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preface

In 1994, I was working in the Scientific Computing department at Sandia National
Laboratories in Livermore, California. We had an impressive (for the time) array

of heterogeneous computing equipment: workstations from Silicon Graphics and
Sun Microsystems, Intel PCs running Linux, Macintoshes galore. I was writing
software agents that managed dynamically distributed computations across this
network. Agents were running on each machine, and they used a sort of “post and
bid” method to decide which machines would run which piece of a computation,
based on machine capabilities and load balancing. The agents were fairly intelli-
gent in their decision-making capabilities, and the plans they developed were
sometimes surprising. Their “brains” were rule engines—software systems that used
rules to derive conclusions from premises.

That project led to others, and soon I developed an interest in mobile agents—
software entities that can travel from node to node in a computer network, main-
taining their state as they go. Thus was born the idea for a rule engine whose state
could be packaged up, sent across a wire, and reconstituted. The newly released
Java language seemed to be a perfect vehicle for this rule engine—and such was
the origin of Jess™, the rule engine for the Java Platform.!

Jess is a general-purpose rule engine, developed at Sandia National Laborato-
ries. Written in the Java programming language, Jess offers easy integration with

! Jess is a registered trademark of the Sandia Corporation.

xxi
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other Java-based software. Jess is free for academic and government use, and it
can be licensed for commercial use. You can download a fully functional Home
Edition of Jess free of charge if you own a copy of this book (see chapter 3 for
download instructions). You can use the Jess Home Edition for noncommercial
purposes.

Jess has evolved quite a bit since its original introduction in 1997, largely in
response to feedback from a global user community. I've enjoyed working on Jess
the whole time, and look forward to its continuing evolution in the future.



acknowledgments

Writing a book is a huge project. This is my second book, and somehow I thought
it would be easier this time around. It wasn’t. The original four-month estimate to
write the manuscript has stretched out into much more than a year. I'm very
happy with the results, though. Writing a book about a subject so near and dear as
Jess is to me is a dodgy business: I think I've steered clear of the minefields of self-
indulgence and created something that will be useful to everyone interested in
rule-based software.

Writing a book is such a huge project, in any event, that no one does it alone—
least of all me. I've had help from many kind, generous, and talented people dur-
ing the whole time this book was being developed.

One standout has been Bob Orchard of Canada’s National Research Council.
Bob is the author of the Fuzzy] toolkit and the FuzzyJess extension that adds fuzzy
logic to Jess. He’s been an active member of the Jess community for years. He gen-
erously contributed the essay in chapter 16 showing how to apply the principles of
fuzzy logic to the HVAC Controller example. He also served as both a technical
reviewer and a technical proofreader for this book and provided an exhaustive list
of my (embarrassingly many) typos in the first draft of the manuscript. Thanks,
Bob, for everything!

Next I must mention the denizens of the Jess mailing list, a friendly community
of smart and generous people who have come together over the years that Jess has
existed. The following people have helped find bugs, helped develop new features,

xxiii



XXiv

ACKNOWLEDGMENTS

or contributed their own projects to the Jess community: Abel Martinez, Al Davis,
Alan Moore, Alex Jacobson, Alex Karasulu, Andreas Rasmusson, Andrew Marshall,
Ashraf Afifi, Benjamin Good, Blaine Bell, Bob Orchard, Bob Trelease, Bruce Dou-
glas, Chad Loder, Charles May, Cheruku Srini, Dan Larner, Dave Barnett, Dave
Carlson, Dave Kirby, David Bruce, David Li, David Young, Drew van Duren, Duane
Steward, Ed Katz, Emmanuel Pierre, Eric Eslinger, Fang Liu, George Rudolph,
Glen Tarbox, Glenn Williams, Henrik Eriksson, Ian de Beer, J.P. van Werkhoven,
Jacek Gwizdka, Jack Fitch, Jack Kerkhof, James Gallogly, James Owen, Jason Smith,
Javier Torres, John Callahan, John Collins, Joszef Toth, Juraj Frivolt, Karl Mueller,
Ken Bertapelle, Kenny Macleod, Lakshmi Vempati, Lars Rasmusson, Laurence
Leff, Mariusz Nowostawski, Matt Bishop, Matthew Johnson, Michael Coen, Michael
Friedrich, Michael Futtersack, Michal Fadljevic, Michelle Dunn, Mikael Rundqyvist,
Mike Finnegan, Mike Isenberg, Mike Lucero, Miroslav Madecki, Nancy Flaherty,
Ning Zhong, Norman Ghyra, Oliver Hoffman, Osvaldo Pinali Doederlein, Pau
Ortega, Peter Hanson, Peter Klotz, Ralph Grove, Richard Long, Rob Jefson, Robert
Gaimari, Russ Milliken, S. S. Ozsariyildiz, Sander Faas, Scott Kaplan, Scott Track-
man, Sebastian Varges, Seung Lee, Sidney Bailin, Simon Blackwell, Simon Hamil-
ton, Steve Bucuvalas, Thomas Barnekow, Thomas Gentsch, Travis Nelson, William
E. Wheeler, Win Carus, and Yang Xiao. I'm sure I've forgotten someone important;
please forgive the oversight.

The staff at Manning Publications, both past and present, are talented people
and real professionals. I thank Marjan Bace for his guidance and eye for the big
picture; Lianna Wlasiuk for her useful and practical advice in the first stages of
writing; Ann Navarro for her expertise in editing; Tiffany Taylor for the tremen-
dous skill and effort she applied to meticulously copy-editing and formatting my
ill-formed manuscript; Syd Brown, who produced the beautiful example of the
typographer’s art you see before you; Maggie Mitchell, for proofreading; Mary
Piergies, for overseeing the production of this book; Ted Kennedy for gathering a
team of excellent reviewers and organizing the results; Dan Barthel, who got me
started on this book in the first place; and, undoubtedly, many others who worked
behind the scenes.

Quite a few technical reviewers and friends read the manuscript and provided
detailed and useful comments. This book is vastly improved by their input; any
remaining problems are, of course, my fault. I thank Andrew Grothe, Bob Tre-
lease, David Young, Jeff Wang, John Crabtree, John Mitchell, Mark Watson,
Michael J. Smith, Roedy Green, Said Tabet, Ted Neward, and Daniel Selman (and
of course Bob Orchard) for reading and commenting on the manuscript.



ACKNOWLEDGMENTS XXV

I deeply appreciate the support I've received from my management at Sandia,
both for encouraging Jess’s development over the years and for permission to
write this book in my copious free time. Thanks to Paul Nielan, Ken Washington,
Jim Costa, Len Napolitano, and Mim John. I’'m also deeply indebted to my innova-
tive “business partner” Craig Smith, who handles Jess licensing with aplomb.

Finally, I want to thank my family for their encouragement and support. Every
year with a preschooler is an adventure, and this last one has been no exception.
My wife Stacia deserves special thanks for picking up the slack when I was busy
writing. And to my daughter Danielle: by the time this sentence is printed, I bet
you will be able to read it. I love you both; this book is for you.



about this book

This book was originally conceived in August 2001. As I write these words now in
May 2003, I feel like I've stayed quite close to the original concept for the book.
Then, as now, despite the still-growing prominence of rule-based systems in nearly

every field of software development, the few available books on the topic were
heavily theoretical and lacking in real-world examples. With this book, I set out to
change that pattern. The book you’re holding is structured around a series of
large, fully developed, and eminently practical examples of rule-based program-
ming in Java.

This book can be used in several ways. First, it is a general introduction to rule-
based systems. If you've never encountered rule-based systems before, you’ll want
to read part 1 closely. This first section of the book introduces the concepts
behind rule-based systems, discusses their applications, and shows some first
examples of rule-based programs written with Jess. Part 1 also discusses what’s
involved in adopting a rule-based solution at your company. Although the pro-
gramming examples in later chapters use Jess as a vehicle, the concepts presented
will transfer to other rule engines easily.

Second, this book is a programmer’s manual for the Jess rule language. Part 2
is part Jess language reference and part tutorial. It first introduces you to the lan-
guage, and how the language is integrated with Java. Later chapters in this part
discuss rules and working memory elements—the data that rules operate on.
There’s also a chapter describing some of the theory behind Jess and what makes
it run fast.
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Finally, this is a cookbook for real rule-based systems. Parts 3 through 6
describe substantial, realistic software systems in enough detail to teach you how
to develop similar systems on your own. Each part presents a rule-based system of

increasing complexity, and also introduces new programming techniques:

Part 3 presents an information kiosk, the Tax Forms Advisor, that helps cus-
tomers choose which income tax forms to bring home. You’ll learn how to
collect expert knowledge and condense it into rules. The kiosk as presented
has a simple text-based interface.

Part 4 is concerned with the development of the PC Repair Assistant, a help-
desk application with a Swing-based graphical interface. This example
builds on and extends some of the software infrastructure developed for the
Tax Forms Advisor.

In Part 5, I’ll guide you through the development of the HVAC Controller, an
intelligent climate-control system for a hypothetical office building. This
part shows how rule-based systems can be interfaced to hardware. A special
section written by Bob Orchard, developer of the Fuzzy] toolkit and the
FuzzyJess extension for Jess, shows how the HVAC Controller can be
enhanced by the use of fuzzy logic.

Part 6 is about web-based e-commerce solutions. This part presents a Recom-
mendations Agent that analyzes a customer’s past and present purchases to
recommend additional items of interest. The Recommendations Agent is
embedded in a set of servlets and JavaServer Pages in the Tomcat servlet
engine.

Part 7 is a little different. The two chapters in this last part cover various top-
ics relevant to using rule-based systems in enterprise applications, including
using XML as a rule language, and working with application servers, Enter-
prise Java Beans, and the J2EE environment.

The main text does not try to be an exhaustive guide to all of Jess; instead it con-
centrates on those features relevant to the example applications. The first two
appendices provide some additional detail. Appendix A includes a description of
each of the functions built into the Jess language, and appendix B presents the
highlights of Jess’s Java APIs.

The development methodology used in this book emphasizes testing. Appen-
dix C presents a simple automated testing framework that can be used to test Jess
applications. The code for this framework is available from this book’s web site.
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ABOUT THIS BOOK

Who should read this book?

Because this book can be used in several different ways, it has several distinct pos-
sible audiences. Part 1 is an introduction to rule-based systems for any student of
information technology, practitioners and management alike. The later parts of
the book are aimed squarely at programmers. I’ve assumed an intermediate
knowledge of the Java programming language throughout. Occasionally I explain
a Java concept, but most of the time, I just imagine that you understand.

The audience I thought of most as I wrote are intermediate Java programmers
with little or no exposure to rule-based systems, who are interested in getting that
exposure.

This book is also suitable as a text for a university course on practical rule-
based systems development. The course prerequisites should include a course on
Java programming. The course content would include parts 1, 2, and 3 of the
book, followed by either part 5 or part 6. Additional material could be used as
time permits, of course.

Source code downloads

The code for all the major examples and applications in this book is available
from the book’s web site, www.manning.com/friedman-hill. You can also down-
load a special version of Jess from this web site.

Typographical conventions

This book includes listings of code in both the Jess and Java languages. It also con-
tains transcripts of interactive sessions at the Jess prompt. All of these are set in
monospace type. Keywords, function names, variable names, and symbols in any
language are also set in monospace when they occur in the main text. It is gener-
ally clear from context whether I'm talking about Jess code or Java code, because
the two don’t look much alike.

In the interactive session transcripts, the Jess prompt and things that you enter
are all shown in normal monospace type, while responses printed by Jess are
shown in italic.

In step-by-step examples, text that you are to type appears in bold.



author online

Purchase of Jess in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/friedman-
hill. This page provides information on how to get on the forum once you are reg-
istered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can take
place. Itis not a commitment to any specific amount of participation on the part of
the author, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.
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about the title

By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-

motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them én action. The books in this series are
designed for such readers.

XXX



about the cover illustration

The figure on the cover of Jess in Action is a “Muger del Xeque,” a sheik’s wife. The
illustration is taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. A sheik was the head of an Arab clan or tribe and
the richness of his wife’s robes and jewelry would be considered a testament to his
authority and wealth.

The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The “Muger del Xeque” is just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress codes
of two regions separated by a few dozen miles identified people uniquely as
belonging to one or the other. The collection brings to life a sense of isolation

xXxXi
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ABOUT THE COVER ILLUSTRATION

and distance of that period—and of every other historic period except our own
hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

In spite of the current downturn, we at Manning celebrate the inventiveness,
the initiative, and, yes, the fun of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by
the pictures from this collection.



Part 1

Introducing
rule-based systems

-b ' hat are rule-based systems? What are they good for? Where did they come
from? Are they right for you? What should you do if you want to build one? These
are the questions we’ll begin to address in part 1. You’ll learn what rule-based sys-
tems are, about their history, and about their many uses. We’ll also look at how to
decide when a rule-based solution is appropriate for your application. Finally,

you’ll learn about how rule-based systems are implemented, and some strategies
for developing them.






Rules to the rescue

In this chapter you’ll...

m Be introduced to the Jess programming language
m Analyze a rule-based program

m See familiar examples of rule-based systems
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CHAPTER 1
Rules to the rescue

Rule-based software is in regular use in practically every business, school, and
home. In this chapter, we’ll look at some examples of how rules are used to solve
common problems. Because most programmers learn best by doing, you’ll start by
writing a rule-based program of your own.

Math class melee

“The answer, please?”

The stern voice startles you. You were dozing in Mrs. Rosencrantz’s high school
math class again. You realize at once that she’s been talking to you.

“Well2”

You look at the blackboard. It’s one of those word puzzles, the logic kind. Mrs.
Rosencrantz is waiting for you to solve it. You quickly scan what she’s scrawled on
the board with her crone’s hand:

m A foursome of golfers is standing at a tee, in a line from left to right. Each
golfer wears different colored pants; one is wearing red pants. The golfer to
Fred’s immediate right is wearing blue pants.

m Joe is second in line.

m Bob is wearing plaid pants.

® Tom isn’t in position one or four, and he isn’t wearing the hideous orange
pants.

® In what order will the four golfers tee off, and what color are each golfer’s
pants?”

You get the gist of it right away, but how on earth are you supposed to figure it
out? There’s no formula to use, no analytic procedure for deriving a solution.
Algebra was one thing, but this? Why weren’t you paying attention in class?

Rules to the rescue! A rule-based program can satisfy Mrs. Rosencrantz by effi-
ciently finding the one combination of names, positions, and colors that fits all
the constraints. You can directly translate the problem statement into rules, and
the rules will find the solution.

Let’s write that program to see how a rule-based system would solve this prob-
lem. You’ll write the program in the Jess language. Don’t be concerned that you
don’t know the Jess language yet—right now, I’d just like you to understand the
approach. You’re going to:

1 Choose a way to represent the possible combinations of men’s names, posi-
tions, and pants colors.

2 Write one rule that describes the problem.
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The Jess rule engine will find the solution automatically. Let’s get started.

The first step is to define data structures to represent the smallest useful pieces
of a possible solution to the problem: a link between a name and either a position
or a color:

(deftemplate pants-color (slot of) (slot is))

(deftemplate position (slot of) (slot is))

A deftemplate is a bit like a class declaration in Java. While class objects have
member variables, deftemplates have slofs. Each slot is a placeholder for a spe-
cific piece of information. For example, the pants-color template has a slot
named of for a person’s name and a slot named is to hold a color. Whereas a Java
class is a definition of a type of object, a template is a definition for a type of fact (a
fact is basically what it sounds like: a piece of possibly useful information.) A
pants-color fact represents the idea that one specific golfer (named in the of
slot) has a certain color pants (named in the is slot.)

You’ll use these templates to create facts representing each of the possible
combinations. There are 32 of them altogether—for example:

(pants-color (of Bob) (is red))

(position (of Joe) (is 3))

You can write a rule to create all 32 of these facts and put them into working mem-
ory, a kind of scratch space Jess uses to store the facts it knows:

(defrule generate-possibilities

=>
(foreach ?name (create$ Fred Joe Bob Tom)
(foreach ?color (create$ red blue plaid orange)

(assert (pants-color (of ?name)
(is ?color))))

(foreach ?position (create$ 1 2 3 4)
(assert (position (of ?name)
(is ?position))))))
This code loops (using foreach) over the four names given in the problem and
creates (using assert) a pants-color fact for each of the possible name/color
pairs and a position fact for each name/position pair, for a total of 32 facts. The
function create$ returns a list of its arguments.

Now that you’ve written a rule to create all the possible combinations, you’ll
write a second rule to search through them to find the subset of facts that repre-
sent the solution. This is the fun part. You’ll translate each sentence in the prob-
lem statement directly into code. First, note that you use a symbol starting with a
question mark, like ?c, to write a variable in Jess. You’ll use the variable 2c to
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represent “some color”; ?p to represent “some position”; ?n to mean “some
name”; and ?cl...?c4 and ?pl...?p4 to represent Fred, Joe, Bob, and Tom’s
pants color and position, respectively.

Here’s the first useful sentence, The golfer to Fred’s immediate right is wearing
blue pants:

(defrule find-solution
;; There is a golfer named Fred, whose position is ?pl
;; and pants color is ?cl
(position (of Fred) (is ?pl))
(pants-color (of Fred) (is ?2cl))

;; The golfer to Fred's immediate right

;7 1s wearing blue pants.

(position (of ?n&~Fred)

(is ?p&:(eq ?p (+ ?pl 1))))
(pants-color (of ?n&~Fred)
(is blue&~2cl))

In this code snippet, the variable ?n represents the unknown name of the person
to Fred’s right, ?p1l is Fred’s unknown position, ?c1 is the unknown color of
Fred’s pants, and ?p is the unknown golfer’s position. In these patterns, & means
and and ~ means not, so (name ?n&~Fred) means that this person’s name, call it
?n, is not Fred. Here’s the next line (Joe is second in line):

;; Joe 1s in position #2

(position (of Joe) (is ?p2&2&~?pl))

(pants-color (of Joe) (is ?c2&~?cl))
Note that you must be careful to read between the lines of the problem as you
write this rule. You know every golfer is in a different position, so you can say with
confidence that ?p2&2&~2?pl—Joe’s position, call it ?p2, the value of which is 2, is
not the same as Bob’s position ?pl. It’s possible that ?p2 and ?p are the same,
though: Joe might be to Fred’s immediate right, so you don’t mention ?p here.

Now the next line of the problem, Bob is wearing plaid pants:
;; Bob is wearing the plaid pants
(position (of Bob)
(is ?p3&~?pl&~?p&~?p2))
(pants-color (of Bob&~?n)
(is plaid&?c3&~?cl&~?c2))

By now you know a lot about Bob’s position ?p3 and pants color ?c3. You know
?p3 is not the same as ?pl or ?p2, and you also know it’s not the same as ?p. Why?
Because the golfer in position ?p wears blue pants, and Bob’s pants are plaid, and
the golfers in ?p1 and ?p2 are named Fred and Joe, not Bob.
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Finally, you know a lot about Tom (Zom isn’t in positions one or four, and he isn’t
wearing the hideous orange pants):
;; Tom isn't in position 1 or 4
;; and isn't wearing orange
(position (of Tom&~?n)
(is ?pd&~1&~4&~?pl&~?p2&~?p3))
(pants-color (of Tom)
(is ?cd&~orange&~blue&~?cl&~?c2&~2c3))
There are only four positions, but you know Tom’s position is not 1, not 4, and
not ?pl, ?p2, or ?p3—more constraints than there are possibilities. This is actu-
ally a good sign; it suggests that you have more than enough information to solve
the puzzle. You can place a similar number of constraints on Tom’s fashion
choices.
All that is left is to print out the set of variables ?pl...?p4 and ?cl...?c4 that
solves the problem:

>

(printout t Fred " " ?pl " " 2cl crlf)
(printout t Joe "™ " ?p2 " " ?c2 crlf)
(printout t Bob " " ?p3 " " ?c3 crlf)
(printout t Tom " " ?p4d " " ?c4d crlf crlf))

The symbol => separates the if part of the rule from the then part—it specifies
what the rule should do if all the requirements are satisfied. Here it prints a table
of results. If you enter the code for the problem into Jess and then run it, you get
the answer directly. The source for this problem is in the file rosencrantz.clp,
and you can run it like this:

C:\Jessb6l> java -classpath jess.jar jess.Main rosencrantz.clp

Fred 1 orange

Joe 2 blue

Bob 4 plaid

Tom 3 red
You see that exactly one set of variables satisfies the problem. Joe turns out to be
the mysterious man in the blue pants, and Fred (the tasteless golfer in the orange
ones) will tee off first.

What would happen if some of the information was missing? For example, sup-
pose you didn’t know that Joe was second at the tee—how would this affect the
results? Let’s give it a try. If you change Joe’s section of the program like so:

;; We don't know anything about Joe, really

(position (of Joe) (is ?p2&~7?pl))
(pants-color (of Joe) (is ?c2&~2?cl))
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and then run it, you get the following result:

Fred 3 orange
Joe 4 blue
Bob 1 plaid
Tom 2 red

Fred 2 orange
Joe 4 blue
Bob 1 plaid
Tom 3 red

Fred 2 orange
Joe 1 blue
Bob 4 plaid
Tom 3 red

Fred 1 orange
Joe 2 blue
Bob 4 plaid
Tom 3 red

Fred 1 orange
Joe 3 blue
Bob 4 plaid
Tom 2 red

Fred 1 orange

Joe 4 blue

Bob 3 plaid

Tom 2 red
Now there are six different solutions, and Jess finds and reports them all. This is
another strength of rule-based programming: Rule-based systems can degrade
gracefully in the presence of incomplete information. You didn’t have to build
this quality into the program—it’s just there.

Beyond logic puzzies

When you wake up from the recurring math-class nightmare, you may be relieved
to think that solving logic puzzles is a far cry from your normal duties as a pro-
grammer. But that’s really not so. Ill-defined problems like this logic puzzle
abound in business environments. A human-resources application may need to
flag personnel with a suspicious pattern of insurance claims. A requirement for a
financial application might be to recommend buying securities that look promis-
ing. Manufacturing software could raise an alarm and shut down an assembly line
if quality-assurance results indicate there may be a production problem.
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What do suspicious, promising, and may be a problem mean, exactly? They proba-
bly can’t be expressed as equations—it’s possible they can’t be given a precise def-
inition at all. If they each can be described as a set of constraints and guidelines,
however, then a rule-based program can implement them easily. In the rest of this
chapter, we’ll look at some common applications of rule-based programming.

Some real-world examples

You are probably affected by rule-based software every day, whether you realize it
or not. Many commonplace activities in a modern office are controlled by rules.
Let’s look at a few examples.

Mail filtering

“I can’t keep up with all the email I get!” is a common complaint in this Net-con-
nected world. Huge numbers of email messages are sent, delivered, and read
every day. Rules to the rescue! There are many technological solutions to the prob-
lem of sorting email, and almost without exception, these solutions are simple
rule-based systems.

The venerable program sendmail (http://www.sendmail.org/) delivers most
of the email on the Internet. It sports a famously cryptic rule-based configuration
language. The following example is lifted verbatim from the sendmail web site. It
shows a sendmail rule that translates BITNET addresses like decvax!user and
researchluser into user@decvax.dec.com and user@research.att.com, respectively:

# translate UUCP addresses to SMTP ones

LOCAL_RULE_3

UUCPSMTP (" decvax', “decvax.dec.com')

UUCPSMTP (" research', “research.att.com')

Microsoft Outlook, Eudora, Netscape Messenger, OS X Mail, and other popular
mail clients include the ability to automatically sort messages into mailboxes
according to the sender’s address, the recipient’s address, the subject, and other
characteristics. In all cases, the user programs the filter in a rule-based language.
For these graphical mail clients, the rule language is generally a pattern of check-
boxes and pop-up menus in a mail-filtering dialog box.

