4
...
```

```
play = no 5
```

...

...

...

47 two-item sets with support  $\geq 2$ 

```
outlook = sunny & temperature = hot 2
outlook = sunny & humidity = high 3
```

```
39 three-item sets with support ≥ 2
outlook = sunny & temperature = hot & humidity = high 2
outlook = sunny & humidity = high & play = no 3
outlook = sunny & windy = false & play = no 2
```

```
6 four-item sets with support ≥ 2
outlook = sunny & humidity = high & windy = false
& play = no 2
```

### **Other parameters in Weka implementation**

- car: always produce rules that predict the class attribute
  - set the class attribute using classIndex
- **significanceLevel**: filter rules according to a statistical test ( $\chi^2$ )
  - unreliable because with so many tests, significant results will be found just by chance
  - the test is inaccurate for small support values
- metricType: different measures for ranking rules
  - Confidence
  - Lift
  - Leverage
  - Conviction
- removeAllMissingCols: removes attribute whose values are all "missing"

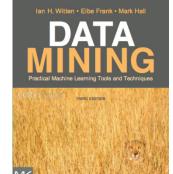
### Market basket analysis

- Look at supermarket.arff
  - collected from an actual New Zealand supermarket
- ✤ 4500 instances, 220 attributes; 1M attribute values
- Missing values used to indicate that the basket did not contain that item
- 92% of values are missing
  - average basket contains 220×8% = 18 items
- Most popular items: bread-and-cake (3330), vegetables (2961), frozen foods (2717), biscuits (2605)

- Apriori makes multiple passes through the data
  - generates 1-item sets, 2-item sets, ... with more than minimum support
  - turns each one into (many) rules and checks their confidence
- Fast and efficient (provided data fits into main memory)
- Weka invokes Apriori several times gradually reducing the support until sufficient high-confidence rules have been found
  - there are parameters to control this
- Activity: supermarket data

### **Course text**

Section 11.7 Association-rule learners







# More Data Mining with Weka

Class 3 – Lesson 5

Representing clusters

Ian H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

# Lesson 3.5: Representing clusters

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Lesson 3.1 Decision trees and rules

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Lesson 3.2 Generating decision rules

Lesson 3.3 Association rules

**Lesson 3.4 Learning association rules** 

**Lesson 3.5 Representing clusters** 

**Lesson 3.6 Evaluating clusters** 

# Lesson 3.5: Representing clusters

- With clustering, there is no "class" attribute
- Try to divide the instances into natural groups, or "clusters"

#### Example

- Examine iris.arff in the Explorer
- Imagine deleting the class attribute
- Could you recover the classes by clustering the data?



Iris Setosa



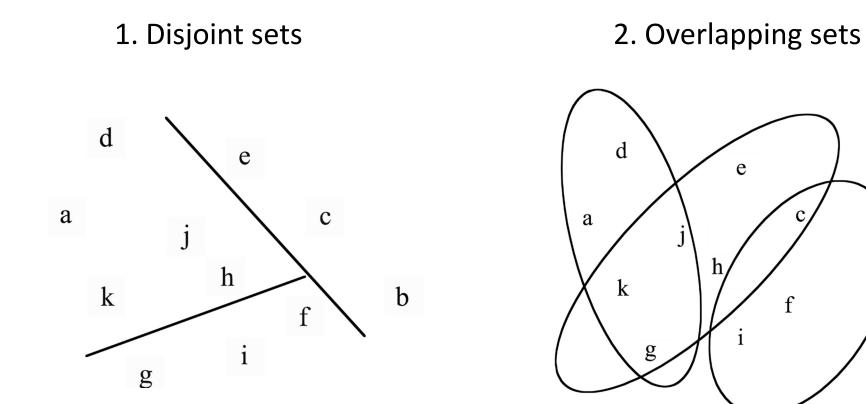
Iris Versicolor



Iris Virginica

# Lesson 3.5: Representing clusters

**Cluster types** 



b

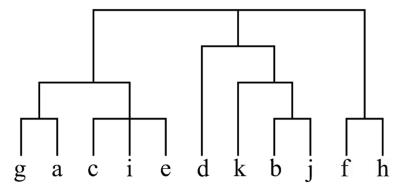
### **Cluster types**

. . .

