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Lesson 3.1: Decision trees and rules

For any decision tree you can read off an equivalent set of 
rules

If outlook = sunny and humidity = high then no
If outlook = sunny and humidity = normal then yes
if outlook = overcast then yes
if outlook = rainy and windy = false then yes
if outlook = rainy and windy = true then no



Lesson 3.1: Decision trees and rules

For any decision tree you can read off an equivalent set of
ordered rules (“decision list”)

but rules from the tree are overly complex:

If outlook = sunny and humidity = high then no
if outlook = rainy and windy = true then no
otherwise yes

If outlook = sunny and humidity = high then no
If outlook = sunny and humidity = normal then yes
if outlook = overcast then yes
if outlook = rainy and windy = false then yes
if outlook = rainy and windy = true then no



Lesson 3.1: Decision trees and rules

For any set of rules there is an equivalent tree
but it might be very complex

if x = 1 and y = 1 then a 
if z = 1 and w = 1 then a
otherwise b

replicated 
subtree



Lesson 3.1: Decision trees and rules

 Theoretically, rules and trees have equivalent “descriptive power”
 But practically they are very different

… because rules are usually expressed as a decision list, to be 
executed sequentially, in order, until one “fires”

 People like rules: they’re easy to read and understand
 It’s tempting to view them as independent “nuggets of knowledge”
 … but that’s misleading

– when rules are executed sequentially
each one must be interpreted in the context of its predecessors



Lesson 3.1: Decision trees and rules

 Create a decision tree (top-down, divide-and-conquer); 
read rules off the tree
– One rule for each leaf
– Straightforward, but rules contain repeated tests and are overly complex
– More effective conversions are not trivial

 Alternative: covering method (bottom-up, separate-and-conquer)
– For each class in turn find rules that cover all its instances

(excluding instances not in the class)

1. Identify a useful rule
2. Separate out all the instances it covers
3. Then “conquer” the remaining instances in that class



Lesson 3.1: Decision trees and rules

Generating a rule
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if x ≤ 1.2 then class = b
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if x > 1.2 and y > 2.6
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if true
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 Generating a rule for class a



Lesson 3.1: Decision trees and rules

Rules vs. trees

 Corresponding decision tree
– produces exactly the same predictions

 Rule sets can be more perspicuous 
– E.g. when decision trees contain replicated subtrees

 Also: in multiclass situations, 
– covering algorithm concentrates on one class at a time
– decision tree learner takes all classes into account



Lesson 3.1: Decision trees and rules

Simple bottom-up covering algorithm for creating rules: PRISM
For each class C

Initialize E to the instance set
While E contains instances in class C

Create a rule R that predicts class C
(with empty left-hand side)

Until R is perfect 
(or there are no more attributes to use)

For each attribute A not mentioned in R, and each value v
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy

(break ties by choosing the condition with the largest p)
Add A = v to R

Remove the instances covered by R from E



Lesson 3.1: Decision trees and rules

 Decision trees and rules have the same expressive power
… but either can be more perspicuous than the other

 Rules can be created using a bottom-up covering process
 Rule sets are often “decision lists”, to be executed in order

– if rules assign different classes to an instance, the first rule wins
– rules are not really independent “nuggets of knowledge”

 Still, people like rules and often prefer them to trees

Course text
 Section 4.4 Covering algorithms: constructing rules
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Lesson 3.2: Generating decision rules

 Make a rule
 Remove the instances it covers
 Continue, creating rules for the remaining instances

To make a rule, build a tree!
 Build and prune a decision tree for the current set of instances
 Read off the rule for the largest leaf
 Discard the tree (!)
(can build just a partial tree, instead of a full one)

1. Rules from partial decision trees: PART

Separate 
and conquer



Lesson 3.2: Generating decision rules

2. Incremental reduced-error pruning

Split the instance set into Grow and Prune in the ratio 2:1
For each class C

While Grow and Prune both contain instances in C
On Grow, use PRISM to create the best perfect rule for C
Calculate the worth w(R) for the rule on Prune, 

and of the rule with the final condition omitted w(R–)
While w(R–) > w(R), remove the final condition from the rule 

and repeat the previous step
Print the rule; remove the instances it covers from Grow and Prune

… followed by a fiendishly complicated global optimization step – RIPPER

“worth”:
success rate?
something more complex?