Programs like procmail (http://www.procmail.org/) and filter (http://
www.math.fu-berlin.de/~guckes/elm/elm.index.html) do this same kind of filter-
ing in batch mode on Unix systems. I’d personally perish under the weight of the
hundreds of messages I receive each day without procmail to sort through and
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organize my mail. Instead of dialog boxes, these programs offer a simple textual
language. For example, here are two of the rules in my procmail configuration:
# Put all messages mentioning Jess in their subject line
# into the IN.jess-users folder.
:0:
* ~Subject:.*jess

Mail/IN.jess-users

# Send all messages from "Out-of-Office Autoreply" to
# /dev/null - the UNIX "Trash can."
:0:

* ~From: .*Autoreply

/dev/null
Other programs exist that can automatically filter mail at a mail server to remove
spam or to strip viruses from attachments. Again, these programs offer a wide
range of features and interfaces, generally programmed via rules.

Email handling is one common example of how rules can make life easier for

individuals. Now let’s look at some applications of rules in the enterprise.

1.2.2 Product configuration

When a complex, customizable product like a computer is sold to a customer, the
seller must make sure the order corresponds to a functional system. If a given
peripheral requires a specific cable, then the order must include that cable. Like-
wise, if the chassis can hold only two full-height disk drives, then the order better
not include four of them. For many kinds of custom-manufactured goods, hun-
dreds or thousands of these kinds of restrictions exist, making order validation a
difficult and painstaking process.

The XCON system and its predecessors,! developed at Digital Equipment Cor-
poration (DEC), are well-known examples of using rule-based systems in this
application area. The original XCON included 210 rules for validating orders for
DEC hardware. By 1989, XCON included 17,500 rules and knew about 31,000
hardware components. The estimated savings to DEC at the time was $40 million
annually due to increased accuracy, reduced testing costs, and higher customer
satisfaction, compared to configuration by human workers. Such systems have
become common not only in manufacturing but in the mail-order and Internet
sales industry, where rule-based systems help to recommend related products,

' D. O’Connor and V. Barker, “Expert Systems for Configuration at Digital: XCON and Beyond,” Com-

munications of the ACM 32, no. 3 (1989).
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optimize packaging, and perform other routine order-configuration tasks. Part VI
of this book describes a series of web-enabled systems for order configuration
built around the Jess rule engine using Java servlets and JavaServer pages.

Implementing business rules

Corporations invariably define policies and strategies that specify how the busi-
ness should respond to events ranging from individual sales to hostile takeover
attempts. A business ruleis a policy or strategy written in executable form, such that
a computer can follow it. Here are two simple examples of business rules govern-

ing common situations:

IF

employee's length of service > 1 year
AND employee category is regular employee
AND employee contributes to 401k plan
THEN

employee is vested in 401k plan
END

. customer order is more than ten units
AND customer type is wholesaler
THEN

deduct 10 percent from order

END
If a company’s business rules are implicit—not written as rules per se, but embed-
ded in procedural logic—and scattered throughout corporate computer applica-
tions, then a change in a single policy might require significant programmer
effort to implement. Furthermore, if business rules are to be embedded directly
into application software, it becomes difficult to use commercial, off-the-shelf
(COTS) products, increasing the company’s development costs. The corporation
will be forced to make a choice between containing development costs and mak-
ing policy adjustments in response to changing circumstances.

The solution to this dilemma is to remove the business rules from the individ-
ual applications, make them explicit, and embed them in a centralized rule engine
for execution. Any business policy can then theoretically be changed at a single
point. The rule engine is often embedded in a network-based server so that it can
be accessible across an enterprise.

This enterprise-level use of a rule engine is probably the fastest growing and
most visible market for rule-based systems programming today. Some application
servers, like BEA’s WebLogic, include integrated rule engines. Other vendors like
ILOG sell rule engines meant to be used with third-party servers. There are literally
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dozens of rule engines to choose from, targeted toward this product niche. Part
VII of this book discusses the use of rule engines in general and the Jess rule
engine in particular in enterprise applications based on the Java 2 Enterprise Edi-
tion (J2EE) architecture.

Summary

Rule-based programs are everywhere. Their applications include everything from
mail filtering to order configuration, and from monitoring chemical plants to
diagnosing medical problems. Rule-based programs excel at solving problems
that are difficult to solve using traditional algorithmic methods, and they work
even when the input data is incomplete.

In the next chapter, we’ll refine our definition of a rule-based system. You’ll
learn about the history of rule-based systems and about their architecture. We’ll
also look at the development cycle for rule-based programs. By the end of the
next chapter you’ll be ready to begin learning how to write your own rule-based
software.



What are rule-based systems?

In this chapter you’ll...

Be introduced to declarative programming

Learn the architecture of a typical rule-based
system

See a method for developing rule-based systems

Read about industry standards for rules and rule
engine APIs

13
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There’s an old saying that “when all you've got is a hammer, everything looks
like a nail.” In computer programming, too, it’s important to choose the right
tool for the right job. Some problems can be solved easily using traditional pro-
gramming techniques, whereas writing a rule-based system is the easiest way to
solve others. Other problems are in the middle, and either technique will work
equally well. This chapter will help you understand which problems are well
suited to being solved with a rule-based system, and what this type of software is
all about.

The cooking/driving robot

Imagine your first day on the job at Acme Advanced Robotics Corporation.
Acme has built some great humanoid robot prototypes, but the company is hav-
ing trouble teaching its robots to survive in the real world. You’ve been brought
in to write some high-level robot control software so that Acme can begin selling
robot butlers to the masses. You decide to start with something simple: breakfast.

How do you teach a robot to prepare a bowl of breakfast cereal? Assume for
the moment that the robot knows how to recognize, pick up, and interact with
objects, and that the robot will operate in a closed, controlled, optimal environ-
ment. It is be a straightforward program: Tell the robot to get a bowl, a spoon,
and a napkin, and set them on the table. Then, the robot should open a box of
cereal, fill the bowl, and add milk. If you were writing a computer program for a
sophisticated cereal-serving robot, it might look something like this:

START

putOnTable (Bowl)

putOnTable (Spoon)

putOnTable (Napkin)

open (Cereal)

pour (Cereal)

open (Milk)

pour (Milk)

eat (Cereal, Spoon)

END
The cereal program, with its predictable linear control flow, is typical of many
small computer programs. Calculating the value of an equation, computing a
customer’s bill at a shopping mall, even rendering a single frame of a complex
video game, are all variations on the same sort of linear, deterministic process, in
which each step follows inevitably from the last. Such programs are often called
procedural programs—they solve a problem in a straightforward, predictable way.
Traditional software development techniques can be used to write programs such
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as the cereal program to good effect. You wouldn’t write a rule-based program to
solve the cereal problem. In general, problems that have a well-known algorith-
mic solution should be solved using a traditional procedural approach.

Emboldened by your success, you now think about teaching the same robot
how to drive a car in the real world. You have to tell the robot to search for its
keys and driver’s license—but only if it isn’t already carrying them. You tell the
robot how to start the car, put the car in reverse, and back out of the garage—but
only if the garage door is already open! The instructions probably need to cover
the different behaviors of cold motors and warm motors, how to use both man-
ual and automatic transmissions, and different types of emergency brakes. And
the instructions will become far more complex once the car begins to move.

This time, the instructions are filled with many context-sensitive decisions—
in fact, there are more decisions than actions. The control flow includes many
loops and branches. It would be next to impossible to write a single list of
instructions covering every situation that might possibly arise, considering that
circumstances interact to constantly change the correct outcomes of each deci-
sion. For example, seeing a child’s ball roll into the road is not a serious situation
when the car isn’t moving, but it requires prompt and decisive action when the
car is driving toward the bouncing ball.

If it’s impossible to write a procedural program to control your robot, how can
you do it? You can use declarative programming instead.

Declarative programming: a different approach

Much of the programming we do is procedural. Rule-based programming, how-
ever, 1s declarative.

In procedural programming, the programmer tells the computer what to do,
how to do it, and in what order. Procedural programming is well suited for prob-
lems in which the inputs are well specified and for which a known set of steps can
be carried out to solve the problem. Mathematical computations, for example,
are best written procedurally.

Note that I'm using procedural in a slightly different way than is conventional.
Although object-oriented programming is traditionally contrasted with the older
procedural programming, for the purposes of this discussion, the two are equiv-
alent. In both procedural and object-oriented programming, the programmer
writes all the logic that controls the computer, although it is partitioned differ-
ently in an object-oriented program.

A purely declarative program, in contrast, describes what the computer should
do, but omits much of the instructions on how to do it. Declarative programs
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must be executed by some kind of runtime system that understands how to fill in
the blanks and use the declarative information to solve problems. Because declar-
ative programs include only the important details of a solution, they can be easier
to understand than procedural programs. Furthermore, because the control flow
is chosen by the runtime system, a declarative program can be more flexible in
the face of fragmentary or poorly conditioned inputs (when you removed some of
the information from Mrs. Rosencrantz’s problem in chapter 1, the same pro-
gram, unchanged, was still able to find the possible solutions). Declarative pro-
gramming is often the natural way to tackle problems involving control,
diagnosis, prediction, classification, pattern recognition, or situational aware-
ness—in short, many problems without clear algorithmic solutions. Programming
a cooking, driving robot declaratively will be a breeze!

Although the driving program would be hard to write in a procedural style, it
is an ideal candidate to be written as a declarative program. A rule-based pro-
gram doesn’t consist of one long sequence of instructions; instead, it is made up
of discrete rules, each of which applies to some subset of the problem. A few
rules plucked from the robot’s driving program might look like these:

IF

the engine has stalled
THEN

start car
END

IF

you hear sirens
AND you are driving
THEN

pull over to curb
END

IF
you see brake lights
AND you are getting closer to them
THEN
depress the brake pedal
END
In a rule-based program, you write only the individual rules. Another program,
the rule engine, determines which rules apply at any given time and executes
them as appropriate. As a result, a rule-based version of a complex program can
be shorter and easier to understand than a procedural version. Writing the pro-
gram is simpler, because you can concentrate on the rules for one situation at a

time. Modifying the program is also simpler—if you've ever had to work on a
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program containing a dozen levels of nested if statements, you’ll understand
why. In the rest of this chapter, we’ll formalize some of the ideas behind rule-
based systems and see how they are constructed.

2.2 Rules and rule engines

A rule is a kind of instruction or command that applies in certain situations. “No
chewing gum in school,” “no running with scissors,” and other rules of that ilk,
are some of the first explicit rules we learn. “Where there is smoke, there’s fire”
and Murphy’s Law (“Whatever can go wrong, will go wrong”) are others that we
learn throughout our lives.! Using this very general definition, you might con-
clude that all the knowledge you have about the world can be encoded as rules.
Experience shows that this is often (but not always) the case. In general, any
information you can think about in logical terms can be expressed as rules.

Rules are a lot like the if-then statements of traditional programming lan-
guages. You might write a gum-chewing rule like this, in an English-like
pseudocode:

IF

I am in school
AND I am chewing gum
THEN

spit out the gum

END
The if part of a rule written in this form is often called its lefi-hand side (often
abbreviated LHS), predicate, or premises; and the then part is the right hand side
(RHS), actions, or conclusions.

The domain of a rule is the set of all information the rule could possibly work
with. In this hypothetical case, the domain of the chewing rule is a set of facts
about the location and oral fixations of one particular person.

A rule-based system is a system that uses rules to derive conclusions from premises:
Given the gum-chewing rule and the premise that you are in school, you (as an
advanced kind of rule-based system yourself) might conclude that it’s time to spit
out your gum. In this book, the systems we’re talking about are a specific category

! One reviewer pointed out that this popular proverb is properly called Finagle’s Law, and that the orig-
inal formulation of Murpny’s Law was, “If there are two or more ways to do something, and one of
those ways can result in a catastrophe, then someone will do it.” I chose not to go against popular us-
age here, but the pedant in me appreciated this fact enough to add a footnote. For more information,
see The Jargon File—for instance, http://info.astrian.net/jargon/terms/f/Finagle_s_Law.html.
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of computer programs. These programs are sometimes called rule engines. A rule
engine doesn’t contain any rules until they are programmed in. A rule engine
knows how to follow rules, without containing any specific knowledge itself.

A rule engine is generally part of a rule development and deployment environment.
The features offered by these environments vary widely, depending on the
intended applications for the rule engine and on the type of programmer
intended to develop the systems. This book will show you how to develop and
deploy rule-based systems in general. To do so, it will use the Jess rule engine in
all its examples.

2.2.1 Expert systems

Expert systems, rule-based computer programs that capture the knowledge of
human experts in their own fields of expertise, were a success story for artificial
intelligence research in the 1970s and 1980s. Early, successful expert systems
were built around rules (sometimes called heuristics) for medical diagnosis, engi-
neering, chemistry, and computer sales. One of the early expert system successes
was MYCIN,? a program for diagnosing bacterial infections of the blood. Expert
systems had a number of perceived advantages over human experts. For
instance, unlike people, they could perform at peak efficiency, 24 hours a day,
forever. There are numerous dramatic examples in the computer science litera-
ture of these early systems matching or exceeding the performance of their
human counterparts in specific, limited situations. Predictions were made that
someday, sophisticated expert systems would be able to reproduce general
human intelligence and problem-solving abilities.

Over time, of course, the drama receded, and it became clear that researchers
had vastly underestimated the complexity of the common-sense knowledge that
underpins general human reasoning. Nevertheless, excellent applications for
expert systems remain to this day. Modern expert systems advise salespeople, sci-
entists, medical technicians, engineers, and financiers, among others.

Today, general rule-based systems, both those intended to replace human
expertise and those intended to automate or codify business practices or other
activities, are a part of virtually every enterprise. These systems are routinely
used to order supplies, monitor industrial processes, prescreen résumés, route
telephone calls, and process web forms. Many commercial application servers

2 R. Davis, B. G. Buchanan, and E. H. Shortliffe, “Production Systems as a Representation for a Knowl-
edge-Based Consultation Program,” Artifical Intelligence 8 (1977): 15-45.
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incorporate a rule engine, and most others explicitly or implicitly offer integra-
tion with one. Expert systems really have become ubiquitous—we just don’t call
them by that name anymore.

2.3 Architecture of a rule-based system

The rules in the first expert systems were intertwined with the rest of the soft-
ware, so that developing a new expert system meant starting from the ground
up. The folks who wrote MYCIN, recognizing this fact, created a development
tool named EMYCIN.? EMYCIN (Empty MYCIN) was developed by removing all
the medical knowledge from MYCIN, leaving behind only a generic framework
for rule-based systems. EMYCIN was the first expert system shell. An expert system
shell is just the inference engine and other functional parts of an expert system
with all the domain-specific knowledge removed. Most modern rule engines can
be seen as more or less specialized expert system shells, with features to support
operation in specific environments or programming in specific domains. This
book is about this kind of rule engine.
A typical rule engine contains:

= An inference engine
= Arule base

= A working memory

The inference engine, in turn, consists of:
m A pattern matcher
®m An agenda

= An execution engine

These components are shown schematically in figure 2.1.

3 W.Van Melle, “A Domain-Independent Production Rule System for Consultation Programs,” Interna-
tional Joint Conference on Artificial Intelligence (1979): 923-925.



20 CHAPTER 2
What are rule-based systems?

Inference Engine (fact £1)
L (fact £2)
4 (Fact 31 Figure 2.1
The architecture of a typical
™ le-based system. The pattern-
Pattern Matcher ; ru
Working Memory matcher applies the rules in the
rule-base to the facts in working
(rule r3)| memory to construct the
1 £2) 71 (rule r1)1 " Hgenda. The execution engine
(£1, ) r (rule r2) -
(£2, £3) r2 fires the rules from the agenda,
Agenda wh|c|_1 changes the contents of
working memory and restarts
Rule Base the cycle.

Execution Engine

(f1, £2) rl

2.3.1 The inference engine

If you wanted to write your own rule engine, where would you start? You might
begin with the most important component. The primary business of a rule
engine is to apply rules to data. That makes the inference engine the central part
of a rule engine.

The inference engine controls the whole process of applying the rules to the
working memory to obtain the outputs of the system. Usually an inference
engine works in discrete cycles that go something like this:

1 All the rules are compared to working memory (using the pattern matcher)
to decide which ones should be activated during this cycle. This unordered
list of activated rules, together with any other rules activated in previous
cycles, is called the conflict set.

2 The conflict set is ordered to form the agenda—the list of rules whose
right-hand sides will be executed, or fired. The process of ordering the
agenda is called conflict resolution. The conflict resolution strategy for a
given rule engine will depend on many factors, only some of which will
be under the programmer’s control.

3 To complete the cycle, the first rule on the agenda is fired (possibly
changing the working memory) and the entire process is repeated. This
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repetition implies a large amount of redundant work, but many rule
engines use sophisticated techniques to avoid most or all of the redun-
dancy. In particular, results from the pattern matcher and from the
agenda’s conflict resolver can be preserved across cycles, so that only the
essential, new work needs to be done.

Many beginning rule programmers have difficulty with the idea that the rule
engine will decide the order in which the rules will be fired, but this is actually
one of the great strengths of rule-based programming. The rule engine can
more or less create a custom program for each situation that arises, smoothly
handling combinations of inputs the programmer might not have imagined.

The rule base

Your rule engine will obviously need somewhere to store rules. The rule base con-
tains all the rules the system knows. They may simply be stored as strings of text,
but most often a rule compiler processes them into some form that the inference
engine can work with more efficiently. For an email filter, the rule compiler might
produce tables of patterns to search for and folders to file messages in. Jess’s rule
compiler builds a complex, indexed data structure called a Rete network. A Rete
network is a data structure that makes rule processing fast. Chapter 8 describes
how Jess’s rule compiler works.

In addition, the rule compiler may add to or rearrange the premises or con-
clusions of a rule, either to make it more efficient or to clarify its meaning for
automatic execution. Depending on the particular rule engine, these changes
may be invisible to the programmer.

Some rule engines allow (or require) you to store the rule base in an external
relational database, and others have an integrated rule base. Storing rules in a
relational database allows you to select rules to be included in a system based on
criteria like date, time, and user access rights.

The working memory

You also need to store the data your rule engine will operate on. In a typical rule
engine, the working memory, sometimes called the fact base, contains all the pieces
of information the rule-based system is working with. The working memory can
hold both the premises and the conclusions of the rules. Typically, the rule
engine maintains one or more indexes, similar to those used in relational data-
bases, to make searching the working memory a very fast operation.
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It’s up to the designer of the rule engine to decide what kinds of things can
be stored in working memory. Some working memories can hold only objects of
a specific type, and others can include, for example, Java objects.

The pattern matcher

Your inference engine has to decide what rules to fire, and when. The purpose of
the pattern matcher is to decide which rules apply, given the current contents of
the working memory. In general, this is a hard problem. If the working memory
contains thousands of facts, and each rule has two or three premises, the pattern
matcher might need to search through millions of combinations of facts to find
those combinations that satisfy rules. Fortunately, a lot of research has been done
in this area, and very efficient ways of approaching the problem have been
found. Still, for most rule-based programs, pattern matching is the most expen-
sive part of the process. Beginning rule programmers often overlook this fact,
expecting the procedural right-hand sides of their rules to represent all the com-
putational effort in their program. The solution to Mrs. Rosencrantz’s problem
involved lots of pattern matching and no procedural code at all (except to print a
report at the end). Often the pattern-matching technique used by a particular
rule engine will affect the kinds of rules you write for that engine, either by limit-
ing the possibilities or by encouraging you to write rules that would be particu-
larly efficient.

The agenda

Once your inference engine figures out which rules should be fired, it still must
decide which rule to fire first. The list of rules that could potentially fire is stored
on the agenda. The agenda is responsible for using the conflict strategy to decide
which of the rules, out of all those that apply, have the highest priority and
should be fired first. Again, this is potentially a hard problem, and each rule
engine has its own approach. Commonly, the conflict strategy might take into
account the specificity or complexity of each rule and the relative age of the pre-
mises in the working memory. Rules may also have specific priorities attached to
them, so that certain rules are more important and always fire first.

As an example, the driving robot’s control program might have two rules like
these:

IF

the light is green
THEN

go
END
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IF
a person is in front of you
THEN
stop
END
If the robot is stopped for a red light, and the light turns green when someone is
still in the crosswalk, then both rules will apply. It is important that the second
rule fire before the first, or the future of driving robots will be in serious peril.
This second rule should therefore be given a very high priority.

The execution engine

Finally, once your rule engine decides what rule to fire, it has to execute that
rule’s action part. The execution engine is the component of a rule engine that
fires the rules. In a classical production system such as MYCIN, rules could do
nothing but add, remove, and modify facts in the working memory. In modern
rule engines, firing a rule can have a wide range of effects. Some modern rule
engines (like Jess) offer a complete programming language you can use to define
what happens when a given rule fires. The execution engine then represents the
environment in which this programming language executes. For some systems,
the execution engine is a language interpreter; for others, it is a dispatcher that
invokes compiled code.

Developing rule-based systems

This book is a hands-on guide to building useful rule-based systems. Each indi-
vidual project in this book covers some aspect of this task, presenting realistic
examples of every step along the way. In this section, we look at an overview of
the development process we will follow in later chapters.

Knowledge engineering

The first step in the development of any rule-based system is to begin collecting
the knowledge from which the rules will be derived. People who do this for a liv-
ing are called knowledge engineers. Knowledge engineering can be tricky, particu-
larly if the knowledge has to come from human experts. Experts aren’t always
cooperative, and even if they are, they don’t always know how to explain the pro-
cedures they follow. On the other hand, many experts respond well to interviews,
and you can ask questions to fill in gaps in the expert’s explanations.

If you are developing a rule-based system that is strictly based on a proce-
dures manual or other document, or if a human expert is not available, then the
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knowledge may be collected directly from written sources. Collecting knowledge
from books and other reference material has its own advantages and disadvan-
tages. Although books are generally more organized than human experts, they
can be lacking in the kind of practical rules of thumb (or heuristics) that a practi-
tioner can supply. On the other hand, you rarely have scheduling and other
logistical problems when attempting to read a book, but these can be annoying
obstacles when working with a human expert.

Another important aspect of knowledge engineering is organizing and struc-
turing knowledge. A typical rule-based system contains hundreds or thousands
of rules. Organizing the collected knowledge so that translation to rules will be
straightforward is a challenging task for the knowledge engineer.

We'll discuss the knowledge engineering process in greater detail in chapter 9.

Structuring data

When all the knowledge has been collected, the task of programming the system
begins. The best first step is to examine the knowledge and design data structures
that will make it easy to implement the rules clearly and directly. This process
resembles object-oriented analysis. First, the major concepts are identified. For an
employee benefits consultant, these might include employee, health plan, claim, time,
and money. The important thing at this stage is to identify all the concepts
referred to in the collected knowledge—the irrelevant ones can be removed later.

Then, you list all the variable characteristics of each concept: Employees have
a name, a health plan, years of service, and a salary, among other things. Again, at
this stage you try to identify all the characteristics mentioned in the collected
knowledge. The pants-color and position templates in chapter 1 were simple
examples of data structures for working memory elements. Designing data struc-
tures for rule-based systems is discussed in chapter 10.

Testing

You may wonder why I'm mentioning testing now, when you haven’t written any
code yet. Actually, this is the perfect time to begin testing a rule-based system: at
the beginning. If rigorous tests are applied to the system at every stage of its
development, it will naturally be more robust, more modular, and better under-
stood than a system that wasn’t tested until the end. Therefore, before writing a
group of rules, you should develop an automated test to exercise them. You can
write tests in Java, in your rule language, or in a convenient scripting language.
You should run all the tests you have written quite often, ideally each time a
change is made to the system. When the final system is delivered, the tests can be
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part of the deliverable—they will be a great help to anyone who needs to modify
the system in the future.

How do you develop tests? Some tests will be very small and check intermedi-
ate results, whereas others will be fully worked problems. In the former case, you
might develop the test by yourself. The larger tests, though, should be based
when possible on actual case studies of how problems were solved in the past.

It is important that the tests be automated, so no human checking of results is
required; otherwise the tests will require too much effort to run and will not be
used. It helps to have an automated test framework—you can often quickly
develop one yourself using Perl, shell scripts, or similar scripting facilities. This
testing technique, known as test-driven development, is one facet of eXireme Pro-
gramming,* a methodology that is rapidly gaining acceptance in many computer
programming fields. An automated test framework that I use for testing Jess pro-
grams is described in appendix C.