3. Probabilistic clusters

|   | 1   | 2   | 3   |
|---|-----|-----|-----|
| a | 0.4 | 0.1 | 0.5 |
| b | 0.1 | 0.8 | 0.1 |
| С | 0.3 | 0.3 | 0.4 |
| d | 0.1 | 0.1 | 0.8 |
| е | 0.4 | 0.2 | 0.4 |
| f | 0.1 | 0.4 | 0.5 |
| g | 0.7 | 0.2 | 0.1 |
| h | 0.5 | 0.4 | 0.1 |

### 4. Hierarchical clusters



### **KMeans: Iterative distance-based clustering (disjoint sets)**

- 1. Specify *k*, the desired number of clusters
- 2. Choose *k* points at random as cluster centers
- 3. Assign all instances to their closest cluster center
- 4. Calculate the centroid (i.e., mean) of instances in each cluster
- 5. These centroids are the new cluster centers
- 6. Continue until the cluster centers don't change

Minimizes the total squared distance from instances to their cluster centers Local, not global, minimum!

### **KMeans clustering**

- Open weather.numeric.arff
- Cluster panel; choose SimpleKMeans
- Note parameters: numClusters, distanceFunction, seed (default 10)
- Two clusters, 9 and 5 members, total squared error 16.2 {1/no, 2/no, 3/yes, 4/yes, 5/yes, 8/no, 9/yes, 10/yes, 13/yes} {6/no, 7/yes. 11/yes, 12/yes, 14/no}
- Set seed to 11
- Two clusters, 6 and 8 members, total squared error 13.6
- Set seed to 12
- Total squared error 17.3

### **XMeans: Extended version of KMeans**

- Selects the number of clusters itself
- Can specify the min/max number of clusters
- Can specify four different distance metrics
- Can use kD-trees for speed

### **Cannot handle nominal attributes**

Ignore nominal attributes in weather data outlook, windy, play

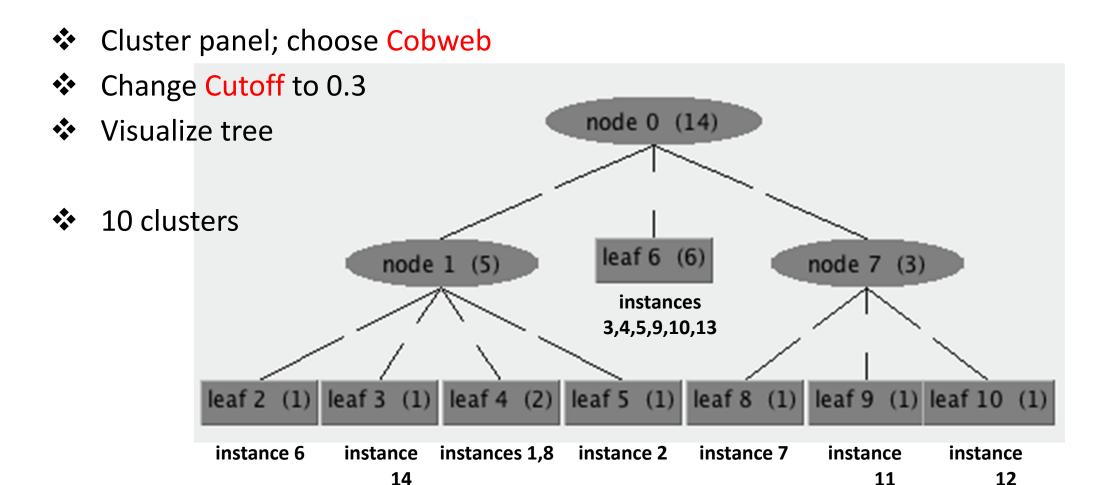
### EM clustering (probabilistic, uses "Expectation Maximization")

- Cluster panel; choose EM
- Change numClusters to 2 (-1 asks EM to determine the number)
- Note parameters: maxIterations, minStdDev, seed (default 100) restore nominal attributes
- Two clusters, prior probs 0.35 and 0.65
- ✤ Within each:

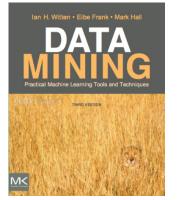
nominal attributes: prob of each value numeric attributes: mean and std dev

- Can calculate the cluster membership prob for any instance
- Overall quality measure: log likelihood

### **Cobweb clustering (hierarchical)**



- Clustering: no class value
- Representations: disjoint sets, probabilistic, hierarchical
  - in Weka, SimpleKMeans (+XMeans), EM, Cobweb
- Kmeans: Iterative distance-based method
- Different distance metrics
- Hard to evaluate clustering



**Course text** 

Sections 4.8 and 6.8 *Clustering* 





# More Data Mining with Weka

Class 3 – Lesson 6

Evaluating clusters

lan H. Witten