Lesson 3.2: Generating decision rules

Diabetes dataset
 J48 74%   39-node tree
 PART 73%   13 rules (25 tests)
 JRip 76%     4 rules (9 tests)

plas ≥ 132 and mass ≥ 30 –> tested_positive
age ≥ 29 and insu ≥ 125 and preg ≤ 3 –> tested_positive
age ≥ 31 and pedi ≥ 0.529 and preg ≥ 8 and mass ≥ 25.9 –> tested_positive
–> tested_negative



Lesson 3.2: Generating decision rules

 PART is quick and elegant
– repeatedly constructing decision trees and discarding them is 

less wasteful than it sounds
 Incremental reduced-error pruning is a standard technique

– using Grow and Prune sets 
 Ripper (JRip) follows this by complex global optimization

– makes rules that classify all class values except the majority one
– last rule is a default rule, for the majority class
– usually produces fewer rules than PART

Course text
 Section 6.2 Classification rules
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Lesson 3.3: Association rules
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Lesson 3.3: Association rules

 With association rules, there is no “class” attribute
 Rules can predict any attribute, or combination of attributes
 Need a different kind of algorithm: “Apriori”

Here are some association rules for the weather data:

1. outlook = overcast ==> play = yes
2. temperature = cool ==> humidity = normal
3. humidity = normal & windy = false ==> play = yes
4. outlook = sunny & play = no ==> humidity = high
5. outlook = sunny & humidity = high ==> play = no
6. outlook = rainy & play = yes ==> windy = false
7. outlook = rainy & windy = false ==> play = yes
8. temperature = cool & play = yes ==> humidity = normal
9. outlook = sunny & temperature = hot ==> humidity = high

10. temperature = hot & play = no ==> outlook = sunny

Outlook Temp Humidity Windy Play
sunny hot high false no
sunny hot high true no
overcast hot  high false yes
rainy mild high false yes
rainy cool normal false yes
rainy cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rainy mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rainy mild high true no



 Support: number of instances that satisfy a rule
 Confidence: proportion of instances that satisfy the left-hand side 

for which the right-hand side also holds
 Specify minimum confidence, seek the rules with greatest support??

4 100%
4 100%
4 100%
3 100%
3 100%
3 100%
3 100%
3 100%
2 100%
2 100%

Lesson 3.3: Association rules

support confidence

1. outlook = overcast ==> play = yes
2. temperature = cool ==> humidity = normal
3. humidity = normal & windy = false ==> play = yes
4. outlook = sunny & play = no ==> humidity = high
5. outlook = sunny & humidity = high ==> play = no
6. outlook = rainy & play = yes ==> windy = false
7. outlook = rainy & windy = false ==> play = yes
8. temperature = cool & play = yes ==> humidity = normal
9. outlook = sunny & temperature = hot ==> humidity = high

10. temperature = hot & play = no ==> outlook = sunny



4 4/4
4 4/6
4 4/6
4 4/7
4 4/8
4 4/9
4 4/14

support confidence

Lesson 3.3: Association rules

 Itemset set of attribute-value pairs, e.g.

 7 potential rules from this itemset:

 Generate high-support itemsets, get several rules from each
 Strategy: iteratively reduce the minimum support until the required 

number of rules is found with a given minimum confidence

support = 4humidity = normal & windy = false & play = yes

If humidity = normal & windy = false ==>    play = yes 
If humidity = normal & play = yes ==>       windy = false 
If windy = false & play = yes ==>        humidity = normal 
If humidity = normal ==>      windy = false & play = yes 
If windy = false ==>       humidity = normal & play = yes 
If play = yes ==>          humidity = normal & windy = false 

==>  humidity = normal & windy = false & play = yes



Lesson 3.3: Association rules

 There are far more association rules than classification rules
– need different techniques

 Support and Confidence are measures of a rule
 Apriori is the standard association-rule algorithm
 Want to specify minimum confidence value and seek rules with the 

most support
 Details? – see next lesson

Course text
 Section 4.5 Mining association rules



weka.waikato.ac.nz

Ian H. Witten

Department of Computer Science
University of Waikato

New Zealand

More Data Mining with Weka

Class 3 – Lesson 4

Learning association rules



Lesson 3.4: Learning association rules

Class 1 Exploring Weka’s interfaces;
working with big data

Class 2 Discretization and 
text classification

Class 3 Classification rules, 
association rules, and clustering

Class 4 Selecting attributes and
counting the cost

Class 5 Neural networks, learning curves, 
and performance optimization

Lesson 3.1 Decision trees and rules

Lesson 3.2 Generating decision rules

Lesson 3.3 Association rules

Lesson 3.4 Learning association rules

Lesson 3.5 Representing clusters

Lesson 3.6 Evaluating clusters



Lesson 3.4: Learning association rules

Strategy
– specify minimum confidence
– iteratively reduce support until enough rules are found with > this confidence