2.4.4 Interface building

For most rule-based systems to do any useful work, they need to be connected in
some way to their environment. Sometimes this means database access; other
times it means directly reading values from sensors and sending commands to
embedded hardware. Before you begin to code your rules, you try to develop a
picture of what your system will need to realize these connections. Depending on
your development environment, your rules may already have a built-in ability to
connect to all the data sources and sinks they’ll need to reach, directly from the
rule language. In other situations, you may need to write interface code in
another language. If you do, I hope you'll use test-first programming to develop
it. We’ll look at interface building many times throughout this book.

2.4.5 Writing the rules

Once the data structures are defined, the interfaces are specified, and the tests
are in place, it’s time to begin writing the rules. As in all programming, this pro-
cess involves a significant amount of art; there are always multiple ways to
accomplish a task. The good news is that because each rule can be independent
of the others, rule-based programs can be developed iteratively: code a little, test
a little, and then code some more. The bad news is that it’s relatively easy to
write unstructured rule-based programs, which can become hard to understand.

* K. Beck, Extreme Programming Explained: Embrace Change (Reading, Mass.: Addison-Wesley), 2000.
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You can give structure to your rule-based programs by thinking in terms of
phases or modules, groups of rules that are the only ones relevant at specific
phases of the execution of your system. Most rule development languages offer
explicit support for this kind of modularity, and it’s a good idea to use it when-
ever possible. The driving robot’s rules might be divided into separate modules
devoted to starting the car, parking the car, city driving, highway driving, pass-
ing other cars, and so on. By breaking rules into small groups, you can make a
rule-based program easier to write and to understand. We’ll first study writing
rules for a real application (an information kiosk) in chapter 11.

Iterative development

Once you've developed some rules, you'll often find that you don’t have all the
information you need to write more. When this happens, you’ll need to go back
to the source and do some more knowledge engineering. The development of a
rule-based system lends itself well to this sort of iterative procedure. You can
show the early incarnations of the system to the human experts, if they exist, and
ask them for corroboration of the results. You might have to change your tests, if
the experts disagree with what they are testing.

It’s also worthwhile to have another knowledge engineer look over your work
at this point. Code reviews are amazingly effective at finding problems with soft-
ware before a release, and they work for rule-based software as well. Whether you
hold formal code reviews or just ask a friend for advice, a second pair of eyes can
really help to increase the quality of your work.

Rule engine standards

Various commercial off-the-shelf products (other than application servers) can be
designed to work together with rule engines. Historically, there has been a cer-
tain amount of vendor lock-in, because each rule engine has its own program-
mer’s interface. The Java Rule Engine API (http://www.jcp.org/jsr/detail/94.jsp),
defined by the javax.rules package, is a standard enterprise API for accessing
rule engines, currently being developed by a consortium of rule engine vendors
under the Java Community Process. The javax.rules package will allow the
host program to interact generically with multiple rule engines, the same way
the Java Database Connectivity (JDBC) API makes it possible to write vendor-
neutral database programs. The API will include mechanisms for creating and
managing sets of rules; for adding, removing, and modifying objects in working
memory; and for initializing, resetting, and running the engine. Soon (perhaps
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even by the time you read this), most popular rule engines, including Jess, will
be accessible using the javax.rules API. In fact, the official reference implemen-
tation of the javax.rules API is currently slated to be a driver for Jess.

The javax.rules API will not specify a standard rule language, however.
Other groups are working on developing standardized rule languages,’ although
less consensus exists in this area. For the same reason there is no one standard
general programming language, it is likely that vendor-specific rule languages
will be with us for a long time. Each rule language has its own strengths and
weaknesses, and the expressiveness, elegance, and power of a rule language can
be a major factor in choosing an engine.

2.6 Summary

A rule-based system is a computer program that uses rules to reach conclusions
from a set of premises. Its historical roots include production systems and expert
systems, but nowadays their broad range of applications includes everything
from real-time control of embedded systems to enterprise resource planning for
multinational corporations.

Rule based systems are not procedural, but declarative programs. They
require a different approach to programming in which a runtime system is used
to make scheduling and control-flow decisions. Modern rule-based systems often
include hybrid procedural/declarative languages, broadening their applicability.

A wide range of commercial rule development and deployment environments
1s available, but all have an essential architecture in common. Efforts are under-
way to standardize rule engine APIs and rule programming languages.

These first two chapters provided an introduction to the fundamental con-
cepts of rule-based programs. This is really a practitioner’s book, however, so we
want to begin writing new rule-based programs as soon as possible. You will learn
the Jess programming language in the next part of this book. You’ll start by
learning about the Jess software itself in chapter 3 and proceed from there.

5 See, for example, http://www.dfki.uni-kl.dc/ruleml/.






Part 2

Jess: A rule-based
programming environment

Ifyou’re going to develop rule-based systems, first you’ll need to pick a rule
engine. For the rest of this book, you’ll be working with the Jess rule engine that
you first met in chapter 1. In chapter 3, you’ll learn about Jess’s origins, how to get
a copy, and how to write the Jess version of the famous “Hello, World” program. In
the next few chapters, you’ll learn a lot about writing programs in Jess’s rule lan-
guage. Chapter 4 is a general introduction to the Jess language. Chapter 5 teaches
you how to work with Java objects from Jess programs. The next two chapters talk
about Jess’s working memory and how to write rules, respectively. Finally, chapter 8
explains some of the nuts and bolts that make Jess work. All together, part 2 of this
book is a comprehensive tutorial on both the Jess language and the Jess rule
engine; it will get you ready to start developing rule-based applications in part 3.
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In this chapter you’ll...

m [earn how to obtain and install your copy of Jess
m [earn how to run Jess programs
m See how Jess applications are structured

31



32

3.1

CHAPTER 3
Introducing Jess

This is a hands-on book. It walks you through the development of several large
software systems that use rule-based technology. You’ll see how each system is
architected, and you’ll see the detailed implementation of each one. All the
example systems use the Jess rule engine. In this chapter, we’ll take a closer look
at Jess itself. Jess is an interpreter for the Jess rule language. The syntax of the Jess
rule language is similar to that of Lisp, so it might look strange to you at first;
but Jess’s language is simple, easy to learn, and well-suited to both defining rules
and procedural programming. Although Jess is in some sense fairly small, it’s a
very rich environment. Even after you've spent the next few chapters learning
about Jess and its rule language, there will be plenty more to learn on the fly as
you develop the major applications.

Although previous experience with Lisp might help you begin to understand
the Jess rule language, it is not necessary; this book explains all you need to
know. On the other hand, I assume you have some familiarity with Java, and I
assume you have a Java environment installed and know how to use it to compile
and run Java applications.

The Jess rule engine

Jess (http://herzberg.ca.sandia.gov/jess) is a rule engine and scripting lan-
guage developed at Sandia National Laboratories in Livermore, California in
the late 1990s. It is written in Java, so it is an ideal tool for adding rules technol-
ogy to Java-based software systems.

The cLIPS expert system shell (http://www.ghgcorp.com/clips/CLIPS.html),
an open-source rule engine written in C, was the original inspiration for Jess.
Jess and CLIPS were written by entirely different groups of people, however, and
their implementations have always been very different. Jess is dynamic and Java-
centric, so it automatically gives you access to all of Java’s powerful APIs for net-
working, graphics, database access, and so on; CLIPS has none of these facilities
built in. Still, there is a strong similarity between the rule languages supported
by these two systems. Many of the core concepts of Jess were originally derived
from cr1pS, which was itself influenced by early rule engines like 0PS5 and ART.

NOTE FOR Jess’s syntax is quite similar to CLIPS’, but Jess and CLIPS are different
I%IIEFI’QSS and unrelated systems. Some Jess constructs (defclass, definstance,
defmodule) have very different semantics in CLIPS, whereas others (de-

frule) are virtually identical. Jess has many features (defquery, the abil-

ity to directly call functions in the host language) that CLIPS doesn’t,
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and Jess does not implement everything that CLIPS does (COOL, the
CLIPS Object Oriented Language, is one notable example). If you have
previous experience using CLIPS, don’t assume you can skip over this
part of the book.

Obtaining Jess

You can download a specially licensed version of Jess from the Manning Publica-
tions web site, at http://www.manning.com/friedman-hill. The license lets you use
Jess for educational purposes, so you can try out and experiment with the exam-
ples in this book. In this chapter I'll assume you’re using that version of Jess.

Jess is also available from the Jess web site, http://herzberg.ca.sandia.gov/jess.
There you can immediately download a trial version, or you can obtain a Jess
license and then download a full version with source code. Jess licenses are avail-
able free of charge for academic use. You can also purchase a commercial license.
See the web site for details.

Installing Jess

To run Jess, you need to have the Java 2 Platform installed. If you don’t already
have it, you can download a free implementation directly from Sun Microsystems
at http://java.sun.com. Versions are available for Windows, Linux, and Solaris.
Apple has its own version, which is included in Macintosh OS X. If Java is prop-
erly installed, you should be able to execute the command java -version in a
command window and see version information about your installed Java soft-
ware. If the version number is 1.2.0 or greater, you're ready to go.

The Jess distribution is a Zip file, and you can open it with many popular
archiving tools. (WinZip [http://www.winzip.com] is one useful program for work-
ing with Zip files on Microsoft operating systems.) The Zip file contains a single
item: a directory named Jessxx, where XX is a number (currently 61, for Jess 6.1).
Use your archiving tool to unpack that directory to a convenient location—
C:\Jessxx, for example. The unpacked directory will contain:

m A Java archive file jess.jar, which contains the Jess software.

m The directory examples/, which contains some simple examples of Jess
programs.

= A copy of the Jess manual in the directory docs/. Open docs/index.html in
your web browser to view the manual.

To complete your installation, add jess.jar to your CLASSPATH environment vari-
able. cLasspaTH tells the Java program where to find installed Java software.
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NOTE The details of setting environment variables vary between platforms.
For older versions of Windows, it involves editing the C:\AUTOEXEC.BAT
file. For newer Microsoft operating systems, you can set environment
variables in the System control panel. For Unix-like systems, editing
your .cshrc or .profile will do the trick. Refer to your operating sys-
tem’s documentation for details.

CLASSPATH consists of a series of filenames joined by the character your operating
system uses to separate filenames in other kinds of lists. On Windows, this is the
semicolon (;) character, and on Unix-like systems it is the colon (:). Make sure
that CLASSPATH, at a minimum, includes the full path to the jess.jar file and a
period (.), which represents the current directory. So, on Windows, if there is no
pre-existing CLASSPATH setting, you set this variable to .;C:\Jess61\jess.jar. If
you find that your system already has a cLASSPATH variable defined, you can sim-
ply add these two entries to the existing list.

Running Jess

Jess is primarily intended as a library that can be embedded in other Java soft-
ware. However, when you’re developing Jess code, it’s nice to have an interactive
environment to work with, so Jess comes complete with a simple command
prompt. To run Jess as a standalone command-line application, execute the class
jess.Main from the JAR file like this:

C:\> java jess.Main

Jess, the Java Expert System Shell

Copyright (C) 2003 E.J. Friedman Hill and the Sandia Corporation

Jess Version 6.1 4/9/2003

Jess>
Jess displays a welcome banner and then the Jess> prompt. When Jess displays
this prompt, it is waiting for you to enter a Jess program. You can probably guess

what’s coming next: You're going to write the Jess version of “Hello, World”.

“Hello, World”

You can enter a Jess program directly at the command prompt, and Jess will exe-
cute it immediately:
Jess> (printout t "Hello, World!" crlf)

Hello, World!
Jess>
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You can also pass the name of a file that contains Jess code as an argument when
you start jess.Main. Jess executes the code in the file and then exits:

C:\Jess61l> java jess.Main hello.clp

Hello, World!

C:\Jessb61l>
We will begin our study of the Jess language in the next chapter, but if you're
curious: printout is a function that prints formatted output; t tells printout to
print to standard output; and the argument crlf starts a new line, like printing a
\n in Java. This parenthesized list of symbols is the Jess way of calling a function.
Jess immediately evaluates the call to printout, producing the side effect of
printing “Hello, World!” to the console.

In addition to jess.Main, the class jess.Console presents the same com-
mand-line interface in a graphical console window (see figure 3.1). If you would
like a more elaborate graphical interface, you can try JessWin, a free graphical
development environment for Jess written by William Wheeler. JessWin (which
is also written in Java) is menu-driven and contains an integrated graphical edi-
tor (see figure 3.2). You can download JessWin from the Jess web site (http://
herzberg.ca.sandia.gov/jess/user.html).

Jess, the Java Expert System Shell
Copyright (C) 2001 E.J. Friedman Hill and the Sandia Corporation
Jess Version B.1b3 3/1/2003

Jess> (printout t "Hello, World!" crif)
Hello, World!
Jess>

...] [

Clear Window

Figure 3.1 The jess.Console interface for Jess. This as an alternative to
the command-line jess .Main interface. You can enter Jess code in the small
text field at the bottom left, and Jess output appears in the scrolling text area
at the top.
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Figure 3.2 The JessWin developer’s environment for Jess. JessWin is a third-party add-on

that

provides a graphical interface to many functions that are useful to Jess programmers.

3.2 Jess applications

Jess has been used to develop a broad range of commercial software, including:

= Expert systems that evaluate insurance claims and mortgage applications
= Agents that predict stock prices and buy and sell securities

m Network intrusion detectors and security auditors

m Design assistants that help mechanical engineers

m Smart network switches for telecommunications

m Servers to execute business rules

= Intelligent e-commerce sites

m Games

You'll develop some fairly large applications in this book: the Tax Forms Advisor
(an intelligent information kiosk), the PC Repair Assistant (a graphical help desk
application), an HVAC Controller (a soft real-time control system), and the Rec-
ommendations Agent (a smart e-commerce web site).
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You can program with Jess in two different but overlapping ways. First, you
can use Jess as a rule engine. A rule-based program can have hundreds or even
thousands of rules, and Jess will continually apply them to your data. Often the
rules represent the heuristic knowledge of a human expert in some domain, and
the knowledge base represents the state of an evolving situation (perhaps an
interview or an emergency). In this case, the rules are said to constitute an expert
system. Expert systems are widely used in many domains. The newest applications
of expert systems include being used as the reasoning part of intelligent agents,
in enterprise resource planning (ERP) systems, and in order validation for elec-
tronic commerce.

The Jess language is also a general-purpose programming language, and it
can directly access all Java classes and libraries. For this reason, Jess is also fre-
quently used as a dynamic scripting or rapid application development environ-
ment. Whereas Java code generally must be compiled before it can be run, Jess
interprets code and executes it immediately upon being typed. This allows you to
experiment with Java APIs interactively and build up large programs incremen-
tally. It is also easy to extend the Jess language with new commands written in Java
or in Jess itself, so the Jess language can be customized for specific applications.

Jess is therefore useful in a wide range of situations. In this book, you will see
Jess used primarily for its rule engine capabilities—but there will be plenty of
scripting along the way. How can you choose an architecture for a specific appli-
cation? As with many things in Jess, lots of choices are available.

Command line, GUI, or embedded?

Given its flexibility, Jess can be used in command-line applications, GUI applica-
tions, servlets, and applets. Furthermore, Jess can provide the Java main() func-
tion for your program, or you can write it yourself. You can develop Jess
applications (with or without GUIs) without compiling a single line of Java code.
You can also write Jess applications that are controlled entirely by Java code you
write, with a minimum of Jess language code. Jess has been deployed in every-
thing from enterprise applications using J2EE on mainframes to personal pro-
ductivity applications on handheld devices. If you can think of it, you can
probably implement it with Jess.

The most important step in developing a Jess application is to choose an
architecture from among the almost limitless range of possibilities. You must
make this choice early in the development of your application. One way to orga-
nize the possibilities is to list them in increasing order of the amount of Java pro-
gramming involved:
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1 Pure Jess language, with no Java code.
2 Pure Jess language, but the program accesses Java APIs.

3 Mostly Jess language code, but with some custom Java code in the form
of new Jess commands written in Java.

4 Half Jess language code, with a substantial amount of Java code provid-
ing custom commands and APIs. Jess provides the main () function (the
entry point for the program).

5 Half Jess language code, with a substantial amount of Java code provid-
ing custom commands and APIs. You write the main () function.

6 Mostly Java code, which loads Jess language code at runtime.

7 All Java code, which manipulates Jess entirely through its Java API.

The sample applications presented in the later parts of this book start at the
beginning of this continuum (the Tax Forms Advisor developed in part 3 consists
entirely of Jess code) and work their way toward the end (the business-rules sys-
tems are mostly written in Java). Experiencing the development of each type of
application will help you decide what route to take in future development, based
both on the requirements of the application and on the abilities of the program-
ming team that will write it.

3.2.2 Jess performance

Some people will tell you that Java is slow. They’re wrong. Modern Java virtual
machines are extremely powerful and sophisticated. In many applications, Java is as
fast as comparable C or C++ code. For Jess, being written in Java is not a liability.

Jess is fast. The algorithm used for pattern matching, which we’ll study in
chapter 8, is very efficient, and Jess can plow through large piles of rules and
facts in little time. Using Sun’s HotSpot JVM on an 800 MHz Pentium III, Jess
can fire more than 80,000 rules per second; it can perform almost 600,000 pat-
tern-matching operations per second; it can add more than 100,000 facts to
working memory per second; and a simple counting loop can do 400,000 itera-
tions per second. Independent benchmarks have shown that Jess is significantly
faster than many rule engines written in the “faster” C language. For example,
on many problems, Jess outperforms CLIPS by a factor of 20 or more on the
same hardware.!

! See http://aaaprod.gsfc.nasa.gov/teas/Jess/JessUMBC/sld025.htm and http:// www.mail-archive.com/
jess-users@sandia.gov/msg03278.html for some benchmarks.
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Jess’s rule engine uses an improved form of a well-known method called the
Rete algorithm (Rete is Latin for net) to match rules against the working memory.
We’ll look at the Rete algorithm in detail in chapter 8. The Rete algorithm
explicitly trades space for speed, so Jess can use a lot of memory. Jess does con-
tain commands that let you sacrifice some performance to decrease memory
usage. Nevertheless, Jess’ memory usage is not ridiculous, and fairly large pro-
grams will fit easily into Java’s default heap size of 64 megabytes.

Because Jess is a memory-intensive application, its performance is sensitive to
the behavior of the Java garbage collector. Recent JVMs from Sun feature an
advanced Java runtime called HotSpot, which includes a flexible, configurable
garbage collection (GC) subsystem. The garbage collector is the part of the JVM
that is responsible for finding and deleting unused objects. Excellent articles on
GC performance tuning are available at Sun’s web site.? Although every Jess rule
base is different, in general, Jess benefits if you adjust two parameters: the heap
size and the object nursery size. For example, on my machine, Jess’ performance on
the Miranker manners benchmark (http://www-2.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/expert/bench/bench/0.html) with 90 guests is improved by 25%
by adjusting the initial heap size and nursery size to 32MB and 16MB, respec-
tively, from their defaults of 64MB and 640KB. In this case, you make the default
heap size smaller, which makes the garbage collector run faster because there is
less memory to search. You can tune the HotSpot virtual machine in this way
using the following command:

java -XX:NewSize=16m -Xms32m -Xmx32m jess.Main <scriptfile>

The object nursery is a subset of the Java heap set aside for recently allocated
objects. The total heap size in this example is 32MB, not 48MB.

3.3 Summary

Jess is a powerful environment for processing rules and scripting the Java plat-
form. You can use it in a wide range of applications, built purely using the Jess
rule language, purely in Java, or with some mixture of the two.

You can run Jess as an interactive command-line application during develop-
ment using the jess.Main class. Jess programs can also be stored as plain text
files and executed by jess.Main.

% See in particular http:/developer.java.sun.com/developer/TechTips/2000/tt1222. html#tip2.
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Jess works with any Java 2 virtual machine. Jess is very fast, but its perfor-
mance is sensitive to the detailed operation of the Java garbage collector. You
can often tune the performance of a Jess application by tuning the behavior of
the garbage collector.

The next five chapters will teach you the Jess language in detail. First you'll
learn to use Jess as a pure programming language, and then you’ll see how to
write rules. Along the way, especially in chapter 8, we’ll peer under the hood and
see how Jess works. Let’s get started!



Getting started with
the Jess language

In this chapter you’ll...

m Learn the basic syntax of Jess
m Work with basic Jess control structures
m Find out how to define functions in Jess

41
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This chapter is an introduction to the Jess rule language. It will not teach you how
to write rules—that will have to wait for chapter 7—but it will explain how to write
code in the Jess rule language, and you’ll need this ability to write the right-hand
sides of rules. The Jess rule language is also a general-purpose programming lan-
guage, and you can use it even without writing any rules.

The next few chapters contain syntax diagrams to concisely describe the syntax
of some of the more complicated expressions. In these diagrams:

m Text in <angle-brackets> is a description of some kind of data that you must
supply.

m Things ending with + can appear one or more times.

m Things ending with * can appear zero or more times.

m Things in [square brackets] are optional. Square brackets are also used to
group expressions together, so that one of the repeating operators can be
applied to a group.

The basics

Just as books are made up of words, code is made up of tokens. A token is a
sequence of characters that a computer language recognizes as a fundamental
unit. Jess understands only a few different kinds of tokens: symbols, numbers,
strings, and comments. Once you know about these, you can begin to do some
programming.

Whitespace

Input to Jess is free-form. Newlines and whitespace are not significant except
inside quoted strings. You can use newlines and indentation to highlight the struc-
ture of the code you write, just as in Java; for example, the following code

(if (< ?x 3) then (printout t "?x is less than three" crlf))
would usually be written

if (< ?x 3) then
(printout t "?x is less than three" crlf))

Symbols

The symbolis a core concept of the Jess language. Symbols are tokens that are very
much like identifiers in Java. A Jess symbol can contain letters, numbers, and the
following punctuation marks: ¢, *, ., =, +, /, <, >, _, ?, and #. A symbol may
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not begin with a number. Some of the punctuation marks ($, ?, and =) cannot be
used as the first character of a symbol, but can appear in other positions. The
other punctuation marks listed can appear as the first character or any character
of a symbol. Jess symbols are case sensitive: foo, FOO, and Foo are all different sym-
bols. The best symbols consist of letters, numbers, underscores, and hyphens;
hyphens are traditional word separators. The following are all valid symbols:

foo first-value contestant#1l _abc

Jess gives special meaning to a few symbols; they are like Java keywords. The sym-
bol nil is like null in Java, and TRUE and FALSE are Jess’s Boolean values. Note that
case is significant: TRUE and FALSE must be uppercase, and nil must be lowercase.
Other symbols have special meanings only in certain contexts; for example, the
symbol crlf is translated into a newline when printed.

The jess.Value class

Internally, all Jess values—symbols, numbers, strings, and others—are represented
by instances of the jess.Value Java class. You will work extensively with this class
when you interface Jess and Java code. jess.Value objects are immutable—once
one is created, the value it represents cannot be changed. Every jess.value object
knows the type of the datum it holds, and you can fetch this type using the type ()
member function. The possible values are enumerated by a set of constants in the
jess.RU class (RU stands for Refe Ulilities). Symbols are of type RU.ATOM.

Numbers

Jess’s parser uses the Java parsing functions java.lang.Integer.parseInt and
java.lang.Double.parseDouble to parse integer and floating-point numbers,
respectively. (See the Java API documentation for those methods for a precise syn-
tax description.) The following are all valid numbers:

3 4. 5.643 6.0E4 1D

The Jess language has three numeric types: RU. INTEGER (corresponding to Java
int), RU.FLOAT (corresponding to Java double), and RU.LONG (like the Java type
long). The type of a numeric value is inferred when it is parsed. The type RU.LONG
isn’t used much; in fact, you can’t type a long literal in Jess. We’ll talk about a
function that turns a string into an RU.LONG value after we’ve discussed functions
and strings.
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Strings

Character strings in Jess are denoted using double quotes (). Typical strings look
like this:

" fOO"
"Hello, World"

You can use backslashes (\) to escape embedded quote symbols, just like in Java:
"\"Nonsense, \" he said firmly."

