Speech as probabilistic inference
It's not easy to wreck a nice beach
Speech signals are noisy, variable, ambiguous
What is the most likely word sequence, given the speech signal?
I.e., choose Words to maximize $P($ Words \mid signal $)$
Use Bayes' rule:
$\quad P($ Words \mid signal $)=\alpha P($ signal \mid Words $) P($ Words $)$
I.e., decomposes into acoustic model + language model
Words are the hidden state sequence, signal is the observation sequence

Outline
\diamond Speech as probabilistic inference
\diamond Speech sounds
\diamond Word pronunciation
\diamond Word sequences

inertia and cannot switch instantaneously
E.g., $[t]$ in "eighth" has tongue against front teeth
 E.g., $[\mathrm{t}]$ in "star" is written $[\mathrm{t}(\mathrm{s}, \mathrm{aa})$] (different from "tar"!)

 me features in $P($ features \mid phone) summarized by

- an integer in $[0 \ldots 255]$ (using vector quantization); or
- the parameters of a mixture of Gaussians

 ARPAbet designed for American English

All human speech is composed from $40-50$ phones, determined by the
configuration of articulators (lips, teeth, tongue, vocal cords, air flow)

and use the recursive update
$P\left(e_{1: t} \mid\right.$ word $)$ can be computed recursively: define
$\quad \ell_{1: t}=\mathbf{P}\left(\mathbf{X}_{t}, \mathbf{e}_{1: t}\right)$ Prior probability P (word) obtained simply by counting word frequencies Phone models + word models fix likelihood $P\left(e_{1: t} \mid\right.$ word $)$ for isolated word

$P([$ tahmeytow $] \mid$ "tomato" $)=P([$ tahmaatow $] \mid$ "tomato" $)=0.4$
Structure is created manually, transition probabilities learned from data

Jelinek invented A* in 1969 a way to find most likely word sequence
where "step cost" is $-\log P\left(w_{i} \mid w_{i-1}\right)$ Doesn't always give the most likely word sequence because
each word sequence is the sum over many state sequences Does segmentation by considering all possible word sequences and boundaries Viterbi algorithm finds the most likely phone state sequence Combined HMM
States of the combined language+word+phone model are labelled by
the word we're in + the phone in that word + the phone state in that phone

:|әрои шелї!я
$\left(\left.\mathrm{I}^{2} n \ldots \mathrm{I}_{m}\right|^{2} m\right) \stackrel{\mathrm{I}=?}{I!}=\left({ }^{u} m \ldots \mathrm{I}_{m}\right) d$

[әpou ə.sen.oueT

 - Sequence of most likely words \neq most likely sequence of words

- Segmentation: there are few gaps in speech
- Cross-word coarticulation-e.g., "next thing" Not just a sequence of isolated-word recognition problems!

чวəәds snonu!quo