7 potential rules from a single itemset:

1. Generate itemsets with support 14 (none)
2. find rules with > min confidence level (Weka default: 90%)
3. continue with itemsets with support 13 (none)

… and so on, until sufficient rules have been generated

4 4/4
4 4/6
4 4/6
4 4/7
4 4/8
4 4/9
4 4/14

support confidence
If humidity = normal & windy = false ==>    play = yes 
If humidity = normal & play = yes ==>       windy = false 
If windy = false & play = yes ==>        humidity = normal 
If humidity = normal ==>      windy = false & play = yes 
If windy = false ==>       humidity = normal & play = yes 
If play = yes ==>            humidity = normal & windy = false 

==>  humidity = normal & windy = false & play = yes



Lesson 3.4: Learning association rules

 Weather data has 336 rules with confidence 100%!
– but only 8 have support ≥ 3, only 58 have support ≥ 2 

 Weka: specify minimum confidence level (minMetric, default 90%)
number of rules sought (numRules, default 10)

 Support is expressed as a proportion of the number of instances
 Weka runs Apriori algorithm several times

starts at upperBoundMinSupport (usually left at 100%)
decreases by delta at each iteration (default 5%)
stops when numRules reached
… or at lowerBoundMinSupport (default 10%)



Lesson 3.4: Learning association rules

 17 cycles of Apriori algorithm:
– support = 100%, 95%, 90%, …, 20%, 15%
– 14, 13, 13, …, 3, 2 instances
– only 8 rules with conf > 0.9 &  support ≥ 3

 to see itemsets, set outputItemSets
– they’re based on the final support value, i.e. 2

12 one-item sets with support ≥ 2

47 two-item sets with support ≥ 2

39 three-item sets with support ≥ 2

6 four-item sets with support ≥ 2

outlook = sunny 5
outlook = overcast 4

...
play = no 5

outlook = sunny & temperature = hot 2
outlook = sunny & humidity = high 3

...

outlook = sunny & temperature = hot & humidity = high 2
outlook = sunny & humidity = high & play = no 3
outlook = sunny & windy = false & play = no 2

...

outlook = sunny & humidity = high & windy = false 
& play = no 2

...

Minimum support: 0.15 (2 instances)
Minimum metric <confidence>: 0.9
Number of cycles performed: 17
Generated sets of large itemsets:
Size of set of large itemsets L(1): 12
Size of set of large itemsets L(2): 47
Size of set of large itemsets L(3): 39
Size of set of large itemsets L(4): 6

Best rules found:
1. outlook = overcast 4 ==> play = yes 4



Lesson 3.4: Learning association rules

 car: always produce rules that predict the class attribute
– set the class attribute using classIndex

 significanceLevel: filter rules according to a statistical test (χ2)
– unreliable because with so many tests, significant results will be found just by chance
– the test is inaccurate for small support values

 metricType: different measures for ranking rules
– Confidence
– Lift
– Leverage
– Conviction

 removeAllMissingCols: removes attribute whose values are all “missing”

Other parameters in Weka implementation



Lesson 3.4: Learning association rules

 Look at supermarket.arff
– collected from an actual New Zealand supermarket

 4500 instances, 220 attributes; 1M attribute values
 Missing values used to indicate that the basket did not contain that item
 92% of values are missing 

– average basket contains 220×8% = 18 items

 Most popular items: bread-and-cake (3330), vegetables (2961), frozen foods 
(2717), biscuits (2605)

Market basket analysis



Lesson 3.4: Learning association rules

 Apriori makes multiple passes through the data 
– generates 1-item sets, 2-item sets, … with more than minimum support
– turns each one into (many) rules and checks their confidence

 Fast and efficient (provided data fits into main memory)
 Weka invokes Apriori several times gradually reducing the support 

until sufficient high-confidence rules have been found
– there are parameters to control this

 Activity: supermarket data

Course text
 Section 11.7 Association-rule learners
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Lesson 3.5: Representing clusters
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Lesson 3.5: Representing clusters

 With clustering, there is no “class” attribute
 Try to divide the instances into natural groups, or “clusters”

Example
 Examine iris.arff in the Explorer
 Imagine deleting the class attribute
 Could you recover the classes by clustering the data?

Iris Setosa Iris Versicolor Iris Virginica



Lesson 3.5: Representing clusters

Cluster types

2. Overlapping sets1. Disjoint sets



Lesson 3.5: Representing clusters

Cluster types

4. Hierarchical clusters3. Probabilistic clusters



Lesson 3.5: Representing clusters

1. Specify k, the desired number of clusters
2. Choose k points at random as cluster centers
3. Assign all instances to their closest cluster center
4. Calculate the centroid (i.e., mean) of instances in each cluster
5. These centroids are the new cluster centers
6. Continue until the cluster centers don’t change

Minimizes the total squared distance from instances to their cluster centers
Local, not global, minimum!