Jess strings do not recognize any other Java-style escape sequences. In particular,
you cannot embed a newline in a string using \n. On the other hand, real new-
lines are allowed inside double-quoted strings; they become part of the string.
This Jess string is equivalent to the Java string "Hello, \nThere".

"Hello,
There"

Strings are represented as jess.Value objects of type RU. STRING.

Comments

You can add descriptive comments to your Jess code. Programmer’s comments in
Jess begin with a semicolon (;) and extend to the end of the line of text. Here is
an example of a comment:

; This is a number

1.2345
Comments can appear anywhere in a Jess program; they are simply ignored.

Note that Jess comments can nest—a semicolon can appear in a comment
without trouble. Many Jess programmers use multiple semicolons on a line for
visual emphasis:

A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A

;; Rules added 2/3/2003

A A A A A A A A A A A A A A A A N A A A A A A A A A A A A A A

Although you’ll see this usage often in Jess code, it has no special meaning.

Whitespace, symbols, numbers, strings, and comments are the fundamental
elements of Jess syntax. Now you’re ready to learn how to put these elements
together into code.
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4.2 Adding some structure

4.2.1

Tokens by themselves aren’t terribly interesting, any more than isolated words
have much to say. Tokens become meaningful when they are put together into
code. In the following sections, you’ll see how to put together “sentences” in the
Jess language.

Lists

The basic unit of structure in Jess code is the list. A list is a group of tokens that
includes an enclosing set of parentheses and zero or more tokens or other lists.
The following are all valid lists:

+ 3 2)

abc)

"Hello, World")

)

12 3)
deftemplate foo (slot bar))

(
(
(
(
(
(
Lists are a little like arrays in Java and other languages. In Jess, they’re the central
way of structuring both code and data. The first element of a list is called the list’s
head, and in many contexts it is special. For example, Jess function calls are lists
where the head is the name of a function, and rules are written as lists where the
head is the special symbol defrule.

Lists remind many new Jess programmers of scopes in Java—the parentheses
group the items in a Jess list just as pairs of brackets delimit Java methods and
classes. As a result, some people tend to write Jess code by lining up opening and
closing parentheses vertically as they might do in Java. In the worst cases, that
might look like this:

)

In addition to being aesthetically awkward, it can be confusing. It’s better style to
simply put the closing parentheses on the last line of the list they close, like this:
(bind °?x (+

(* 20 3)
(- 37 23)))
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This is generally more readable, not less. Whether you use a text editor that helps
you balance parentheses may influence your choice of code format. The open-
source Emacs editor is available on the Windows, Linux, and Macintosh plat-
forms, and makes editing Jess code easy. A special Jess mode for Emacs is available
(http://jess-mode.sourceforge.net).

Jess interprets lists in many different ways depending on where in your pro-
gram they appear. A list might be a rule, a fact, a pattern on a rule’s left-hand side,
a function definition, or a function call, among other things. You’ll see ways to use
lists as this chapter continues, but let’s pick just one to get started. The simplest
Jess program consists of a single function call—and you’re probably anxious to
write a program, so let’s learn about function calls. Later in this chapter we’ll
return to the study of lists in general.

Calling functions

If you type an arbitrary list at the Jess> prompt, Jess will assume you’re trying to
call a function:

Jess> (+ 2 2)

4
Here the function + is being called. Jess prints the result (4) on the next line. The
result is like the return value of a Java function. The process of executing a func-
tion call to determine the result is called evaluating the function call. Every Jess
function has a result—there are no void functions, as there are in Java, that don’t
have a return value.

Jess function calls use a prefix notation: the head of the list is the name of the
function being called, and the other items in the list are the arguments of the
function. The arguments of a function call can be numbers, symbols, strings, or
other function calls—that is, function calls can be nested:

Jess> (+ (+ 2 3) (* 3 3))

14
The two arguments to + are (+ 2 3) and (* 3 3). Jess evaluates the arguments in
left-to-right order before the outer sum is computed.

Jess comes with a large number of builtin functions that compute mathemati-
cal quantities, control program flow, manipulate strings, give you access to Java
APIs, and perform other useful tasks. Appendix A describes all the functions that
are built in to Jess. In section 4.4, you’ll also learn how to define new functions by
writing Jess language code. In chapter 15, you’ll even learn how to extend the Jess
language by adding functions written in Java. All code in Jess (control structures,
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assignments, declarations) takes the form of a function call. You have already seen
most of the Jess language’s built-in syntax; virtually everything else is accom-
plished by functions that use these basic elements. Let’s look at some simple func-
tions that are used in most Jess programs. In section 4.3, you’ll learn about more
complex functions that implement control structures.

One of the most commonly used functions is printout. The printout function
is used to send text to Jess’s standard output or to a file. The first argument tells
printout where to send its output. The subsequent arguments are printed one
after another, with no spaces between. A complete explanation of the first argu-
ment will have to wait, but for now, all you need to know is that if you use the sym-
bol t, printout sends its output to the console. The special symbol crlf is printed
as a newline. Here’s an example of printing several arguments:

Jess> (printout t "The answer is " 42 "!" crlf)

The answer is 42!
Another useful function is batch, which evaluates a file of Jess code. To run the
Jess source file examples/hello.clp (which comes with the standard Jess distribu-
tion), you can enter the following command:

Jess> (batch examples/hello.clp)

Hello, World!
Another simple function is long. You can’t enter a literal long value in Jess as you
can in Java. Instead, you must use the Jess long function to create one from a
string. In Java, you can write

long aLongValue = 123456789L;
The equivalent in Jess is
(bind ?aLongValue (long "123456789"))

As you can see, even assigning a value to a variable is done using a function call.
The bind function assigns a value to a Jess variable. Let’s learn more about vari-
ables in Jess.

Variables

A Jess variable is a named container that can hold a single value, much like a vari-
able in Java. Jess variables, however, are untyped. This means a Jess variable can
hold a value of any data type, and it can hold values of any number of different
types during its lifetime. A variable can refer to a single symbol, number, string,
list, or other value.
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Most variables in Jess are written as symbols that begin with a question mark
(?). The question mark is part of the variable’s name. Although it is legal to do so,
it is considered bad style to use any other punctuation marks except dashes (-) or
underscores (_) in a variable name. In particular, don’t use asterisks (*), because
asterisks are used to name global variables (which we’ll discuss soon).

You don’t need to declare variables in the Jess language; they come into
being when they are first given a value. To assign a value to a variable, use the
bind function:

Jess> (bind ?x "The value")
"The value"
To see the value of a variable at the Jess> prompt, you can simply type the vari-
able’s name:

Jess> (bind ?a (+ 2 2))

4

Jess> ?a

4
You can use a variable anywhere a value is expected. For example, variables can be
passed as arguments in function calls:

Jess> (+ ?a 2)
6

Global variables

Any variables you create at the Jess> prompt or at the top level of any Jess lan-
guage program are cleared whenever the reset command is issued. Because
reset is an important function—it is used to reinitialize the working memory of
Jess’s rule engine—this makes these top-level variables somewhat transient. They
are fine for scratch variables while you are working interactively at the Jess>
prompt, but they are not persistent global variables in the normal sense of the
word. To create global variables that are not destroyed by reset, you can use the
defglobal construct:

(defglobal [?*<global variable name>* = <value>]+)

This syntax diagram says that you can declare one or more defglobals in a single
defglobal construct. Each declaration consists of a global variable name, an equals
sign, and a value. Global variable names must begin and end with *. Valid global
variable names look like this:

?rax ?*all-values* ?*counter*
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Aside from the special naming convention, defglobals are similar to ordinary
variables and can be used in the same ways.

When a global variable is created, it is initialized to the given value. When the
reset command is subsequently issued, the variable may be reset to this same
value, depending on the current setting of Jess’s reset-globals property. You can
use the set-reset-globals function to set this property. An example will help:

Jess> (defglobal ?*x* = 3)

TRUE

Jess> ?*x*

3

Jess> (bind ?*x* 4)

4

Jess> ?*x*

4

Jess> (reset) ;; Jess will reset ?*x* to its initial value of 3
TRUE

Jess> ?*x*

3

Jess> (bind ?*x* 4)

4

Jess> (set-reset-globals nil)

FALSE

Jess> (reset) ;; This time, ?*x* will not be changed.
TRUE

Jess> ?*x*

4

You can read about set-reset-globals and the accompanying get-reset-glo-
bals function in appendix A.

Multifields
Multifields are another special kind of variable. A multifield is a variable whose first
characters are $? (for example, $?x). Multifields have special meaning in only two
contexts: in the argument lists of deffunctions (see section 4.4) and on the left-
hand-sides of rules (see chapter 7). They are otherwise equivalent to regular vari-
ables. In fact, the variable ?x and a multifield $?x refer to the same storage loca-
tion—they’re two names for the same thing.

Now that you understand Jess variables, you’re ready to learn more about the
structure of Jess code in general. We return now to our study of lists.

More about lists

As you’ve seen, if you type a list directly at the Jess prompt, Jess assumes it’s a func-
tion call; if you nest a list inside a function call, Jess assumes that nested list is a
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function call, too. So how can you create a list that’s not a function call? You use spe-
cial functions like create$ to make a list, and then you bind the list to a variable:

Jess> (bind ?grocery-list (create$ eggs bread milk))

(eggs bread milk)

The variable ?grocery-1ist now holds a list of three items.

This kind of list, which just contains data, is called a plain list. Plain lists are use-
ful data structures in Jess. They’re a lot like Java arrays. You can access the ele-
ments of a Java array using square brackets with a numeric subscript: For example,
arr[0] is the first element of an array named arr. To access an element of a plain
list in Jess, you call the nth$ function, which returns a single list element:

Jess> (printout t (nth$ 2 ?grocery-list) crlf)

bread
You may have noticed that many of the Jess functions that deal explicitly with lists
have names ending in $—this is just a convention, but a useful one. Two other list-
related functions are first$ and rests:

Jess> (first$ ?grocery-list)

(eggs)

Jess> (rest$ ?grocery-list)

(bread milk)

The function first$ returns a list containing just the first element of its single
argument, and rest$ returns a list holding the second and subsequent elements.

You might be tempted to use lists to build trees or other nested data structures.
Plain lists can’t be nested, however. Jess will flatten out any nested plain list you
attempt to create:

Jess> (bind ?more-groceries (create$ ?grocery-list salt soap))

(eggs bread milk salt soap)

Usually, when you have a grocery list, you walk through a grocery store, find each
item on the list, and put it into your shopping cart. This involves ilerating over the
list—performing an action for each item of the list. To do this, you need to learn
about control structures in Jess.

Control flow

Up until this point, the code you’ve written executes sequentially, one statement
at a time. It’s hard to write interesting programs this way. Luckily, the Jess lan-
guage has a number of functions that affect the flow of control and let you group
statements, make decisions, and execute loops.



4.3.1

Control flow 51

In describing these control-flow functions, I'll use the term expression. An
expression is any Jess value: a symbol, number, string, variable, or function call. To
evaluate an expression means to use the value of the constant expression, take the
value that the variable represents, or evaluate the function and use its result.

We’ll discuss the following control-flow functions in this section:

® apply—~Qalls a function on a given set of arguments
® build—Parses and executes a function call from a string
m eval—Parses and executes a function call from a string
m foreach—Executes a block of code once for each item in a list
m if/then/else—Chooses among alternative courses of action
m progn—Executes a group of function calls
m while—Executes a block of code while an expression is true
You'll use some of these control-flow functions (like foreach, while, and if/then/

else) all the time, and some of them only rarely. We’ll look at the most common
ones first.

foreach

The foreach function provides the perfect way to shop for each item on your gro-
cery list. It evaluates a block of expressions once for each element in a plain list.
Each time through the block, a variable you supply is set equal to the correspond-
ing entry from the list you also supply. The syntax diagram looks like this:

(foreach <variable> <list> <expression>+)

Here’s an example of using foreach to print each item on your grocery list on a
separate line:

Jess> (bind ?grocery-list (create$ eggs milk bread))
(eggs milk bread)
Jess> (foreach ?e ?grocery-list
(printout t ?e crlf))
eggs
milk
bread

The foreach function is useful when you already have a list of values for the loop
variable. Often, though, you need a more general kind of looping construct,
such as while.
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while

The while function lets you repeatedly evaluate a group of one or more expres-
sions as long as some condition remains true:

(while <Boolean expression> do <expression>+)

The first argument in the while function must be a Boolean expression—an expres-
sion that evaluates to TRUE or FALSE. The while function evaluates the Boolean
expression, and if the expression is not FALSE, all other expressions in the body of
the while (except the optional symbol do) are evaluated. The Boolean expression
is then reevaluated, and the cycle repeats until the expression becomes FALSE.
The value of the last expression evaluated is the return value—invariably, it is
FALSE. Here is an example of using while to add the numbers from 1 to 10:

Jess> (bind ?i 1)

1

Jess> (bind ?sum 0)

0

Jess> (while (<= ?i 10) do

(bind ?sum (+ ?sum ?1i))
(bind ?i (+ 2?1 1)))

FALSE

Jess> ?sum

55
Note that if the Boolean expression is FALSE the first time it is evaluated, the body
of the while is never executed.

The while loop implicitly makes a decision about what code to execute each
time it evaluates the Boolean expression. The if/then/else function lets you
make this kind of choice explicitly.

if/then/else

You can use the if function to choose what code to execute next. The syntax of
Jess’s if function is similar to the if statement in Java:

(1f <Boolean expression> then <expression>+ [else <expression>+])

The first argument to if is a Boolean expression. If the value of the expression is
not FALSE, the if function evaluates the group of expressions that follows the sym-
bol then, in order. If the expression is FALSE, then the statements after else are
evaluated (if the optional else clause is present.)

This example uses the function member$, which accepts a value and a plain list
as arguments and returns TRUE if the value appears in any position of the list:
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Jess> (bind ?grocery-list (create$ eggs milk bread))
(eggs milk bread)
Jess> (if (member$ eggs ?grocery-1list) then
(printout t "I need to buy eggs" crlf)
else
(printout t "No eggs, thanks" crlf))
I need to buy eggs
Either the if block or the else block can be terminated early using the return
function. The return value of the whole if function call is the value of the last
expression evaluated.
You can chain if functions together, much as you can in Java. All you need to
do is to use a second if function call as the body of an else block. In this exam-

ple, three if function calls are nested together:

Jess> (bind ?x 1)

1
Jess> (if (= ?x 3) then
(printout t "?x is three." crlf)
else
(if (= ?x 2) then
(printout t "?x is two." crlf)
else
(if (= ?x 1) then

(printout t "?x is one." crlf))))
?x 1S one.

The if function, like the while function, takes a single Boolean expression as its
first argument. What if you need to write several expressions to compute a Bool-
ean value? The progn function is there to help.

4.3.4 progn

The progn function evaluates a list of expressions and returns the value of the
last one:

(progn <expression>+)

The progn function is useful when you need to group multiple expressions
together into one expression, usually due to syntax restrictions of other functions,
as in the following example:

Jess> (bind ?n 2)

2

Jess> (while (progn (bind ?n (* ?n ?n)) (< ?n 1000)) do
(printout t ?n crlf))

4

16

256

FALSE
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Of course, this particular example could also be written more succinctly as follows:

Jess> (bind ?n 2)

2

Jess> (while (< (bind ?n (* ?n ?n)) 1000) do

(printout t ?n crlf))
However, in many important cases progn is the only real alternative. Many of these
cases come up during pattern matching on the left-hand sides of rules, which you
will see in chapter 7.

The next few functions are used less frequently than the ones we’ve covered so
far in this section—but when you need them, you need them badly. These func-
tions have no equivalents in Java; they are powerful features available only in the
Jess environment. They are used to convert directly between data and code, some-
thing that can’t be done in a compiled language like Java.

apply
In Java, you write a different line of code to add two numbers than you would to
multiply them, print them, or save them in a file. In Jess, you can write one line of
code that, depending on the values of some arguments, can do any of these
things, and more.

The first argument of apply is the name of a function. Invoking apply calls that
function with all the other expressions as arguments:

(apply <function-name> <expression>+)

The function name can be held in a variable or can itself be the return value of a
function. In this example, the user is prompted for the name of a function, which
is then called with a list of numbers as arguments; the result is then printed. The
user enters + when prompted:

Jess> (apply (read) 1 2 3)

+

6
Because the user typed +, apply added the numbers and displayed the result. If
the input had been - instead, the result would have been -4. The apply function
therefore turns a bit of data—the name of a function—into code for Jess to exe-
cute. The eval and build functions take this idea one step further.

eval and build

Because Jess is an interpreted language, it doesn’t much care where the code it’s
executing comes from. The code can come from a file, from the keyboard, or
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even from a variable. The eval and build functions convert arbitrary Jess data
into Jess code, making it simple to write a Jess program that writes other Jess pro-
grams. This means a rule-based program can create and incorporate new rules as
it runs—it can learn. This is a powerful feature!

The eval function accepts a single argument: a string containing a complete
Jess expression, including parentheses if the expression is a function call. When
you call eval, the string is parsed, the expression is evaluated, and the result is
returned. In this example, a string is bound to a variable, and then the eval func-
tion is used to evaluate the string and produce a result, just as if the contents of
the string had been typed at the command line:

Jess> (bind ?x "(+ 1 2 3)")

"+ 12 3)"

Jess> (eval ?x)

6
The build function is a synonym for eval. For historical reasons, build is generally
used to assemble rules, and eval is used for function calls—but they’re identical.

Altogether, Jess has almost 200 built-in functions, including these control
structures. If that’s not enough (and of course, it never is) you can define your
own functions, too, as described in the next section.

Defining functions with deffunction

Suppose that some time in the near future, you find yourself in Dallas, working on
the Al module for a new martial arts video game (you’re using Jess, of course).
You’re writing many different rules that have to reason geometrically; in particu-
lar, many rules care about the distance between two combatants. If the variables
?X1, ?Y1, and ?z1 hold the coordinates of one ninja, and ?X2, ?Y2 and 222 the
coordinates of another, the Jess code to compute distance in three dimensions
looks like this:

(bind ?x (- ?X1 ?X2))
(bind ?y (- ?Y1 ?2Y2))
(bind ?z (- ?z1 222))
(bind ?distance (sgrt (+ (* ?x ?x) (* ?y ?y) (* 2z ?z))))

The formula takes the difference of each of the X, Y, and Z coordinate pairs, adds
them, and takes the square root. It is long and messy, and you surely don’t want to
type it more than once. Many different rules need to do the same computation, so
you can define a function named distance and call it from each rule as needed.
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You can write your own functions in the Jess language using the deffunction
construct. Once you define a deffunction, you can use it like any other Jess func-
tion. deffunction looks like this:

(deffunction <name> (<parameter>*) [<comment>] <expression>*)

The name of the deffunction must be a symbol. Each parameter must be a vari-
able name, complete with the question mark. A function can have as many param-
eters as you need to use.

The optional comment is a double-quoted string that can describe the purpose
of the function. This special comment is included when a deffunction is dis-
played. It’s a good idea to provide a comment that succinctly describes the pur-
pose of the function. The comment, like any Jess string, can span multiple lines.

The body of a deffunction is composed of any number of expressions. The
return value of the deffunction is the value of the last expression evaluated,
unless you use the return function to provide an explicit return value. Here’s
what the distance calculation looks like as a deffunction:

Jess> (deffunction distance (?X1 ?Y1 ?z1 ?X2 ?Y2 ?Z2)
"Compute the distance between two points in 3D space"

(bind ?x (- ?X1 ?X2))
(bind ?y (- ?Y1 ?Y2))
(bind ?z (- 221 ?22))

(bind ?distance (sgrt (+ (* ?x ?x) (* 2y ?2y) (* 2?2z ?z))))
(return ?distance))
TRUE

You can now call distance just as if it were built in to Jess:

Jess> (distance 10 0 0 2 0 0)
8
Besides being shorter and easier to type, the function call is much easier to under-
stand—the reader immediately knows what’s being computed, instead of needing to
puzzle out those subtractions, multiplications, additions, and square root functions.
The distance function computes a single value. More complex deffunctions
can use the control-flow functions like foreach, if, and while that you learned
about in section 4.3. Your video-game rules will need to make decisions based on
which of several rival ninjas is closest to the player. The following example is a
deffunction that returns the smaller of its two numeric arguments:
Jess> (deffunction min (?a ?b)
(if (< ?a ?b) then
(return ?a)
else

(return ?b)))
TRUE
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Note that this could also be written as

Jess> (deffunction min (?a ?b)
(if (< ?a ?b) then
?a
else
?b))

TRUE
because the expressions in the body of a deffunction do not have to be function
calls, and a deffunction returns the value of the last expression evaluated.

One limitation of min is that it takes only two arguments, but your video game
will contain scenes with dozens of rival ninjas. A version of min that takes an
unlimited number of arguments would be very useful, and you can write such a
function in Jess. In the definition of a deffunction, the last parameter can be a
multifield (a variable starting with §, as in $?x.) If it is, then the deffunction will
accept a variable number of arguments; any arguments in excess of the number of
named parameters are compiled into a list, and that list is assigned to the multi-
field. Here’s a version of min that uses this feature:

Jess> (deffunction min ($?args)
"Compute the smallest of a list of positive numbers"
(bind ?minval (nth$ 1 ?args))
(foreach ?n ?args
(if (< ?n ?minval) then
(bind ?minval ?n)))
(return ?minval))
TRUE

Jess> (min 10 100 77 6 43)
6

Late binding

Jess uses late binding for function names, meaning the link between the name of a
function and the code it represents can be changed right up until the instant the
function is called. In Java, of course, code won’t compile if it calls a function that
hasn’t been defined yet. In Jess, you can write code that calls a function, even if
you haven’t written that second function yet. Jess won’t try to find the undefined
function until the code that calls it is executed. If the undefined function hasn’t
been defined at that time, an error will result.

Late binding is a useful property because it also means you can redefine a
function at any time, and any code that called the old function will automatically
call the new one. To redefine a function, you simply define a new function by the
same name, and the old one is replaced. You can even redefine any of the built-in
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functions this way (although doing so is not recommended). If you want to
change the behavior of a built-in function, you can do so using defadvice,
described in the next section.

Fine-tuning a function’s behavior

If you’re a Java programmer, it probably bothers you that functions like nth$ num-
ber list items starting at one rather than zero. In some languages, you’d be stuck.
But Jess makes it easy to fine-tune the behavior of any function, so if you’d like
nth$ to use zero-based indices, you can have it your way by using advice. Advice is
code that you add to a function to change its behavior.

The function defadvice lets you easily wrap advice around any Jess function,
such that it executes before (and thus can alter the argument list seen by the real
function, or short-circuit it completely by returning a value of its own) or after the
real function (and thus can see the return value of the real function and possibly
alter it). This is a great way for Jess add-on authors to extend Jess without needing
to change any internal code. It was named after a similar feature in Emacs Lisp.

To make nths accept a zero-based index, all you need to do is intercept any call
to nths and add one to the first argument before nth$ sees it. That way, when you
call nth$, you can pass zero-based indices, but nth$ will see one-based indices.

Imagine that the variable ?argv holds a copy of a function call to nth$ using a
zero-based index; that is, it’s a list like this:

(nth$ 0 ?grocery-list)

You need to write some Jess code to change this list to use a one-based index:
(nth$ 1 ?grocery-list)

The code to make this change looks like this:

;7 Strip off the function name

(bind ?tail (rest$ rargv))

;; Convert zero-based to one-based index

(bind ?index (+ 1 (nth$ 1 2tail)))

;; Put the argument list back together.

(bind ?argv (create$ nth$ ?index (rest$ ?tail)))
You saw the rest$ function in section 4.2.4: It strips the first element from a list
and returns the remainder. You needed to use nth$ to write this code, and you
used a one-based index, because that’s what nth$ wants by default.

Now you can use this block of code to modify the behavior of nth$. In the body

of a defadvice call, the variable ?argv is special: It points to the actual function
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call being executed. By modifying the contents of ?argv, you can modify the argu-
ments the builtin nth$ function sees.