Department of Computer Science University of Waikato New Zealand

weka.waikato.ac.nz

Class 1 Exploring Weka's interfaces; working with big data

Class 2 Discretization and text classification

Lesson 3.1 Decision trees and rules

Lesson 3.2 Generating decision rules

Class 3 Classification rules, association rules, and clustering

Class 4 Selecting attributes and counting the cost

Class 5 Neural networks, learning curves, and performance optimization Lesson 3.3 Association rules

**Lesson 3.4 Learning association rules** 

**Lesson 3.5 Representing clusters** 

**Lesson 3.6 Evaluating clusters** 

### Visualizing clusters

- Iris data, SimpleKMeans, specify 3 clusters 3 clusters with 50 instances each
- Visualize cluster assignments (right-click menu)
  Plot Cluster against Instance\_number to see what the errors are
- Perfect? surely not!

Ignore class attribute; 3 clusters, with 61, 50, 39 instances

### Which instances does a cluster contain?

- Use the AddCluster unsupervised attribute filter
- Try with SimpleKMeans; Apply and click Edit

### **Classes-to-clusters evaluation**

- Iris data, SimpleKMeans, specify 3 clusters
- Classes to clusters evaluation

#### SimpleKMeans (3 clusters)

0 1 2 <-- assigned to cluster</li>
0 50 0 | Iris-setosa
47 0 3 | Iris-versicolor
14 0 36 | Iris-virginica

Cluster 0 <-- Iris-versicolor Cluster 1 <-- Iris-setosa Cluster 2 <-- Iris-virginica

Incorrectly clustered instances: 17 11%

#### EM (3 clusters)

0 1 2 <-- assigned to cluster</li>
0 50 0 | Iris-setosa
50 0 0 | Iris-versicolor
14 0 36 | Iris-virginica

Cluster 0 <-- Iris-versicolor Cluster 1 <-- Iris-setosa Cluster 2 <-- Iris-virginica

Incorrectly clustered instances: 14 9%

### ClassificationViaClustering meta-classifier

- Create a classifier:
  - Ignore classes
  - cluster
  - assign to each cluster its most frequent class
- Obviously not competitive with other classification techniques
- Good way of comparing clusterers

- Hard to evaluate clustering
  - SimpleKMeans: Within-cluster sum of squared errors
  - Should really be evaluated with respect to an application
- Visualization
- AddCluster filter shows the instances in each cluster
- Classes to clusters evaluation
- Classification via clustering

### **Course text**

- Section 11.2, under *Clustering and association rules*
- Section 11.6 Clustering algorithms





# More Data Mining with Weka

Department of Computer Science University of Waikato New Zealand



Creative Commons Attribution 3.0 Unported License

creativecommons.org/licenses/by/3.0/

weka.waikato.ac.nz