KMeans: Iterative distance-based clustering (disjoint sets)



Lesson 3.5: Representing clusters

 Open weather.numeric.arff
 Cluster panel; choose SimpleKMeans
 Note parameters: numClusters, distanceFunction, seed (default 10)

 Two clusters, 9 and 5 members, total squared error 16.2
{1/no, 2/no, 3/yes, 4/yes, 5/yes, 8/no, 9/yes, 10/yes, 13/yes} {6/no, 7/yes. 11/yes, 12/yes, 14/no}

 Set seed to 11
 Two clusters, 6 and 8 members, total squared error 13.6
 Set seed to 12
 Total squared error 17.3

KMeans clustering



Lesson 3.5: Representing clusters

 Selects the number of clusters itself
 Can specify the min/max number of clusters
 Can specify four different distance metrics
 Can use kD-trees for speed

Cannot handle nominal attributes
 Ignore nominal attributes in weather data

outlook, windy, play

XMeans: Extended version of KMeans



Lesson 3.5: Representing clusters

 Cluster panel; choose EM
 Change numClusters to 2 (–1 asks EM to determine the number)
 Note parameters: maxIterations, minStdDev, seed (default 100)

restore nominal attributes

 Two clusters, prior probs 0.35 and 0.65
 Within each:

nominal attributes: prob of each value
numeric attributes: mean and std dev

 Can calculate the cluster membership prob for any instance
 Overall quality measure: log likelihood

EM clustering (probabilistic, uses “Expectation Maximization”)



Lesson 3.5: Representing clusters

 Cluster panel; choose Cobweb
 Change Cutoff to 0.3
 Visualize tree

 10 clusters

Cobweb clustering (hierarchical)

instance 6 instance 
14

instances 1,8 instance 2 instance 7 instance 
11

instance 
12

instances
3,4,5,9,10,13



Lesson 3.5: Representing clusters

 Clustering: no class value
 Representations: disjoint sets, probabilistic, hierarchical

– in Weka, SimpleKMeans (+XMeans), EM, Cobweb
 Kmeans: Iterative distance-based method
 Different distance metrics
 Hard to evaluate clustering

Course text
Sections 4.8 and 6.8 Clustering
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Lesson 3.6: Evaluating clusters

 Iris data, SimpleKMeans, specify 3 clusters
3 clusters with 50 instances each

 Visualize cluster assignments (right-click menu)
Plot Cluster against Instance_number to see what the errors are

 Perfect? – surely not!
Ignore class attribute; 3 clusters, with 61, 50, 39 instances

Which instances does a cluster contain?
 Use the AddCluster unsupervised attribute filter
 Try with SimpleKMeans; Apply and click Edit

Visualizing clusters



Lesson 3.6: Evaluating clusters

 Iris data, SimpleKMeans, specify 3 clusters
 Classes to clusters evaluation

Classes-to-clusters evaluation

0  1  2  <-- assigned to cluster
0 50  0 | Iris-setosa

47  0  3 | Iris-versicolor
14  0 36 | Iris-virginica

Cluster 0 <-- Iris-versicolor
Cluster 1 <-- Iris-setosa
Cluster 2 <-- Iris-virginica

Incorrectly clustered instances:  17  11%

0  1  2  <-- assigned to cluster
0 50  0 | Iris-setosa

50  0  0 | Iris-versicolor
14  0 36 | Iris-virginica

Cluster 0 <-- Iris-versicolor
Cluster 1 <-- Iris-setosa
Cluster 2 <-- Iris-virginica

Incorrectly clustered instances:  14  9%

SimpleKMeans (3 clusters) EM (3 clusters)



Lesson 3.6: Evaluating clusters

ClassificationViaClustering meta-classifier

 Create a classifier:
– Ignore classes
– cluster
– assign to each cluster its most frequent class

 Obviously not competitive with other classification techniques
 Good way of comparing clusterers



Lesson 3.6: Evaluating clusters

 Hard to evaluate clustering
– SimpleKMeans: Within-cluster sum of squared errors
– Should really be evaluated with respect to an application

 Visualization
 AddCluster filter shows the instances in each cluster
 Classes to clusters evaluation
 Classification via clustering

Course text
 Section 11.2, under Clustering and association rules
 Section 11.6 Clustering algorithms
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