First, let’s watch the default behavior of nth$ in action:

Jess> (bind ?grocery-list (create$ peas beans butter milk))

(peas beans butter milk)

Jess> (nth$ 1 ?grocery-list)
peas

Now, you add some advice to nth$, and then call it again:

Jess> (defadvice before nth$
;; Strip off the function name
(bind ?tail (rest$ ?argv))
;; Convert zero-based to one-based index
(bind ?index (+ 1 (nth$ 1 ?tail)))
;7 Put the argument list back together.
(bind ?argv (create$ nth$ ?index (rest$ ?tail))))
TRUE
Jess> (nth$ 1 ?grocery-1list)
beans
The result is different this time—the index is interpreted as one-based, and the
answer is beans instead of peas. The nth$ function will continue to behave this way
until Jess is restarted, the clear function (discussed in chapter 6) is called, or the
advice is removed with undefadvice:
Jess> (undefadvice nth$)
TRUE
Jess> (nth$ 1 ?grocery-list)
peas
You may be surprised that you were able to call nths in the previous advice code. It
looks as though you’re redefining nth$ in terms of itself—a recipe for an infinite
loop. To prevent this kind of problem, Jess doesn’t apply advice to any function
calls invoked in an advice block. That’s why your call to nth$ inside the advice
block uses a one-based index.

In the nths$ example, the advice code executes before the built-in nth$ func-
tion is invoked. If the first argument to defadvice were after instead of before,
the advice would execute after nths. In this case, the special variable ?retval is
also defined; it holds the result returned by the adviced function. The advice code
can modify this variable if it wants to return a different value.
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Take my advice, please

You can only apply advice to actual functions (built-in or user-defined), not to
function-like constructs like deffunction, defglobal, deftemplate, defrule, or
defquery. Here’s a short deffunction to confirm whether something is a function:

Jess> (deffunction is-a-function (?name)
(neq FALSE (member$ ?name (list-function$))))

TRUE

Jess> (is-a-function printout)
TRUE

Jess> (is-a-function deftemplate)
FALSE

Let’s figure out how this function works—it’ll be good practice in reading Jess
code, and it includes calls to a couple of built-in functions you haven’t seen before.
To read complex nested Jess language expressions, it’s usually best to start from the
inside and work your way out. The innermost function call in this def function is to
list-function$, which returns (not surprisingly) a list of all the functions cur-
rently defined in Jess, including all deffunctions and user-defined functions writ-
ten in Java. The member$ function returns FALSE if the first argument is not found
in the second argument (which must be a list), and returns the index at which the
first argument was found otherwise. Finally, is-a-function uses neq (Not EQual)
to convert members’s somewhat odd return value into a simple TRUE or FALSE. The
whole deffunction then returns TRUE if the argument appears in the list of defined
functions or FALSE otherwise. The two examples confirm that it works.

Summary

The Jess language has a simple and regular syntax. It’s rather different from Java’s
syntax, but it’s easy to learn. It is a fullfeatured programming language in which
you can write real programs. Given that it is an interpreted language, it is surpris-
ingly fast.

The Jess language has only a few built-in data types, including INTEGER, FLOAT,
SYMBOL, STRING, and LONG. There are several simple control structures, some of
which let you transform data into executable code. All of the control structures
are actually functions. Jess comes with almost 200 built-in functions, and you can
define your own functions using the deffunction construct. You can modify the
behavior of the built-in functions using defadvice.

On top of all that, you can also call any Java function you want from Jess. How
to do so is the topic of the next chapter.
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In this chapter you’ll...
Create Java objects

Call Java methods

Access Java member data
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u
m ... all from the Jess language
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Arguably, the most powerful features of Jess are those that allow it to be easily inte-
grated with Java. From Java code, you can access all parts of the Jess library, so that
it’s very easy to embed Jess in any Java application, servlet, applet, or other system.
Likewise, from the Jess language, the full power of Java is directly available. This
capability is shown schematically in figure 5.1.

We’ll discuss embedding Jess in larger Java sys-
tems in great depth later in this book. This
chapter describes how you can create Java

Java

(call Thread sleep)

— objects, call their methods, and otherwise inter-
act with Java without writing any Java code.
Jess is therefore a kind of scripting language

Figure 5.1 You can use Jess from Java, ; ) ;
and call Java methods from Jess. for Java. Aside from using Jess to build rule-

based systems, you can also use Jess for exper-
imenting with Java APIs, as a prototyping tool, or even to build entire applica-
tions. Want to find out what a particular API method does with a specific
argument? It’s usually faster to start the Jess command prompt and type in a single
line of Jess code than it would be to write, compile, and run a short Java program
to do the same experiment. Want to try different arrangements of a graphical
interface? You can create the windows, buttons, and other graphical components
with a few lines of Jess code, and then interactively assemble and rearrange them
to your liking. This is a great way to experiment with the sometimes surprising
behavior of Java’s layout managers—the classes that arrange components inside
an on-screen container.

Creating Java objects

In chapter 4, you learned about plain lists. Although lists are useful, they are not
as powerful as the Map and Set containers in Java’s Collections API. A plain list is
a good choice for holding a grocery list, but you really need something like a
HashMap to hold a grocery price lookup table. The HashMap would let you easily
look up the price of any item in the table.
Jess’s new function lets you create instances of Java classes. For instance, you can
create a Java HashMap and store it in a variable with the following function call:
Jess> (bind ?prices (new java.util.HashMap) )
<External-Address:java.util.HashMap>
Jess uses the type RU.EXTERNAL_ADDRESS for the jess.value objects that hold
arbitrary Java objects. When you display an RU. EXTERNAL_ADDRESS type, you see a
string that contains the name of the class. You might expect instead that Jess
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would call the Java toString method on the contained object—if Jess did this,
however, the results could be confusing. A java.lang.Integer object and a Jess
value of type RU. INTEGER act very differently, but if Jess used toString to display
EXTERNAL_ADDRESS objects, they’d both print as a number.

The fully qualified name java.util.HashMap requires a lot of typing, and typ-
ing package names like java.util can be error-prone. In Java, you can avoid
using package prefixes with the import keyword. Jess has an import function you
can use to do the same thing:

Jess> (import java.util.*)

TRUE

Jess> (bind ?prices (new HashMap))
<External-Address:java.util.HashMap>

7t

This example uses the wildcard character
this package,” but you can also import one class at a time by using the fully quali-

to mean “import all the classes in

fied name. Just as in Java, the entire java.lang package is implicitly imported, so
you can create Integer and String objects without importing that package
explicitly.

So far, you’ve used HashMap’s default constructor. Of course, you can create
objects using a class’s other constructors as well. HashMap has a constructor that
takes a Java int and a Java float as arguments. If you invoke this constructor and
pass normal Jess numbers, Jess will make it work:

Jess> (bind ?prices (new HashMap 20 0.5))

<External-Address:java.util.HashMap>
Jess, like any Java code, can only invoke the public constructors of public classes in
other packages. If you want Jess to be able to construct instances of the classes you
define, be sure to make both the class and its constructors public.

When you call a Java method, Jess converts the arguments from Jess data types
to Java types, as indicated in table 5.1. Generally, when converting in this direc-
tion, Jess has some idea of a target type. The target type is the Java type that is
needed in a given situation. In the HashMap example, the target types are int and
float, because those are the types of the formal parameters of the only HashMap
constructor that takes two arguments. When passing an argument to a Java con-
structor or method, Jess has the java.lang.Class object that represents the for-
mal parameter’s type and a jess.Value object that contains the value you passed,
and wants to turn the Value’s contents into something assignable to the type
named by the Class. Hence the symbol TRUE could be passed to a function
expecting a boolean argument, or to one expecting a String argument, and the
call would succeed in both cases.
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Table 5.1 Standard conversions from Jess types to Java types

Jess type Possible Java types
RU.EXTERNAL_ADDRESS The wrapped object
The symbol nil A null reference
The symbol TRUE or FALSE String, java.lang.Boolean, Or boolean
RU.ATOM (a symbol), RU. STRING String, char, or java.lang.Character
RU.FLOAT float, double, and their wrappers
RU.INTEGER long, short, int, byte, char, and their wrappers
RU.LONG long, short, int, byte, char, and their wrappers
RU.LIST A Java array

You've created a HashMap, but you haven’t done anything with it. Let’s turn it into
a lookup table by filling it with grocery price data.

Calling Java methods

If you have a reference to a Java object in a Jess variable, you can invoke any of
that object’s methods using the call function. Let’s work with the HashMap you
created in the previous section. HashMap.put associates a key with a value, and
HashMap.get lets you look up a value by key. In this example, the keys are the
names of grocery items, and the values are the prices:

Jess> (call ?prices put bread 0.99)

Jess> (call ?prices put peas 1.99)

Jess> (call ?prices put beans 1.79)

Jess> (call ?prices get peas)

1.99
The first argument to call is a Java object, and the second argument is the name
of a method to invoke. The remaining arguments to call are the arguments to be
passed to the Java method. The arguments are converted to Java types according
to table 5.1.

In this example, you ignore the return value of HashMap.get and allow Jess to
simply display it. Often, though, you’ll want to do something with the return type:
binding it to a variable or calling another method on it in turn are two common
alternatives. Jess converts the return values of Java methods to Jess types according
to table 5.2. These conversions are generally the reverse of those in table 5.1.
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Table 5.2 Standard conversions from Java types to Jess types

Java type

Jess type

A null reference

The symbol nil

A void return value

The symbol nil

String

RU.STRING

boolean or java.lang.Boolean

The symbol TRUE or FALSE

byte, short, int, or their wrappers RU.INTEGER
long or java.lang.Long RU.LONG
double, float, or their wrappers RU.FLOAT

char or java.lang.Character

RU.ATOM (a symbol)

An array

A list

Anything else

RU.EXTERNAL_ADDRESS
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You can call virtually any Java method this way. There are a few special cases: Static
methods, methods returning or accepting arrays, and overloaded methods all
require special care. We’ll discuss these cases in the next few sections. First, let’s

look at a shortcut that will improve the readability of the last example.

Nesting function calls, and a shortcut

The symbol call in the following example is a little distracting:

(call ?prices put bread 0.99)

It is actually no more verbose than the equivalent Java code:

map.put ("bread", new Double(0.99));

(In fact, the Jess code is a little shorter.) But still, call seems like extra baggage.

The good news is that Jess lets you omit it:

(?prices put bread 0.99)

When the first element of a function call is a Java object, Jess assumes you meant
to include the symbol call and invokes a function on the object. This works even
if the first element of the function call is another function call:

((bind ?prices (new HashMap))

put bread 0.99)

This single line of code creates a HashMap, binds it to a variable, and adds a name/

value pair. Be careful with nesting function calls this way, however; combining logi-
cally separate operations into one line of code can make your programs hard to
understand. Used wisely, though, such compact code can be readable and efficient.
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For most method calls, the call is optional. However, you can’t leave it out
when you’re calling a static method.

Calling static methods

Static or class methods in Java are those methods that can be called without refer-
ence to a specific object. In both Java and Jess code, you can use just the name of
a Java class to invoke any of its static methods. One well-known example is the
java.lang.Thread.sleep method:

Jess> (call Thread sleep 1000)

(pause for one second)

Jess>
You don’t need to use the fully qualified name java.lang.Thread, because the
classes in Java’s java.lang package are implicitly imported in Jess.

When you call a static method, you must include the call function name, as
shown in the example; therefore, the most common use of call is to invoke static
methods. Jess includes other functions, analogous to call, to help you invoke
other categories of methods, as you'll see in the next section.

Calling set and get methods

Special Java objects called JavaBeans play an important role in Jess, as you’ll see in
chapter 6. Therefore, Jess includes many tools for working with them. One of
these tools is a pair of methods to simplify accessing their data. Methods that look
like the following are fairly common in most object-oriented languages:
public String getName () {
return name;
;ublic void setName (String n) {
name = n;
}
They are often called accessors and mutators, or getters and setters. They are very
common in Java and form an important part of the JavaBeans specification.! We’ll
talk more about JavaBeans in chapter 6, but for now, we’ll only be concerned with
setters and getters. Many of the Java library classes (especially in the graphical
libraries) use this method naming convention.

! The JavaBeans project page is at http://java.sun.com/products/javabeans/; it offers the JavaBeans spec-
ification for download.
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Jess includes the functions set and get, which can be used as an alternative to
call for setters and getters. The following pairs of function calls are equivalent:

Jess> (bind ?b (new javax.swing.JButton))
<External-Address:javax.swing.JButton>

Jess> (?b setText "Press Me") ;; or...
Jess> (set ?b text "Press Me")

Jess> (?b getText ) ;; or...
"Press Me"

Jess> (get ?b text)

"Press Me"

The name of a setter or getter method includes a property name, which is text in
these examples. The property name is passed as the second argument to the set
or get functions. To derive the property name to use, remove the prefix from the
Java method name and make the initial capital letter of the rest of the name low-
ercase. The one exception is for names like getURL, where the property name is
URL in all uppercase. This convention is the same as that used by the JavaBeans
specification.

So far we’ve dealt only with single Java objects and values. Jess also lets you
work with Java arrays.

Working with arrays

The grocery price table can also serve as a simple grocery list. You can ask a Java
Map for its collection of keys, and you can ask that collection to convert itself to an
array. If you could convert that array to a plain list in Jess, you’d be able to recre-
ate the simple grocery list you worked with in earlier chapters of this book.

As noted in tables 5.1 and 5.2, Jess automatically converts Java arrays to plain
lists (Values of type RU.LIST). You can use the method toArray in
java.util.Collection to extract all the keys from your HashMap into a Jess list:

Jess> (bind ?grocery-list ((?prices keySet) toArray))

(bread peas beans)
If you want to put your list of groceries into a pop-up menu component, you can
pass this list of items as a constructor argument to the javax.swing.JComboBox
class. JComboBox wants an array as a constructor argument, but Jess converts your
plain list back into an array automatically:

Jess> (import javax.swing.JComboBox)

Jess> (bind ?jcb (new JComboBox ?grocery-list))
<External-Address:javax.swing.JComboBox>
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This system works well for small arrays (less than a few dozen items), but convert-
ing between arrays and lists is inefficient for large arrays, because the Jess data
structures to represent the plain list must be created or destroyed on each conver-
sion. A better way of working with large Java arrays is planned for a future version
of Jess. Meanwhile, if you need to work with large arrays in your Jess programs,
you can write the code to do the work in Java and then call it from Jess.

Jess also has no special interface for working with multidimensional arrays, so
again, Java code may be necessary. You can either write ordinary Java functions
and call them using the techniques from this chapter, or you can use functions
written in Java to extend the Jess language itself. You’ll learn how to do this in
chapter 15.

The JCcomboBox class has several constructors, but in the previous example Jess
knew which one you wanted to call based on the list you passed as an argument. Let’s
see how Jess decides which method to invoke based on the function calls you write.

How Jess chooses among overloaded methods

Jess is much less picky about data types than Java is. In Java, you can’t store a float
into a HashMap, but you can store a Jess £loat—because Jess obligingly converts
the number you provide into a java.lang.Double automatically, and that can be
stored just fine. Most of the time, these automatic conversions are helpful; but
occasionally they cause problems. One problem area is when you need to call one
of a set of overloaded Java methods.

A Java method name is said to be overloaded if multiple methods with the same
name but different argument lists are available on the same object. The many
overloads of java.io.PrintWriter.println are an extreme example. All these
methods appear in the PrintWriter class:

void println()

void println(boolean x)
void println(char x)
void println(char[] x)
void println(double x)
void println(float x)
void println(int x)
void println(long x)
void println(Object x)
void println(String x)

When you call an overloaded method in Java code, the Java compiler chooses an
overload based on the exact compile-time types of the parameters. Java chooses the
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most specific applicable method.? Sometimes, if there’s no clear choice, you get a
Java compiler error, but the important point is that there’s always a right answer.

Jess is much more relaxed about choosing between overloads, because it has to
be: It doesn’t have the same kind of strict type information that Java has. One sim-
ple example: Looking at the list of overloaded print1ln methods, you can see that
there are versions for both double and float. Jess has only one floating-point
type, so it can’t be sure which one you’d rather call.

When you call an overloaded method such as println, Jess looks at each of the
overloads in turn, trying to match the parameter types of the method to the types
of the arguments you passed. The first overload Jess finds that can be invoked with
the given argument list will be called. Jess does not search for a best match—it uses
the first matching method it finds. Because Jess knows so many different ways to
convert between Jess and Java values, the whole idea of a best match is too vague
to be useful.

Often, it doesn’t matter which of a set of overloaded methods is called; a set of
overloaded methods usually all do the same thing, and the overloading is just for
the sake of convenience. This is the case with java.io.PrintWriter.println.
Sometimes, however, you may want to call a specific overloading of a method, and
circumstances may conspire to make this impossible. For example, if you pass the
string "TRUE" to a Java method that is overloaded to take either a boolean or a
String, it is generally impossible to predict which overload Jess will choose. In
these cases, you can usually resort to using an explicit wrapper class. For example,
suppose that in this case you want to invoke the boolean overload but Jess calls the
String one instead; creating and passing a java.lang.Boolean object should fix
the problem, because Jess will automatically convert java.lang.Boolean to bool-
ean, but not to String.

Sometimes calling Java methods isn’t enough—you may need to work directly
with an object’s member variables or the static member variables of a class. Jess
lets you do that, too.

Accessing Java member data

Some Java classes have public variables you may need to work with. Sometimes these
are objects like the familiar System.out. More commonly, they are static constants
like MAX_PRIORITY in java.lang.Thread or NORTH in java.awt .BorderLayout. Of

2

See the Java Language Specification, section 15.11.2.2.
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course, some classes have public member variables, like the x and y members of
java.awt.Point, which you’ll want to both read and modify.

Instance variables are members of a class that belong to individual objects; each
object has its own copy of an instance variable. Jess can access public instance vari-
ables of Java objects using the get-member and set-member functions. In this exam-
ple, a Point object is allocated, and its x and y members are set and then read:

Jess> (bind ?pt (new java.awt.Point))

<External-Address:java.awt.Point>
Jess> (set-member ?pt x 37)

37

Jess> (set-member ?pt y 42)
42

Jess> (get-member ?pt x)

37

The set-member and get-member functions also work on class variables. There is
only a single copy of each class variable, and all objects of a class share it. Class
variables are also called static variables in Java. You can access class variables by
using the name of the class instead of an object as the first argument to set-
member Or get-member:

Jess> (get-member System out)

<External-Address:java.io.PrintStream>

Jess> (get-member java.awt.BorderLayout NORTH)

"North"
Jess converts values for all kinds of member variables between Java and Jess types
according to tables 5.1 and 5.2—that is, using the same rules as are used for
method arguments and return values.

When you’re working with Java objects, methods usually return a value to their
caller, and everything works fine. Sometimes, though, methods don’t return—they
throw exceptions instead. In the next section, you’ll see how Jess handles exceptions.

Working with exceptions

Java methods can signal an error by throwing an exception. An exception is just a
Java object, and it’s intended to be treated as a message from the failed code to
the caller. When a Java constructor or method throws an exception, Jess receives
or calches the message and makes it available to you. Jess signals errors in your Jess
code and failures in its own functions using exceptions, too, so this section is rele-
vant even when you aren’t explicitly working with Java objects.
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When Jess catches an exception in a Jess function or a Java method, its default
action is to print a detailed message, including either one or two stack traces, to
the console. If there is only one stack trace, it shows where in Jess’s own Java code
the problem occurred. If the exception occurred in a Java method you called
from Jess, a second stack trace pinpoints the error in the Java method. Together,
these stack traces tell you exactly what happened in your Jess program.

Although these messages are useful to you, the programmer, they're generally
not what you want to happen in a deployed system, when a user would see them.
Therefore, whenever you call a method that might throw an exception, you
should supply a handler to execute in response to the exception in place of Jess’s
default handler. You can do this using the try function. As a first example, let’s
call the function parseInt in the java.lang.Integer class, which throws
NumberFormatException if its argument can’t be parsed as the string representa-
tion of an integer:

Jess> (deffunction parseInt (?string)

(try
(bind ?i (call Integer parselnt ?string))
(printout t "The answer is " ?i crlf)
catch
(printout t "Invalid argument" crlf)))
TRUE
Jess> (parselInt "10")
The answer is 10 Lowercase “ell”,
Jess> (parselInt "10") <FJ uppercase “oh”

Invalid argument

The try function evaluates the expressions in the first block, one at a time. If one
of those expressions throws an exception, that block is abandoned, and try
begins evaluating expressions that follow the symbol catch, if it appears. You can
also have a finally block following the catch block, just like in Java. The finally
expressions are evaluated regardless of whether the try statements throw any
exceptions. A good use for a finally block is to close a file, as in this Jess render-
ing of some typical Java file I/O code:
Jess> (import java.io.*)
TRUE
Jess> (bind ?file nil)
Jess> (try
(bind ?file
(new BufferedReader
(new java.io.FileReader "data.txt")))
(while (neq nil (bind ?line (?file readLine)))

(printout t ?line crlf)
catch
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(printout t "Error processing file" crlf)
finally
(if (neqg nil ?file) then
(?file close)))
Error processing file
You must have either a catch or a finally block, or both, in every try function call.
You can access the actual exception object that was thrown using the special vari-
able ?ERROR, which is always defined for you in a catch block and is initialized by
Jess to point to the caught exception. Whereas in Java you can define multiple
catch blocks in a single try, differentiated by exception type, you can have only one
catch block in a try in Jess. If you want to distinguish between exception types, you
can use the ?ERROR variable and the instanceof function, which can tell you
whether a given object belongs to a given Java class. For example, you may want to
call the static method lookup in the java.rmi.Naming class. This method is used to
contact remote objects via the RMI protocol. The lookup method can throw
NotBoundException, RemoteException, and AccessException (all from the
java.rmi package), as well as java.net.MalformedURLException. You can issue
specific error messages for each of these cases; the code might look like listing 5.1.

Jess> (import java.rmi.*)

Lets you use
TRUE

. ) , short class
Jess> (import java.net.MalformedURLException) names Service
TRUE misspelled;
Jess> (try throws
(bind ?server NotBound-
(call Naming lookup "rmi://snarf.blat.com/Survice")) EXCEPtiOﬂ
(printout t "Connection established." crlf)
catch
(if (instanceof ?ERROR NotBoundException) then Check excepti_on
(printout t "No such service at host" crlf) type; print
else (if (instanceof ?ERROR MalformedURLException) then custom
(printout t "Address has a syntax error" crlf) message

else (if (instanceof ?ERROR AccessException) then
(printout t "You don't have permission" crlf)
else (if (instanceof ?ERROR RemoteException) then
(printout t "Network error" crlf)
else
(printout t "Unknown Error" crlf))))))

Default error

No such service at host. message
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Jess’s throw function lets you throw Java exceptions from Jess code. It works just
like the throw keyword in Java: The single argument must be an instance of a Java
class that extends java.lang.Throwable. Here’s an example:

Jess> (throw (new Exception "Testing"))
Jess reported an error in routine throw

while executing (throw (new Exception "Testing")).
Message: Exception thrown from Jess language code.
Program text: (throw (new Exception "Testing")) at line 1.
Nested exception is:
java.lang.Exception: Testing

at jess.TryCatchThrow.call (Funcall.java:827)

at jess.FunctionHolder.call (FunctionHolder.java:37)

5.5 Summary

Jess can create Java objects, call their methods, and access their data. Jess can also
work with Java primitives by converting between Java and Java types. With a few
exceptions (particularly working with large or multidimensional arrays), most
Java code can be directly translated to Jess. Even these exceptions can easily be
overcome by extending Jess with functions written in Java; you’ll learn how to do
this in part 5 of this book.

In chapters 6 and 7, you’ll see how Jess’s ability to work with Java objects comes
into play in rule-based programming as we study Jess’s working memory and learn
how to write Jess rules. And as you’ll see later in this book, these capabilities make
integrating Jess into a Java application extraordinarily easy.
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In this chapter you’ll...

m Explore Jess’s working memory

m Learn about the different kinds of facts, and
when to use them

m Find out how to store Java objects in working
memory
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Now that we’ve looked at the basic syntax of the Jess language, it’s time to begin
our study of Jess’s rule-based programming features. In this chapter, we’ll look at
how to create and manage the data that rules can act on—the working memory we
first discussed in chapter 1. The working memory, sometimes called the fact base,
contains all the pieces of information Jess is working with. The working memory
can hold both the premises and the conclusions of your rules.

Jess stores the contents of working memory using a set of customized indices
that make looking up a particular piece of information very fast—much as a rela-
tional database does. Even though Jess uses a data-centric index internally, your
view of working memory will look like a simple list. Each item in working memory
appears on this list in the order in which it was added. We’ll begin our study of
working memory by looking at the individual items it contains—the working
memory elements, or facts.

Jess’s working memory

Jess maintains a collection of information nuggets called facts. This collection of
facts is known as the working memory. All the pieces of information your rules work
with are represented as facts in the working memory. For example, if your pro-
gram is a smart environmental control system for an office building, the facts in
the working memory may be temperature and humidity readings from around
the building, and sensor readings and switch settings from the building’s air-con-
ditioning systems (see figure 6.1). The contents of Jess’s working memory are held
in your computer’s RAM.

Facts come in different types. However, like most other constructs in Jess, facts
are stored as lists. Each of the following is a valid fact:

Figure 6.1

Facts in the working memory
are Jess’s representation of
information about the
outside world.
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(initial-fact)

(little red Corvette)

(groceries milk eggs bread)

As it happens, these are all examples of ordered facts, which will be discussed in
section 6.4.

It is important to recognize that we’re using the word fact in a specific, techni-
cal sense, and the meaning differs slightly from the colloquial English usage. In
rule-based systems terminology, fact is another word for working memory element. A
fact is therefore the smallest unit of information that can be separately added to
or removed from the working memory of a rule-based system. Jess facts aren’t gen-
erally atomic; rather, they have some structure to them, as you’ll see in the follow-
ing sections.

Manipulating the working memory

Intuitively, a collection is a group of items you can add to or remove from.
Depending on your tastes as a collector, you can acquire new baseball cards, or
discard a chipped ceramic unicorn. Working memory is a collection of facts, and
if you were to write a rule-based program about trading cards, each card in your
collection might be represented by a single fact.

Jess offers a set of functions to let a program perform the basic collection oper-
ations (add, remove, modify, duplicate) on the working memory. You can also use
these functions interactively while you’re programming, along with others that let
you examine, initialize, and clear the working memory. This section describes the
following functions and constructs; as a Jess programmer, you’ll use all of these
frequently:

® assert—Adds facts to working memory
m clear—Clears all of Jess
m deffacts—Defines the initial contents of working memory
m facts—Displays the contents of working memory
m reset—Initializes the working memory
® retract—Removes facts from working memory
m watch—Tells Jess to print diagnostics when interesting things happen
Jess includes several functions that let you peer into working memory and see

what’s happening. We’ll cover these first so you’ll be able to follow the action in
later sections.



Jess’s working memory 77

The watch function
Many Jess programs are developed interactively by typing at the Jess> prompt
and watching the results. It would therefore be useful to be able to see when Jess’s
working memory has changed. You can use the watch function to tell Jess to print
messages when various interesting things happen. Depending on the arguments
you pass to watch, you can get Jess to report on several different kinds of events,
including changes to the working memory. If you type the expression (watch
facts), then you’ll see a message whenever any facts are added or removed from
then on. The reset function initializes the working memory and creates the fact
(MAIN::initial-fact), and you can see the fact being added to working memory if
(watch facts) is in effect:

Jess> (watch facts)

TRUE

Jess> (reset)

==> f-0 (MAIN::initial-fact)

TRUE

Jess> (unwatch facts)

TRUE
The ==> symbol given by Jess in a response means the fact is being added to work-
ing memory, whereas a <== symbol is printed to show a fact being removed.

In the rest of this chapter, we’ll show Jess’s output as if the watch function has
not been issued, but you can use it whenever you want to keep an eye on what’s
happening with working memory. As you may have inferred from the example,
the unwatch function reverses the effect of watch.

The facts function
Although watch can tell you when new facts appear and old ones are removed, it
can’t give you the big picture. You can get that using facts. You can see a list of all
the facts in the working memory using the facts function. If you continue the
previous example by typing (facts) at the prompt, you’ll see that the fact
(MAIN::initial-fact) is the only one in working memory:

Jess> (facts)

f-0 (MAIN::initial-fact)

For a total of 1 facts.
The (initial-fact) turns out to be useful, but it’s not especially interesting.
Let’s add some more facts to working memory so you have something worth
looking at.
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Creating facts with assert

Rules can only act on information that is represented by facts in Jess’s working
memory. In any nontrivial program, then, you need to create new facts of your
own. New facts are added to the working memory using the assert function:

Jess> (reset)

TRUE
Jess> (assert (groceries milk eggs bread))
<Fact-1>

Jess> (facts)

f-0 (MAIN::initial-fact)

f-1 (MAIN::groceries milk eggs bread)
For a total of 2 facts.

The grocery list has been added to the working memory and assigned an index 1,
called the fact-id. Every fact in the working memory has a fact-id, assigned in order
starting with 0, so that a fact with a larger fact-id was always added to working
memory at a later time than a fact with a smaller fact-id. Here the fact-id 0 was
assigned to (MAIN::initial-fact). The fact-id serves as a convenient way to refer
to a fact when you want to modify it or remove it from working memory. Jess also
uses fact-ids when it decides the order in which rules will be fired.

The qualifier MAIN: : that was prepended to the first field in the list (called the
fact’s head; see chapter 4) is the name of the current module. A module is a named
subset of the rules, facts, and other constructs you’ve entered into Jess. Modules
are often used to divide rules and facts into functional groups, and we’ll study
them in detail in chapter 7. For now, it’s enough to know that MAIN is the default
module name and all the facts you define belong to it.

The assert function takes any number of facts as arguments and returns the
fact-id of the last fact asserted, or FALSE if the last fact couldn’t be asserted. Typi-
cally, this means the argument was a duplicate of a fact that was already in working
memory. (Jess’s working memory contains only unique facts.)

Real collections both grow and shrink: You can sell baseball cards as well as buy
them. Facts, likewise, come and go. When you’re through with your grocery shop-
ping, you’ll want to erase the list from working memory.

Removing facts with retract

If a fact represents a true statement about the world, then when the world changes,
that fact needs to be removed from the working memory. You can remove individ-
ual facts from the working memory using the retract function. Arguments for
retract can be actual facts—that is, a jess.Value object of type RU.FACT, which
holds a reference to a jess.Fact Java object—or they can be numeric fact-ids.
Let’s retract the two facts you currently have in working memory, one at a time:
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Jess> (facts)

f-0 (MAIN::initial-fact)

f-1 (MAIN::groceries milk eggs bread)
For a total of 2 facts.

Jess> (retract 1)

TRUE

Jess> (facts)

f-0 (MAIN::initial-fact)

For a total of 1 facts.

Jess> (bind ?f (fact-id 0)) Fetch Fact object
<Fact-0> with fact-id 0
Jess> (retract ?f)

TRUE

Jess> (facts)

For a total of 0 facts.
This example retracts the grocery-1list fact using its fact-id and the initial-
fact fact by using the Fact object directly (you first have to look up the Fact
object using the fact-id function). Both approaches work, but if you already
have a reference to a Fact object, then using that reference is faster. Using fact-ids
is more convenient when you’re working interactively at the Jess> prompt.

You retracted two facts, one at a time. It would have been possible to get the same
effect using a single call to the clear function, as you’ll see in the next section.

Clearing and initializing working memory

As you work interactively in Jess, the working memory tends to become full of bits
and pieces of information that are no longer relevant. When this happens, you
might want to clean things up to make it easier to see what you’re doing. Similarly,
a running program might want to periodically start from a known state—for
instance, when a particular customer signs on to your e-commerce site, the pro-
gram should have on hand only the information relevant to that customer.

You can remove all the facts from working memory using the clear function.
However, clear goes beyond just erasing working memory; it also erases all vari-
ables, rules, and deffunctions from Jess. Because clear essentially deletes the
entire active program, it’s not used very often—generally only if you’re in an
interactive session and want to start from a clean slate.

To restore the initial state of an application without erasing it completely, you
can use reset. The reset function puts working memory into a known state. By
default, working memory is empty except for the special fact (MAIN::initial-
fact), as you've seen in the earlier examples. This initial fact is special because
Jess uses it internally. Many rules implicitly expect it to be there and won’t work
correctly without it. Before you use the working memory, it’s important to use the
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reset function at least once, while your program is starting up or at the begin-
ning of an interactive session. You (or your program) can issue reset again when-
ever you want to reinitialize the working memory.

You can specify the initial contents of working memory, in addition to
(MAIN::initial-fact), using the deffacts construct.

The deffacts construct

Typing separate assert functions for each of many facts is rather tedious. It’s also
common to initialize the Jess engine using the reset function, which clears the
working memory, and then immediately want to put the working memory into a
known state containing a number of initial facts. For example, in an e-commerce
program, the initial facts might include the product catalog.

To make this process easier, Jess includes the deffacts construct. A deffacts
construct is a simply a named list of facts. You can define any number of deffacts
constructs. The facts in all existing deffacts are asserted into the working mem-
ory whenever the reset function is issued. Listing 6.1 demonstrates the operation
of deffacts.

Listing 6.1 A deffacts construct in action

Jess> (clear)

TRUE

Jess> (deffacts catalog "Product catalog"
(product 354 sticky-notes "$1.99")
(product 355 paper-clips "$0.99")
(product 356 blue-pens "$2.99")
(product 357 index-cards "$0.99")
(product 358 stapler "$5.99"))

TRUE

Jess (facts)

For a total of 0 facts.

Jess> (reset)

TRUE

Jess> (facts)

f-0 (MAIN::initial-fact)

f-1 (MAIN::product 354 sticky-notes "S$1.99")

f-2 (MAIN::product 355 paper-clips "$0.99")

f-3 (MAIN::product 356 blue-pens "$2.99")

f-4 (MAIN: :product 357 index-cards "$0.99")

f-5 (MAIN::product 358 stapler "$5.99")

For a total of 6 facts.
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Whenever reset is called, the facts in the deffacts are asserted. This is a conve-
nient way to set up the product catalog in working memory for the first time and
to restore it after working memory has been cleared.

Using the functions we’ve discussed in this section, you add and remove facts
from Jess’s working memory and see the effects of your changes. Now let’s exam-
ine the individual facts themselves in more detail.

Just the facts, ma’am

Jess’s working memory is stored in a complex data structure with multiple indexes,
so that searching the working memory is a very fast operation. The working memory
is therefore something like a relational database, and the individual facts are like
rows in a database table (see figure 6.2). This implies that facts, like table rows, must
have a specific structure so that they can be indexed. Jess offers three different kinds
of facts; each kind has its own structure and is indexed and used in a different way.

Unordered facts are the workhorses of the working memory. An unordered fact
is quite literally like a row in a relational database table, with individual named
data fields corresponding to the table’s columns. When you assert an unordered
fact, you can specify the slots in any order—hence the name unordered. Unordered
facts are the most common kind of fact and a good choice for most situations. An
unordered fact looks like this:

(person (name "John Q. Public") (age 34) (height 5 10) (weight 170))

An ordered fact lacks the structure of named fields—it is just a short, flat list—but
ordered facts are convenient for simple bits of information that don’t need struc-
ture. All the facts we’ve used as examples so far have been ordered facts. If you
used an ordered fact to represent the same “person” data, it would look like this:

(person "John Q. Public" 34 5 10 170)

Finally, shadow facts are unordered facts that are linked to Java objects in the real
world—they provide a way to reason about events as they occur outside of Jess. In
the following sections, we’ll cover each of these categories of fact in detail.

-
RDBS .
EMPLOYEE Working memory
A NUM

NAME | TITLE

(employee (name "John Smith")
(title Supervisor) (num 1))

(employee (name "Sue Jones")

Figure 6.2
Working memory is something
like a relational database.

(title Engineer) (num 2))
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Unordered facts

A table in a relational database has a name and a set of named columns. Each row
of data in a table provides a value for each of the columns. Unordered facts are work-
ing memory elements that behave like rows in a database table (although the col-
umns are traditionally called slots). Here are some examples of unordered facts:

(person (name "Bob Smith") (age 34) (gender Male))

(automobile (make Ford) (model Explorer) (year 1999))

(box (location kitchen) (contents spatula))

The person fact has slots name, age, and gender; the automobile fact has slots
make, model, and year. The head of an unordered fact (person, automobile, box)
is like the table name, and the slot names are like the column names.

Before you can work with unordered facts, you have to specify their structure
using the deftemplate construct. Once you have created some unordered facts
and put them in working memory, functions such as modify and duplicate let
you change or copy them.

The deftemplate construct

Typically, a relational database contains many tables, one for each type of informa-
tion the database holds. In a real relational database, to create a new table, you
have to specify the names of the columns that will be found in the table. Thereaf-
ter, every row in the table has those same columns—no more and no less.

Similarly, in Jess, you define many different kinds of unordered facts. Before
you can assert an unordered fact with a given head, you have to use the
deftemplate construct to define the slots that kind of fact. This example defines
an unordered fact type with three slots:

Jess> (deftemplate person "People in actuarial database"
(slot name)
(slot age)
(slot gender))

TRUE

Jess> (assert (person (age 34) (name "Bob Smith")

(gender Male)))

<Fact-1>

Jess> (facts)

f-0 (MAIN::initial-fact)

f-1 (MAIN::person (name "Bob Smith") (age 34)
(gender Male))

For a total of 2 facts.
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The name of the deftemplate (person) is used as the head of the facts. You can
define as many slots as you want in your deftemplate. You can also include a short
description, as shown in the example.

When you assert an unordered fact, you can specify the slots in any order, and
you don’t have to include every slot. When Jess displays an unordered fact (for
instance, when you type the (facts) function), the slots are always displayed in a
standard order—the order in which you defined them in the deftemplate.

If you omit any slots when you assert an unordered fact, they’re filled in using
default values.

Default slot values

Most relational databases support the idea of a “don’t care” value in a particular
column. If you add a row to a table and don’t specify a value for one or more col-
umns, then this default value—usually called NULL—is used. Jess lets you do the
same thing with unordered facts. When you assert unordered facts, you can omit
values for any number of slots, and Jess will fill in the default value nil:

Jess> (assert (person (age 30) (gender Female)))

<Fact-2>

Jess> (facts)

f-0 (MAIN::initial-fact)

f-1 (MAIN::person (name "Bob Smith") (age 34)
(gender Male))

f-2 (MAIN::person (name nil) (age 30)
(gender Female))

For a total of 3 facts.

Sometimes nil is an acceptable default value, but often it’s not. You can specify
your own default value by using a slot qualifier.

Jess> (clear)

TRUE

Jess> (deftemplate person "People in actuarial database"
(slot name (default "OCCUPANT"))
(slot age)
(slot gender))

TRUE

NOTE If you’re following along, you may have entered a previous definition for
the person template. You can’t redefine a deftemplate until you use
the clear function to completely erase Jess’s internal state, as this exam-
ple does.
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Notice that when you assert a person fact and don’t specify a value for the name
slot, the default value OCCUPANT is used:

Jess> (assert (person (age 30) (gender Female)))

<Fact-0>

Jess> (facts)

f-0 (MAIN::person (name "OCCUPANT") (age 30)

(gender Female))

For a total of 1 facts.
What if the appropriate default value isn’t constant, but changes over time? As an
example, a slot might be initialized to hold a timestamp indicating when the fact
was asserted. The default-dynamic qualifier lets you accomplish this. Jess evalu-
ates the given value each time a new fact is created using this template. Usually
you’ll use a function call with default-dynamic. For example, to create the times-
tamp, you could use (default-dynamic (time)).

The slots we’ve looked at so far have all contained single values. Slots that hold
multiple values are useful, too. You’ll learn how to create them next.

Multislots

The normal slots we’ve looked at so far can each hold only a single value. Some-
times, though, it’s handy to keep a list of things in a slot. For example, if you
wanted to keep track of a person’s hobbies in a hobbies slot, you’d need to be
able to handle people who have more than one way to spend their free time. You
can create slots that can hold multiple values by using the multislot keyword:

Jess> (clear)

TRUE

Jess> (deftemplate person "People in actuarial database"
(slot name (default OCCUPANT) )
(slot age)
(slot gender)
(multislot hobbies))

TRUE

Jess> (assert (person (name "Jane Doe") (age 22)
(hobbies snowboarding "restoring antiques")
(gender Female)))

<Fact-0>

Now Jane has two hobbies, both listed in the single hobbies multislot.
If you don’t specify a default value for a multislot, Jess uses an empty list. Usu-
ally this is what you want, but you can specify a different default if you need to.
The values contained in the slots of an unordered fact are not fixed; you can
change them whenever you want using the modify function.
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Changing slot values with modify

Very often, a rule acts on a fact by updating it. For example, a rule about the pas-
sage of time might occasionally need to update the age slot of all the persons in
the working memory. You can change the values in the slots of an unordered fact
using the modify function. Continuing the previous example:

Jess> (modify 0 (age 23))

<Fact-0>

Jess> (facts)

f-0 (MAIN::person (name "Jane Doe") (age 23)

(gender Female)
(hobbies snowboarding "restoring antiques"))

For a total of 1 facts.

The first argument to modify is either a Fact object or a numeric fact-id, and all
the other arguments are slot name, value pairs that specify a new value for the
named slot. You can modify any number of slots in a fact with a single modify
function. You can use modify on multislots, too.

Note that the fact-id of a fact does not change when you use the modify func-
tion. It’s the same fact—it just has new slot values. If you’ve used CLIPS, you might
notice that this is an important difference between CLIPS and Jess; in CLIPS, the
fact-id changes when you use modify. This simple property is extremely useful. A
slot of one fact can hold the fact-id of another fact as slot data, and in this way, you
can build structures of related facts. Because the fact-id of a fact is constant, the
relationships won’t be broken if the facts are modified.

Copying facts with duplicate

If you know that John Doe is the same age as Jane and likes the same things, but is
male instead of female, you can create a fact representing him using the duplicate
function. The duplicate function is similar to modify, except that instead of
modifying an existing fact, it makes a copy, and then modifies the copy. Continu-
ing the previous example, let’s make a copy of the Jane Doe fact (fact-id 0):

Jess> (duplicate 0 (name "John Doe") (gender Male))
<Fact-1>
Jess> (facts)
f-0 (MAIN::person (name "Jane Doe") (age 23)
(gender Female) (hobbies snowboarding "restoring antiques"))
f-1 (MAIN::person (name "John Doe") (age 23)

(gender Male) (hobbies snowboarding "restoring antiques"))
For a total of 2 facts.

Just like modify, duplicate does nothing if the new fact would be an exact copy of
an existing fact. The duplicate function returns the fact-id of the newly created
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fact, or FALSE if no fact was created. The modify and duplicate functions only
work with unordered facts, because they require a slot name as an argument,
which ordered facts don’t have. Let’s look at some things that ordered facts can do.

Ordered facts

Although unordered slots are a great way to organize data when you need many
slots per fact, if you only need one slot, they can seem redundant. For example,
here’s a deftemplate to hold a fact representing a single number:

Jess> (deftemplate number (slot value))

TRUE
Jess> (assert (number (value 123)))
<Fact-0>

The name value doesn’t add any information—it just clutters things up. For sim-
ple cases like this, it would be nice to be able to omit the notion of a slot name
altogether—and Jess allows this:

Jess> (clear)

TRUE
Jess> (assert (number 123))
<Fact-0>

You can assert facts that look like simple, flat lists, without explicitly defining a
deftemplate for them, as long as no deftemplate using that same head has
already been defined. All the facts you used in the first section of this chapter
were ordered facts. We’ll use the following functions to take a closer look at
ordered facts and their templates:

® ppdeftemplate—Displays a pretty-printed deftemplate
m show-deftemplates—Lists all the deftemplates currently defined

When you assert the first ordered fact with a given head, Jess automatically gener-
ates an implied deftemplate for it. The ppdeftemplate function lets you see the
definition of any deftemplate. Let’s use it to examine the implied deftemplate
for number:

Jess> (ppdeftemplate number)

"(deftemplate MAIN::number extends MAIN::__fact \"(Implied)\"

(multislot __data))"

ppdeftemplate (the pp stands for pretty print) returns its result as a string, so the
definition is enclosed in double quotes and the quotes around the documentation
string are escaped with backslashes. The implied deftemplate number contains a
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single slot named __data. Jess treats facts created from these deftemplates spe-
cially. The name of the __data slot is normally hidden when the facts are dis-
played. This is really just syntactic shorthand, though; ordered facts are unordered
facts with a single multislot. Jess understands that the name __data doesn’t add
any information and so should normally be hidden.

In practice, the most common kind of ordered facts is the head-only kind like
(initial-fact). They are often used for transient information that will soon be
retracted and for one-of-a-kind statements like (shutdown-now) and (found-
solution). If your fact will hold more than one piece of slot data, unordered facts
offer a lot more flexibility and lend structure to the information they hold, so they
are generally preferable in most situations. In addition, unordered facts lead to
fewer coding errors. The explicit slot labels serve as a sanity check during pro-
gramming and help prevent mistakes. Finally, unordered facts give better pattern-
matching performance, as you’ll learn in chapter 7.

The show-deftemplates function lists any implied deftemplates along with
any explicitly created ones. You can also use show-deftemplates to see Jess’s
builtin deftemplates:

Jess> (show-deftemplates)
(deftemplate MAIN::__clear extends MAIN::__fact "(Implied)")

(deftemplate MAIN::___fact "Parent template")
(deftemplate MAIN::__not_or_test_CE
extends MAIN::___fact "(Implied)")
(deftemplate MAIN::initial-fact extends MAIN::__ fact " (Implied)")
(deftemplate MAIN: :number extends MAIN::__fact " (Implied)"
(multislot __data))
FALSE

In this example you can see the three special templates Jess uses internally:
__clear, _ fact,and __not_or_test_CE, as well as the initial-fact template
and your number template.

The third and final category of facts is perhaps the most interesting, because
these facts connect Jess’s working memory to the real world outside.

Shadow facts

A shadow factis an unordered fact whose slots correspond to the properties of a Java-
Bean. JavaBeans are a kind of normal Java object; therefore, shadow facts serve as a
connection between the working memory and the Java application inside which
Jess is running. They’re called shadow facts because they are like images, or shad-
ows, of JavaBeans outside of Jess. The function defclass lets you create a special
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deftemplate to be used with shadow facts, and definstance lets you create an
individual shadow fact. Let’s briefly look at what JavaBeans are, and then see how
they can be connected to Jess’s working memory. We’ll discuss these Jess functions:

m defclass—Creates a deftemplate from a JavaBean class

m definstance—Adds a JavaBean to Jess’s working memory

Jess and JavaBeans

You can view Jess’s working memory as sort of an electronic organizer for your
rule-based system. A piece of data must be part of the working memory for it to be
used in the premises of a Jess rule. Ordered and unordered facts are useful in
many situations, but in many real-world applications, it’s useful to have rules
respond to things that happen outside of the rule engine. Jess lets you put regular
Java objects in working memory—instances of your own classes that can serve as
hooks into a larger software system—as long as those objects fulfill the minimal
requirements necessary to be JavaBeans.

As previously mentioned, unordered facts look a bit like Java objects. Specifi-
cally, they look a lot like JavaBeans. The JavaBean component architecture specifi-
cation (http://java.sun.com/products/javabeans/) defines a JavaBean simply as a
self-contained, reusable component that can be used from a graphical builder
tool. JavaBeans, like other kinds of software components (for instance, Visual
Basic controls), often serve as interfaces to more complex systems such as data-
bases or special hardware.

JavaBeans have “slots”

The similarity between JavaBeans and unordered facts is that both have a list of
slots (for JavaBeans, they’re called properties) containing values that might change
over time. There’s plenty more to JavaBeans than just properties; however, those
features go beyond the scope of this book.!

A JavaBean property is most often a pair of methods named in a standard way.
If the property is a String named label, the Java methods look like this:

String getLabel() ;

void setLabel (String) ;
The get method is used to read the value of the property, and the set method to
change it. The java.beans API includes a class named Introspector that can

1

Plenty of great books on JavaBeans are available if you're interested. For example: Lawrence Rodrigues,

The Awesome Power of Java Beans (Greenwich, CT: Manning Publications, 1998).
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Jess (deftemplate JavaBean
(slot propertyOne)
(slot propertyTwo))
Introspector K /

public class JavaBean {

public String getPropertyOne() ...
public void setPropertyOne(String) ...
public int getPropertyTwo() ...

public void setPropertyTwo (int) ...

}

Figure 6.3 Jess uses the java.beans.Introspector class to turn
JavaBeans into deftemplates.

examine JavaBeans and find properties defined according to this get/set nam-
ing system. There are a few wrinkles having to do with capitalization and other
details, but this simple convention works most of the time.

Jess can use Introspector to automatically generate a deftemplate that repre-
sents any specific JavaBean class (see figure 6.3). A fact created from this
deftemplate can then serve as a sort of adapter to store the JavaBean in working
memory, the shadow facts. A shadow fact has one slot for each JavaBean property.
If a JavaBean has array properties, those properties become multislots, and all
other properties become normal slots. The slots are automatically populated with
the values of the JavaBean’s properties. In the next section, you’ll watch Jess use
Introspector to create a custom template for a JavaBean.

6.5.3 An example JavaBean

Now let’s work through an example of how a JavaBean can be connected to Jess’s
working memory. Listing 6.2 shows a simple JavaBean class. This JavaBean has one
property called brightness. Note that when you set the brightness property, the
Bean calls the method adjustTriac that brightens or dims an attached lighting
fixture (the code for adjustTriac presumably uses the Java Native Interface to
access code written in another language, like C). The value you read using the
getBrightness method is thus always tied to the brightness of the light. If you
had a Dimmerswitch object in Jess’s working memory, then your rules would be
able to reason in real time about the lighting in a building.

public class DimmerSwitch {
private int brightness = 0;
public int getBrightness()
public void setBrightness (int b) {
brightness = b;
adjustTriac (b) ;

{ return brightness; }
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private void adjustTriac(int brightness) {
// Code not shown

}

You need a special deftemplate to plug a DimmerSwitch into Jess—Ilet’s learn how
to create one.

Creating a deftemplate for DimmerSwitch

The Jess functions that let you put JavaBeans into working memory are defclass
and definstance. The defclass function tells Jess to generate a special template
to represent a specific JavaBean class, whereas definstance puts a shadow fact
connected to one particular JavaBean instance into working memory.

Before you can insert an instance of DimmerSwitch into Jess’s working memory,
you need a deftemplate to represent the class. You use defclass to tell Jess to
generate it:

Jess> (defclass dimmer DimmerSwitch)

DimmerSwitch

Jess> (ppdeftemplate dimmer)

"(deftemplate MAIN::dimmer extends MAIN::__ fact

\ "$JAVA-OBJECTS DimmerSwitch\"

(slot brightness

(default <External-Address:jess.SerializablePD>))

(slot class (default <External-Address:jess.SerializablePD>))

(slot OBJECT (type 2048)))"
To run this code, you first need to compile the Dimmerswitch class and make the
.class file available on your CLASSPATH. The resulting template is a bit strange
looking (especially the default values). It does have a slot called brightness, as
you’d expect, which arises from the brightness property of the JavaBean. All
shadow facts have the other slots in common. The slot class comes from the
method getClass that every Java object inherits from java.lang.Object, and the
slot OBJECT is added by Jess. This special 0OBJECT slot always contains a reference to
the JavaBean to which a given shadow fact. The first argument to defclass—
dimmer, here—is used as the deftemplate name. (Some people like to use the
name of the Java class itself; my personal preference is to use a shorter name with
a lowercase initial.)

Putting a DimmerSwitch into working memory
Now you can put a DimmerSwitch into working memory. Here you’ll create one
from Jess code, but it could come from anywhere (later in this book, you’ll learn
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many strategies for passing objects back and forth between Jess and Java code).
After you create a DimmerSwitch, you use the definstance function to add it to
the working memory:

Jess> (bind ?ds (new DimmerSwitch))

<External-Address:DimmerSwitch>

Jess> (definstance dimmer ?ds static)

<Fact-0>

Jess> (facts)

£f-0 (MAIN::dimmer

(brightness 0)
(class <External-Address:java.lang.Class>)
(OBJECT <External-Address:DimmerSwitch>))

For a total of 1 facts.

The first argument to definstance is the name of a template created by
defclass, and the second argument is a corresponding JavaBean. We’ll discuss
the meaning of static in the next section.

As soon as you call the definstance function, a shadow fact representing the
Bean appears in the working memory. Rules can react to this dimmer fact just as
they can to any other fact in working memory. If you imagine thousands of dimmer
facts, representing the brightness of every light fixture in a large office building,

you can see how letting Jess reason about DimmersSwitch objects could be useful.

Static vs. dynamic shadow facts

The working memory representation of a JavaBean can be either static (changing
infrequently, like a snapshot of the properties at one point in time) or dynamic
(changing automatically whenever the JavaBean’s properties change). The
definstance you have defined already is static. What happens if you change the
brightness property of your Bean, turning on the light? You can invoke the
setBrightness method using the call function you learned about in chapter b:
Jess> (call ?ds setBrightness 10)
Jess> (facts)
f-0 (MAIN::dimmer
(brightness 0)
(class <External-Address:java.lang.Class>)
(OBJECT <External-Address:DimmerSwitch>))
For a total of 1 facts.
Nothing changed. The working memory still thinks the Bean’s brightness is set
at 0, even though you changed it to 10. This is expected behavior for a static
definstance. Obviously, though, you’d like the shadow fact to track changes in
the Bean’s properties. What happens if you call reset?
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Jess> (reset)

TRUE

Jess> (facts)

f-0 (MAIN::initial-fact)

f-1 (MAIN::simple

(brightness 10)
(class <External-Address:java.lang.Class>)
(OBJECT <External-Address:DimmerSwitch>))

For a total of 2 facts.

The reset function updates the shadow fact to match the JavaBean. This behavior
is what you get when you specify static in the definstance function as you did
earlier. Static shadow facts are refreshed only when a reset is issued. In between
reset calls, their properties do not change in response to property changes in
their JavaBean.

If you want to have a shadow fact continuously track property changes in a Java-
Bean, Jess needs to be notified whenever a property changes in that JavaBean. The
JavaBean can notify Jess by sending it a special kind of Java event, a
java.beans.PropertyChangeEvent. Many commercially available JavaBeans
already support this kind of notification, and you can easily add it to Beans you
write yourself. If Dimmerswitch offered support for PropertyChangeListeners,
then it could notify Jess when its brightness changed, and the shadow facts could
stay in sync with the Beans. Let’s add that support now.

Adding PropertyChangelListener support to DimmerSwitch

Let’s modify the DimmerSwitch class to send PropertyChangeEvents. The modi-
fied class DimmerSwitchDynamic is shown in listing 6.3. The interesting method in
DimmerSwitchDynamic is setBrightness. This method saves the original value of
the brightness member variable, then gives it its new value, and then sends a
property change notification using the PropertyChangeSupport utility class. The
addPropertyChangeListener and removePropertyChangeListener methods are
boilerplate code that is always used with PropertyChangeSupport. These methods
allow interested external code like Jess to register to be notified when a property
changes.

import java.beans.*;
public class DimmerSwitchDynamic {
private int brightness = 0;
public int getBrightness() {
return brightness;

}
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public void setBrightness(int b) {

int old = brightness; Calls fireProperty-Change to
brightness = b; indicate brightnefs property
adjustTriac (b) ; is changing
pcs. firePropertyChange ("brightness",
new Integer (old), (new Integer (b)));
}
private void adjustTriac (int brightness) {
// Code not shown
}
private PropertyChangeSupport pcs =
new PropertyChangeSupport (this) ;
public void
addPropertyChangeListener (PropertyChangeListener p) { Boilerplate code
pcs.addPropertyChangelListener (p) ; youcanreusein
} JavaBeans
public void
removePropertyChangeListener (PropertyChangeListener p) {
pcs.removePropertyChangeListener (p) ;

Now if you use definstance without the static qualifier to register a Dimmer-
SwitchDynamic instance with Jess, the shadow fact tracks the brightness property
whenever it changes, as listing 6.4 demonstrates. This time, calling setBrightness
to change the JavaBean changes the shadow fact, too; Jess receives a Property-
ChangeEvent and modifies the shadow fact accordingly.

Listing 6.4 A demonstration of dynamic definstances

Jess> (clear) <— Remove old definitions

TRUE Create new
Jess> (defclass dimmer DimmerSwitchDynamic) QAAAAAAJ dimmer template

dimmer
Jess> (bind ?ds (new DimmerSwitchDynamic)) Create instance of
<External-Address : DimmerSwitchDynamic> new JavaBean class
Jess> (definstance dimmer ?2ds) Ifﬁaﬁckn%spedﬁe¢
<Fact-0> dynamic is default
Jess> (facts)
f-0 (MAIN::dimmer
(brightness 0)
(class <External-Address:java.lang.Class>)
(OBJECT <External-Address:DimmerSwitchDynamic>))
For a total of 1 facts.

Jess> (call ?ds setBrightness 10) Change brightness
Jess> (facts) ﬂ property
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£-0 (MAIN::dimmer Brightness slot updated
(brightness 10) to match Bean
(class <External-Address:java.lang.Class>)
(OBJECT <External-Address:DimmerSwitchDynamic>))

For a total of 1 facts.

Shadow facts and working memory functions

Many of the functions and constructs you’ve seen so far work on shadow facts just
as they work on other kinds of facts, but there are some differences. Most of these
differences are obvious. For example, you can’t use the assert function to assert a
shadow fact; you use definstance instead. You can, however, use retract to
remove a shadow fact. You also can’t put a shadow fact in a deffacts construct.
Note, though, that each individual definstance behaves like its own deffacts—
when you call reset, the shadow fact for every instance is reinitialized.

The modify function operates on shadow facts just as it works on regular facts.
Furthermore, if you modify the contents of a slot of a shadow fact, Jess automati-
cally updates the corresponding JavaBean property. This happens for both static
and dynamic definstances.

Finally, the duplicate function cannot be used with shadow facts. Jess throws
an exception if you try to duplicate one.

Summary

Jess’s working memory can contain ordered facts, unordered facts, and shadow facts;
each type of fact is useful in certain situations. Unordered facts are general-purpose
facts, whereas ordered facts are useful for small bits of information. Shadow facts
are used to connect a JavaBean in your Java application to Jess’s working memory,
so that rules can react to things that happen outside of your Jess program. You can
write rules that operate on any or all of these working memory elements; in the
next chapter, you’ll see how.

All facts are created from a deftemplate, which defines the slots a fact can
have. Sometimes you define this deftemplate yourself, and sometimes Jess cre-
ates it for you. The deftemplates in a rule-based system are like the schema of a
database; they define a way of looking at the data relevant to the system.

Now that you know the Jess language and understand something about Jess’s
working memory, you're ready to learn how to write rules. In the next chapter,
you’ll learn about writing rules and about pattern matching—how to make rules
react to the contents of working memory.



Writing rules in Jess

In this chapter you’ll...

Learn to write rules

Learn the difference between forward and
backward chaining

Learn how to partition your rules with modules
Learn to probe working memory with queries
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Now that you’ve learned how to populate the working memory, you can develop a
knowledge base to go with it. This is the whole reason you’re here: The knowledge
base is the collection of rules that make up a rule-based system. Rules can take
actions based on the contents of working memory.

There are two main classes of rules in Jess: forward-chaining and backward-chain-
ing rules. Forward-chaining rules are somewhat like if .. then statements in a pro-
cedural language, and they’re the most common and important kind of rule in
Jess. Backward-chaining rules, on the other hand, don’t have a clear analogy in
procedural programming. They are also similar to if .. then statements, but a
backward-chaining rule actively tries to satisfy the conditions of its 1 £ part.

You can access working memory directly with gueries. You can design queries to
search working memory, to find specific facts, and to explore their relationships.
Queries have a lot in common with rules—if you can write one, you know how to
write the other. You’ll learn how to write and invoke queries in section 7.7.

Forward-chaining rules

A forward-chaining rule is something like an if ... then statement in a procedural
language, but it is not used in a procedural way. Whereas if ... then statements are
executed at a specific time and in a specific order, according to how the programmer
writes them, a Jess rule’s then part can be executed whenever the if part is satisfied.
This makes rules less obviously deterministic than a typical procedural program,
because Jess decides the order in which to fire the rules. (See section 8.3’s discussion
of the Rele algorithm for an explanation of why this architecture can be many orders
of magnitude faster than an equivalent set of traditional if .. then statements.)

This section discusses the following functions and constructs:

® defrule—Defines a new rule

® ppdefrule—Pretty-prints a rule

® run—Begins firing activated rules from the agenda

® undefrule—Deletes a rule

® watch rules—Prints a diagnostic when a rule fires

® watch activations—Prints a diagnostic when a rule is activated

All Jess rules are defined using the defrule construct. The simplest possible rule
looks like this:

Jess> (defrule null-rule
"A rule that does nothing"
=>
)

TRUE
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The symbol null-rule is the name of the rule. A hyphen (-) is often used to sepa-
rate words in a symbol. Rules are uniquely identified by their name. If a rule named
my-rule exists, and you define another rule named my-rule, the first version is
deleted. There is also an undefrule function that can delete a rule by name.

The name is followed by an optional documentation string that describes the
purpose of the rule. The symbol => (an equals sign followed by a greater-than
sign) separates the rule’s left-hand side (LHS, or if part) from its right-hand side
(RHS, or then part). The symbol => can thus be read as then. The previous rule
has no conditions on its LHS and no actions on its RHS. It will therefore always
execute, and it will accomplish nothing.

The following example uses two new arguments to the watch function,
activations and rules (you used (watch facts) in chapter 6):

Jess> (watch facts)

TRUE

Jess> (watch activations)
TRUE

Jess> (watch rules)

TRUE

Jess> (reset)

==> f-0 (MAIN::initial-fact)

==> Activation: MAIN::null-rule : f-0

Jess> (run)

FIRE 1 MAIN::null-rule f-0

1
The function call (watch activations) tells Jess to print a message whenever an
activation record is placed on, or removed from, the agenda. An activation record
associates a set of facts with a rule. It means the given set of facts matches the LHS
of the given rule, and so the rule should be executed. In this case, because null-
rule doesn’t specify a LHS, Jess has automatically made it conditional on the pres-
ence of the initial fact. You’ll recall from chapter 6 that the reset function places
a fact (initial-fact) in working memory. This is one important role for
(initial-fact): to serve as a trigger for rules with an empty LHS. You can see
the change using the ppdefrule function, which pretty-prints a rule by re-creating
its text from Jess’s internal representation:

Jess> (ppdefrule null-rule)

"(defrule MAIN::null-rule
\"A rule that does nothing\"
(MAIN::initial-fact)
=>)"
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The return value of ppdefrule is a string, so when it is displayed to the console,
the embedded quotation marks are escaped with a backslash character. It is
important to note that all the work of pattern matching—comparing the LHSs of
rules to a given fact—is done while that fact is being asserted. Because (initial-
fact) is asserted by the reset function, null-rule is activated whenever the
reset function is called, and that’s what happens here.

The function call (watch rules) tells Jess to print a message whenever a rule is
fired. A rule is said to be fired when the actions on its RHS are executed. The run
function tells Jess to start firing rules; no rules will fire except during a call to run.
Jess’s rule engine then fires the rules on the agenda, one at a time, until the
agenda is empty. run returns the number of rules fired—so 1 is printed in the pre-
vious example.

Now let’s look at a more complex rule:

Jess> (defrule change-baby-if-wet

"If baby is wet, change its diaper."
?wet <- (baby-is-wet)
=>

(change-baby)

(retract ?wet))

TRUE
This rule again has two parts, separated by =>. The LHS consists of the pattern
(baby-is-wet). The RHS consists of two function calls, to change-baby and
retract. Note that the definition of change-baby isn’t shown here. Although you
might at first find it hard to tell due to the Lisp-like syntax, the LHS of a rule con-
sists of patterns that are used to match facts in the working memory, while the
RHS contains function calls.

Let me say that again: The left-hand side of a rule (the if part) consists of pat-
terns that match facts; they are not¢ function calls. The right-hand side of a rule
(the then clause) is made up of function calls. The following rule does not work:

Jess> (defrule wrong-rule

(eg 1 1)

=>

(printout t "Just as I thought, 1 == 1!" crlf))
Many novice Jess users write rules like this, intending (eq 1 1) to be interpreted as
a function call. This rule will not fire just because the function call (eq 1 1) would
evaluate to TRUE. Instead, Jess tries to find a fact in the working memory that looks
like (eq 1 1). Unless you have previously asserted such a fact, this rule will not be
activated and will not fire. If you want to fire a rule based on the evaluation of a
function, you can use the test conditional element, described in section 7.3.4.
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The example rule, then, will be activated when the fact (baby-is-wet)
appears in the working memory. When the rule fires, the function (change-baby)
is called, and the (baby-is-wet) fact is retracted. This rule forms part of a com-
plete program in listing 7.1.

Listing 7.1 A simple but complete Jess program

Jess> (clear)
TRUE
Jess> (watch all)
TRUE
Jess> (reset)
==> f-0 (MAIN::initial-fact)
TRUE
Jess> (deffunction change-baby ()
(printout t "Baby is now dry" crlf))
TRUE
Jess> (defrule change-baby-if-wet
"If baby is wet, change its diaper."
?wet <- (baby-is-wet)
=>
(change-baby)
(retract ?wet))
change-baby-if-wet: +1+1+1+t
TRUE
Jess> (assert (baby-is-wet))
==> f-1 (MAIN::baby-is-wet)
==> Activation: MAIN::change-baby-if-wet : f-1
<Fact-1>
Jess> (run)
FIRE 1 MAIN::change-baby-if-wet f-1
Baby is now dry
<== f-1 (MAIN::baby-is-wet)
1
|

The watch all command in listing 7.1 tells Jess to print diagnostics for everything
important that happens while this program runs. Many of the diagnostics in the
listing are interesting. You first see how issuing the reset command again asserts
the fact (initial-fact). Although this rule won’t need the initial fact, in most
programs the initial fact will be needed by many rules, so you should always issue a
reset command at some point before running a program.

When the rule is entered at the Jess prompt, you see the line +1+1+1+t. This
result tells you something about Jess interprets the rule internally (see chapter 8
for more information). When the fact (baby-is-wet) is asserted, you see the
diagnostic Activation: MAIN: :change-baby-if-wet : £-1. This means Jess has
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noticed that all the LHS conditions of the rule change-baby-if-wet are met by
the given list of facts—here the single fact £-1—and an activation record has been
created. Note how the activation record associates the specific fact with the rule;
this action will be important later.

Again, the rule doesn’t fire until you issue the run command. As soon as you
enter (run), the activated rule fires. Because you entered the watch all com-
mand, Jess prints the diagnostic FIRE 1 MAIN: : change-baby-if-wet £-1 to notify
you of this action. The £-1 is a list of the facts that matched this rule’s LHS.

You then see the output of the rule’s RHS actions. First the function change-
baby is called. Second, the fact £-1 is retracted. The variable ?wet is called a pat-
tern binding; the <- operator stores a reference to the fact (baby-is-wet) in this
variable, and the retract function can then access this variable on the rule’s
RHS. Note, then, that rules cannot only react to the contents of working mem-
ory—they can change it. Thus one rule can put information into working mem-
ory, which in turn can cause another rule to fire.

The final number 1 is the number of rules that fired (the return value of the run
command). The run function returns when there are no more activated rules to fire.

What would happen if you entered (run) again? Nothing. Jess activates a rule
only once for a given working memory state. Once the rule has fired, it will not
fire again for the same list of facts. You won’t change the baby again until a new
baby-is-wet fact is asserted.

Patterns and shadow facts

Jess’s working memory can hold JavaBeans as well as facts. Actually, you'll recall
that this isn’t quite correct: The working memory contains only facts; but some of
those facts, called shadow facts, are stand-ins for JavaBeans. A shadow fact has a slot
for every property of a JavaBean, and for dynamic shadow facts—defined using
the definstance dynamic function—those slots track the contents of the Java-
Bean’s properties in real time.

Therefore, everything about patterns in this chapter applies equally to pat-
terns that match facts and to patterns that match JavaBeans. There’s no way to tell
by looking at a pattern whether it’s intended to match deftemplate facts or
shadow facts.

Constraining slot data

The baby-is-wet fact in the previous section didn’t have any slot data. Most facts
do, however, and most patterns need to specify some particular set of slot values
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for the facts they match. These specifications are called constraints, because they
constrain the values a slot can have in a fact that matches the pattern. A number
of different kinds of constraints can be used to match slot data:

m Literal constraints—Specify exact slot values

m  Variable constraints—Bind a matched value to a variable

m  Connective constraints—Let you combine conditions to match A and B, or A orB
m  Predicate constraints—Let you call a function to test for a match

m  Return value constrainis—Test for an exact match between a slot’s contents
and the result of a function call

7.2.1 Literal constraints

Literal slot values can be included in patterns as constraints. A pattern including a
literal value matches only facts that include that value. In the following example,
although both facts have the head letters, only the one with slot data that
exactly matches the pattern activates the rule:

Jess> (clear)

TRUE

Jess> (defrule literal-values

(letters b c)
:>)

TRUE

Jess> (watch activations)

TRUE

Jess> (assert (letters b d)) <« This doesn't activate the rule...
<Fact-0>

Jess> (assert (letters b ¢)) <— ... but this does

==> Activation: MAIN::literal-values: f-1

<Fact-1>

Remember that an ordered fact is implemented as an unordered fact with a single
multislot named __data (a multislot, you’ll recall, can hold any number of
items). You could therefore write the previous rule as

Jess> (assert (letters b c¢))

<Fact-0>

Jess> (defrule literal-values
(letters (__data b c))
:>)

TRUE

and it would behave the same way (I asserted a letters fact first to emphasize
that Jess only defines the implicit deftemplate for letters when it sees an
ordered letters fact; the rule won’t be parsed correctly until this deftemplate
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exists). It’s important to keep this relationship in mind as you read this chapter;
remember that everything that applies to ordered facts applies equally well to the
multislots of unordered facts. The same goes for the regular slots of unordered
facts, with the restriction that they can hold only one value at a time.

Finally, note that literal constraints have to match exactly; no conversions are
done. Thus the floating-point literal 1.0 doesn’t match the integer 1, and the sym-
bol xyz doesn’t match the string "xyz". This is a common source of problems
when using shadow facts (see section 6.5).

Variables as constraints

If all the patterns of a rule had to be given literally, Jess would not be very power-
ful. However, patterns can also include variables and various kinds of predicates
(comparisons and boolean functions), and can be modified by conditional elements.
We’ll consider variables and predicates here and conditional elements in the fol-
lowing sections.

You can specify a variable instead of a literal value for any part of the slot data
in a pattern. A variable matches any value in that position within the facts that
match that pattern. For example, the rule

Jess> (defrule simple-variables

(a ?x ?vy)

=>

(printout t "Saw 'a " ?x " " ?y "'" crlf))
is activated each time an ordered fact with head a having two fields is asserted: (a b
c), (al2), (aaa),and so forth. The variables thus matched on the LHS of a rule
are available on the RHS of the same rule; you can think of them as the arguments
to the rule’s RHS when it fires. For example, if the previous rule matched the fact
(abc), then when the rule fired, ?x would have the value b and ?y would have the
value c. You can mix literal values and variables in the same pattern, of course.

The same variable can appear in more than one pattern in the same rule, or in
several places within one pattern, or both. Every time the variable is used, it must
match the same value. In listing 7.2, although two facts could match each pattern
individually, only one pair can activate the rule: the fact (a 2) and (b 2).

Jess> (defrule repeated-variables
(a ?x)
(
=>
(printout t "?x is " ?x crlf))
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TRUE

Jess> (watch activations)

TRUE

Jess> (deffacts repeated-variable-facts
(a 1)

(a 2)

(b 2)
(b 3))

TRUE

Jess> (reset)

==> Activation: MAIN: :repeated-variables : f-2, f-3

TRUE

Jess> (run)

?x 1is 2

1

||

Note that in Jess 6.1, you can’t use a variable to match the head of a fact or the
name of a slot; these things must always be specified as literal values. This capabil-
ity is planned for a future release, however.

Multifields

Regular variables match exactly one value. Multifields can match any number of
values—zero, one, or more. You write a multifield by preceding a variable name
with the characters $?—for example, $?nf is a multifield. You can only use multi-
fields in multislots. They can be used alone, in which case the multifield matches
any number of values in that multislot, or in combination with regular variables or
literal values. If you use multifields together with single values, the multifields
expand to match everything not matched by the other values. For example, the
pattern in this rule matches a shopping-cart fact with any number of values in
the contents multislot:

(defrule any-shopping-cart
(shopping-cart (contents $?items))

=>

(printout t "The cart contains " ?items crlf))

The pattern in this rule matches any shopping-cart fact with a contents slot that
contains milk preceded by any number (zero or more) of items and followed by
any number of additional items:
(defrule cart-containing-milk
(shopping-cart (contents $?before milk S$?after))

=>

(printout t "The cart contains milk." crlf))
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As shown here, multifields are accessible on the RHS of the rules that use them in
patterns (just as normal variables are). A multifield always contains the matched
values as a list, even if it matches zero or one value. You can (and generally
should, as a matter of style) leave the $ sign off a multifield when you refer to it on
the RHS of a rule, because there it is acting as a normal variable.

Blank variables

You can match a field without binding it to a variable by omitting the variable
name and using a question mark (?) as a placeholder. This is generally only useful
as a way to specify that a multislot contains a certain arrangement of values with-
out caring what those values are. For example, a pattern like (poker-hand ten ? ?
? ace) matches any poker-hand starting with a ten, ending with an ace, and con-
taining a total of five cards. You can have blank multifields, too—just use bare $?
characters.

Matching global variables

If you match to a defglobal with a pattern like (score ?*x*), the match only con-
siders the value of the defglobal when the fact is first asserted. Subsequent
changes to the defglobal’s value will not invalidate the match—if the rule was
activated based on the value of the defglobal, it stays activated even if the
defglobal’s value changes. The match does not reflect the current value of the
defglobal, but only the value at the time the matching fact was asserted.

Connective constraints

Quite often, matching with a literal value or a variable isn’t enough. You might
want a pattern to match if a client is located in either Boston or Hartford, for
example, or you might want a pattern to match as long as the client is not from
Bangor. You can write these patterns, and many others, using the connective con-
straints & (and), | (or), and ~ (not).

Any single constraint preceded by a tilde (~) matches the opposite of what the
constraint would originally have matched. For example, the following pattern
matches any client facts with a city slot that doesn’t contain Bangor:

(client (city ~Bangor))

This pattern matches clients that have purchased exactly two items, which must
not be the same:

(client (items-purchased ?x ~?x))
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The other connective constraints let you form groups of single constraints.
Ampersands (&) represent logical and, and pipes (|) represent logical or For
example, this pattern matches any client that hails from Boston or Hartford:

(client (city Boston|Hartford))

And this one again matches any client not from Bangor, and in addition remem-
bers the contents of city in the variable ?c:

(client (city ?c&~Bangor))

When you use several connective constraints together in a single expression, you
should pay attention to operalor precedence, or the way Jess groups the constraints
together as it evaluates the expression. The ~ connective constraint has the high-
est precedence, followed by & and |, in that order. ~ always applies to the single
constraint immediately following it, so the following (redundant) pattern matches
all clients that are not from Bangor and are from Portland:

(client (city ~Bangor&Portland))

This pattern does not mean “all clients that are from neither Bangor nor Port-
land,” which would be written

(client (city ~Bangor&~Portland))

There are no grouping symbols that you can use with constraints—you can’t use
parentheses to change their precedence. If you can’t express what you want using
connective constraints, you can do it instead using predicate constraints, as
described in the next section.

Constraining matches with predicate functions

Literal constraints, variables, and connectives suffice for many situations, but there
are some things they can’t express. Perhaps you want to match any shopping-cart
that contains an odd number of items, or a client that lives in a city whose name
contains more than 10 letters. Jess lets you specify these constraints, and virtually
any other constraint you can imagine, using predicate functions. For our purposes, a
predicate function is just a Boolean function—a function that returns TRUE or
FALSE. You can use any predicate function as a constraint by preceding it with a
colon (:). If you want to use the value of a slot as an argument to the function (and
you almost always do), you should bind that value to a variable first, and then con-
nect that binding to the function using the & connective:

Jess> (defrule small-order
(shopping-cart (customer-id ?id)
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(contents $?c&: (< (length$ $?c) 5)))
(checking-out-now ?id)
=>
(printout t "Wouldn't you like to buy more?" crlf))
TRUE
The length$ function returns the length of a list. This rule delivers a special mes-
sage to any customers who go to the checkout with fewer than five items in their cart.
You can use the and, or, and not predicate functions to express complex logi-
cal conditions. Although they are more verbose than the simple connective con-
straints, they are more powerful because you can group them into arbitrary
structures. For example, this rule fires if a customer is checking out with more
than 50 items, but his cart contains neither milk nor butter:
Jess> (defrule large-order-and-no-dairy
(shopping-cart (customer-id ?id)
(contents $?c&
: (and (> (lengths$ $2c) 50)
(not (or (member$ milk $?c)
(members$ butter $?2c))))))
(checking-out-now ?id)
=>
(printout t "Don't you need dairy products?" crlf))
TRUE
Note that internally, Jess implements the | connective by transforming the whole
pattern for that slot into predicate functions, and then using or to represent the |.
When evaluating a predicate constraint, Jess interprets any return value except
FALSE as if it were TRUE. The member$ function returns FALSE if the given value is
not a member of the list argument; otherwise it returns the position of the value
in the list. Even though member$ never returns TRUE, it works perfectly well as a
predicate function, because the non-FALSE values are interpreted as TRUE.

Return value constraints

Often you’ll want to constrain the contents of slot to match the return value of a
function. For example, if you wanted to find a pair of grocery items such that the
price of one was exactly twice the price of another, you might use a predicate con-
straint like this:

(item (price ?x))

(item (price ?y&:(eqg ?y (* ?x 2))))
(The eg function returns TRUE if the arguments are all equal, or FALSE otherwise.)
Although this approach works, it’s not especially pretty. It would be more conve-
nient to write this using a return value constraint. A return value constraint includes
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an arbitrary function, and the slot data must match whatever the function returns.
When you’re writing a return value constraint, the function is preceded by an
equals sign (=). You can rewrite the previous example using a return value con-
straint like so:

(item (price ?x))

(item (price =(* ?x 2)))
The return value constraint version is simpler because you don’t need the variable
?y or the call to eq.

In fact, pretty-printing a rule containing a return value constraint always shows
that Jess has transformed it into an equivalent predicate constraint using eq, so
the two forms are equivalent. Which one to use is a matter of taste.

Pattern bindings

To use retract, modify, or duplicate on a fact matched by the LHS of a rule, you
need to pass a handle to the fact to the RHS of the rule. To do this, you use a pat-
tern-binding variable:
Jess> (defrule pattern-binding
?fact <- (a "retract me")
=>
(retract ?fact))
A reference to the jess.Fact object that activates this rule is bound to the vari-
able ?fact when the rule is fired.
You can retrieve the name of a fact, its integer ID, and other useful data by call-
ing the Java member functions of the jess.Fact class directly, like this:

Jess> (defrule call-fact-methods

?fact <- (initial-fact)
=>
(printout t "Name is " (call ?fact getName) crlf)
(printout t "Id is " (call ?fact getFactId) crlf))
TRUE
Jess> (reset)
TRUE

Jess> (run)

Name is MAIN::initial-fact

Id is 0

1
Note that because pattern bindings have to refer to specific facts, you must be
careful when using them with some of the grouping conditional elements
described in the following sections. You can’t use them with not or test condi-
tional elements, for example; and when using them with or and and conditional
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elements, you must be careful that the binding will apply to only one fact. Jess lets
you write ambiguous bindings, but they may lead to errors at runtime, depending
on how the patterns are matched. The next section presents some additional
details on this issue.

Qualifying patterns with conditional elements

We’ve just been looking at increasingly sophisticated ways to match the data
within individual facts. Now we’ll look at ways to express more complex relation-
ships between facts, and to qualify the matches for entire facts. Conditional elements
(CEs) are pattern modifiers. They can group patterns into logical structures, and
they can say something about the meaning of a match. There’s even one condi-
tional element, test, that doesn’t involve matching a fact at all.

Before we begin, let me caution you that many of these conditional elements
have the same names as predicate functions we looked at in the last section.
There’s an and conditional element, and there’s an and predicate function.
Although they may look similar, they’re entirely unrelated. The and predicate
function operates on Boolean expressions, but the and conditional element oper-
ates on patterns. You can always tell which you’re dealing with by the context—
predicate functions can appear only as constraints on slot data. The following are
all of Jess’s conditional elements:

m and—Matches multiple facts

m or—Matches alternative facts

m not—Matches if no facts match

m exists—Matches if at least one fact matches

m test—Matches if a function call doesn’t evaluate to FALSE

m logical—Matching facts offer logical support to new facts

The and conditional element

The LHS of every rule consists of a list of zero or more patterns. Each of those pat-
terns must match for the whole LHS to match. You might recognize this as the
intersection operation from formal logic. You can express the intersection of a
group of patterns in Jess using the and conditional element. The entire LHS of
every rule is enclosed in an implicit and.

Any number of patterns can be enclosed in a list with and as the head. The
resulting pattern is matched if and only if all of the enclosed patterns are matched.
The following rule matches only if (flaps-up) and (engine-on) both match:
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Jess> (defrule ready-to-fly
(and (flaps-up)
(engine-on))
=>)
Of course, this rule would behave precisely the same way if the and CE was omitted,
so by itself, and isn’t very interesting. Combined with or and not conditional ele-
ments, though, you can use the and CE to construct complex logical conditions.

The or conditional element

Any number of patterns can be enclosed in a list with or as the head. The or CE
matches if one or more of the patterns inside it matches. If more than one of the
patterns inside the or matches, the entire or is matched more than once:

Jess> (clear)
TRUE
Jess> (deftemplate used-car (slot price) (slot mileage))
TRUE
Jess> (deftemplate new-car (slot price) (slot warrantyPeriod))
TRUE
Jess> (defrule might-buy-car
?candidate <- (or (used-car (mileage ?m&: (< ?m 50000)))
(new-car (price ?p&: (< ?p 20000))))
=>
(assert (candidate ?candidate)))
Jess> (assert (new-car (price 18000)))
<Fact-0>
Jess> (assert (used-car (mileage 30000)))
<Fact-1>
Jess> (run)
2

The rule fires twice: once for the new car and once for the used car. In this rule,
only one of the two branches of the or conditional element will match at a time,
but the rule can be activated separately as many times as there are facts to match.
Each of the vehicles listed matches only one or the other of the branches. For
some activations, the first branch of the or will match, and for others, it will be the
second branch. Note that the variable ?candidate is bound to whatever fact
matches the or in each particular activation. If might-buy-car’s RHS tried to
modify the mileage slot of the used-car template, runtime errors would occur
whenever ?candidate was bound to a new-car fact, because the new-car template
doesn’t have such a slot.

If the RHS of a rule uses a variable defined by matching on the LHS of that
rule, and the variable is defined by one or more branches of an or pattern but
not all branches, then a runtime error may occur. For example, if the RHS of
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might-buy-car used the variable ?m (which is defined only when the rule
matches a used-car fact), then when it fired in response to a new-car fact, you’d
see an error message and Jess would stop firing rules.

The and group can be used inside an or group and vice versa. In the latter
case, Jess rearranges the patterns so that there is a single or at the top level. For
example, the rule

Jess> (defrule prepare-sandwich
(and (or (mustard)
(mayo) )

(bread))
:>)

is automatically rearranged as follows:

Jess> (defrule prepare-sandwich
(or (and (mustard) (bread))
(and (mayo) (bread)))
=>)
Jess rearranges the patterns of any rule that has or conditional elements in it so
that in the end, there is at most one or per rule, and it appears at the top level.
Jess may use DeMorgan’s rules to accomplish this result. DeMorgan’s rules are a
set of two formulas that describe legal ways of substituting logical expressions.
Written in Jess syntax, they can be stated as follows:
(not (or (x) (y))) is the same as (and (not (x)) (not (y)))
(not (and (x) (y))) is the same as (or (not (x)) (not (y)))
Jess does this rearrangement so that it can form subrules, which are the topic of the
next section.

Subrule generation and the or conditional element

A rule containing an or conditional element with n branches is precisely equiva-
lent to n rules, each of which has one of the branches on its LHS. In fact, this is
how Jess implements the or conditional element: Jess internally divides the rule,
generating one rule for each branch. Each of these generated rules is a subrule.
For a rule named rule-name, the first subrule is also named rule-name, the sec-
ond is rule-name&1, the third is rule-name&2, and so on. Each of these subrules is
added to the Rete network individually. If you execute the (rules) command,
which lists all the defined rules, you will see each of the subrules listed separately.
If you use the ppdefrule function to see a pretty-print representation of a sub-
rule, you will see only the representation of that particular subrule. Note that
because & is a token delimiter in the Jess grammar, you can only refer to a subrule
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with an ampersand in the name by placing the whole name in quotes—for exam-
ple, (ppdefrule "rule-name&6").

Jess knows that the subrules created from a given rule are related. If the origi-
nal rule is removed (either using undefrule or implicitly by defining a new rule
with the same name as an existing one), every subrule associated with that rule is
also removed.

A note regarding subrules and efficiency: You’ll learn in chapter 8 that similar
patterns are shared between rules in the Rete network, avoiding duplicated com-
putation. Therefore, splitting a rule into subrules does not mean the amount of
pattern-matching work is increased; much of the splitting may indeed be undone
when the rules are compiled into the network.

On the other hand, keep the implementation in mind when you define your
rules. If an or conditional element is the first pattern on a rule, all the subsequent
pattern-matching on that rule’s LHS won’t be shared between the subrules,
because sharing occurs only as far as two rules are similar reading from the top
down. Placing or conditional elements near the end of a rule leads to more shar-
ing between the subrules, and thus more efficient pattern matching.

Finally, I should mention that although subrules will probably always be part of
the implementation of the or conditional element in Jess, it is likely that they will
no longer be user-visible at some time in the future.

The not conditional element

You may have heard the saying “two wrongs don’t make a right” when you were
growing up. How can the opposite of the opposite of something not be the same
as the original thing? Well, as it turns out, it’s quite often not. Such is the case in
real-world logic: The concept of negation is a tricky thing. It’s tricky in Jess, too.
Imagine that you want a rule to fire when no red cars are available. Your first
try might look something like this:
Jess> (defrule no-red-cars
(auto (color ~red))
=>)
But this rule fires for each car that is not red. If there are no cars at all, it won’t
fire. This result isn’t the same as firing when there are no red cars.
Luckily, Jess has the not conditional element. Most patterns can be enclosed in
a list with not as the head. In this case, the pattern is considered to match if a fact
(or set of facts) that matches the pattern is nof found. For example, this rule will
fire if there are no cars at all, or if there are only blue cars, but not if there are any
red ones:
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Jess> (defrule no-red-cars-2
(not (auto (color red)))
=> )
Because a not pattern matches the absence of a fact, it cannot define any variables
that are used in subsequent patterns on the LHS. You can introduce variables in a
not pattern as long as they are used only within that pattern:
Jess> (defrule no-odd-numbers

(not (number ?n&: (oddp ?n)))
>

(printout t "There are no odd numbers." crlf))
Similarly, a not pattern can’t have a pattern binding; again, because it doesn’t
match an actual fact, there would be no fact to bind to the variable.

Now, here comes the tricky part I alluded to earlier. You already know that pat-
tern matching is driven by facts being asserted—the matching computation hap-
pens during the assert, definstance, modify, duplicate, or reset function that
creates the fact. Because a not CE matches the absence of a fact, when can it be
evaluated? The answer is that a not CE is evaluated only in these cases:

® When a fact matching it is asserted (in which case the pattern match fails)
® When a fact matching it is removed (in which case the pattern match succeeds)

m When the pattern immediately before the not on the rule’s LHS is evaluated

If a not CE is the first pattern on a rule’s LHS, the first pattern in an and group, or
the first pattern on a given branch of an or group, the pattern (initial-fact) is
inserted before the not to become this important preceding pattern. Therefore,
the initial fact created by the reset command is necessary for the proper func-
tioning of many not patterns. For this reason, it is especially important to issue a
reset command before attempting to run the rule engine when working with not
patterns.

The not CE can be used in arbitrary combination with the and and or CEs. You
can define complex logical structures this way. For example, suppose you want a
rule to fire once, and only once, if for every car of a given color, there exists a bus
of the same color. You could express that as follows:

Jess> (defrule forall-example

(not (and (car (color ?c)) (not (bus (color ?c)))))

=>)
Decoding complex logical expressions is easier if you start from the inside and
work your way out. The innermost pattern here is (bus (color 2c¢)), which
matches any bus fact. The not around that matches only when there are no bus
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facts. The (car (color ?c)) pattern matches any car facts, and the and groups
these two patterns together. The entire and thus matches when there is a car, but
no bus of the same color. Putting the and group into the outermost not means the
whole pattern matches only when the and doesn’t; thus the whole thing can be
translated as “It is not true that for some color 2c, there is a car of that color but
no bus of that same color.”

In the next section we’ll look at another interesting way to combine not CEs
into more complex groups.

The exists conditional element
You can nest multiple not CEs to produce some interesting effects. Two nots
nested one inside the other are so useful that there’s a shorthand notation: the
exists CE. A pattern can be enclosed in a list with exists as the head. An exists
CE is true if there exist any facts that match the pattern, and false otherwise—
which is precisely the meaning of two nested nots. The exists CE is useful when
you want a rule to fire only once, although there may be many facts that could
potentially activate it:
Jess> (defrule exists-an-honest-man

(exists (honest ?))

=>
(printout t "There is at least one honest man!" crlf))
If there are any honest men in the world, the rule will fire once and only once. The
exists CE is implemented as two nested not CEs; that is, (exists (a)) is exactly
the same as (not (not (a))). Therefore, you can’t bind any variables in an exists
CE for use later in the rule, and you also can’t use pattern bindings with exists.

The test conditional element

A pattern with test as the head is special; the body consists not of a pattern to
match against the working memory but of a Boolean function. The result deter-
mines whether the pattern matches. A test pattern fails if and only if the function
evaluates to the symbol FALSE; if it evaluates to TRUE, the pattern succeeds. For
example, suppose you wanted to find people whose age is less than 30 years old:

Jess> (deftemplate person (slot age))
TRUE
Jess> (defrule find-trustworthy-people-1
person (age ?x))

te (< ?x 30))

>

(
(
(

printout t ?x " is under 30!" crlf))
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A test pattern, like a not, cannot contain any variables that are not bound before
that pattern, and it can’t have a pattern binding.

Because a test CE, like a not CE, doesn’t match an actual fact, its implementa-
tion is similar to the way not is implemented. A test CE is evaluated every time
the preceding pattern on the rule’s LHS is evaluated, just like a not. Therefore
the following rule is equivalent to the previous one:

Jess> (defrule find-trustworthy-people-2

(person (age ?x&: (< ?x 30)))

=>

(printout t ?x " is under 30!" crlf))
Which form you use here is mostly a matter of taste. I tend to use the test CE only
for long or complex functions that would be hard to read if they were written as
predicate constraints. Of course, the test CE can also be used to write tests that
are unrelated to any facts:

(import java.util.Date)

(defrule fire-next-century

(test ((new Date) after (new Date "Dec 31 2099")))

=>

(printout t "Welcome to the 22nd century!" crlf))
For rules like this, in which a test CE is the first pattern on the LHS, or the first
pattern in an and CE, or the first pattern in any branch of an or CE, Jess inserts
the pattern (initial-fact) to serve as the preceding pattern for the test. The
fact (initial-fact) is therefore also important for the proper functioning of the
test conditional element; the caution about reset in the preceding section
applies equally to test. The rule fire-next-century won’t fire until reset is
called after the twenty-second century begins.

The test and not conditional elements may be combined, so that

(not (test (eqg ?x 3)))
is equivalent to
(test (neqg ?x 3))

The conditional elements we’ve looked at so far affect how a rule matches work-
ing memory. There is one conditional element we haven’t covered yet, and it’s
unusual in that instead of affecting how a rule matches, it affects what happens
when a rule fires.

The logical conditional element

When you turn on your kitchen faucet, you expect water to come out (if it
doesn’t, you've got a plumbing problem). When you turn off the faucet, the flow
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of water stops as a result. This kind of relationship is called a logical dependency—
the water flowing is logically dependent on the faucet being open. To express this
idea in Jess, you could write the following two rules:

Jess> (defrule turn-water-on
(faucet open)
=>
(assert (water flowing)))
TRUE

Jess> (defrule turn-water-off
(not (faucet open))
?water <- (water flowing)
=>
(retract ?water))

TRUE
Given these two rules, asserting (faucet open) will automatically cause (water
flowing) to be asserted as well, and retracting (faucet open) will retract (water
flowing)—if you call run so the rules can fire, of course. The fact (water flow-
ing) can therefore be said to be logically dependent on (faucet open).

Writing two rules to express the one idea of logical dependency gets the job
done, but there is an easier way. The logical conditional element lets you specify
these logical dependencies among facts more concisely. All the facts asserted on
the RHS of a rule are logically dependent on any facts that matched a pattern
inside a logical CE on that rule’s LHS. If any of the matches later become
invalid—for instance, because one of the facts is deleted—the dependent facts are
retracted automatically. In the simple example in listing 7.3, the (water-
flowing) fact is again logically dependent on the (faucet-open) fact, so when
the latter is retracted, the former is removed, too.

Listing 7.3 An example of using the logical CE

Jess> (clear)

TRUE

Jess> (defrule water-flows-while-faucet-is-open
(logical (faucet open))
=>
(assert (water flowing)))

TRUE

Jess> (assert (faucet open))
<Fact-0>

jess> (run) Rule water-flows-while-

faucet-is-open fires
Jess> (facts)

f-0 (MAIN::faucet open)
f-1 (MAIN::water flowing)
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For a total of 2 facts.

Jess> (watch facts)

TRUE

Jess> (retract 0)

<== f-0 (MAIN::faucet open)

<== f-1 (MAIN::water flowing) Jess retracts fact (water

TRUE flowing) automatically
Jess> (facts)
For a total of 0 facts.

If fact 1 is logically dependent on fact 2, you can also say that fact 1 “receives logi-
cal support from” fact 2. A fact may receive logical support from multiple
sources—it may be asserted multiple times with a different set of logical supports
each time. Such a fact isn’t automatically retracted unless each of its logical sup-
ports is removed. If a fact is asserted without explicit logical support, it is said to
be unconditionally supported. If an unconditionally supported fact also receives
explicit logical support, removing that support will not cause the fact to be
retracted. You can find out what logical support a fact is receiving with the
dependencies function. The dependents function tells you what facts are depen-
dent on another given fact. Both functions take either a single fact object or an
integer fact ID as an argument.

If one or more logical CEs appear in a rule, they must be the first patterns in
that rule; a logical CE cannot be preceded in a rule by any other kind of CE. You
can use the logical CE together with all the other CEs, including not and
exists. A fact can thus be logically dependent on the nonexistence of another
fact or on the existence of some category of facts in general.

Shadow facts from definstances are no different than other facts with regard
to the logical CE. Shadow facts can provide logical support and can receive logi-
cal support.

Backward-chaining rules

The rules you’ve seen so far have been forward-chaining rules; as I've said, that
means the rules are treated as if .. then statements, with the engine simply exe-
cuting the RHSs of activated rules. Some rule-based systems, notably Prolog and
its derivatives, support backward chaining. In a backward-chaining system, rules are
still if ... then statements, but the engine actively tries to make rules fire. If the 1 £
clause of one rule is only partially matched and the engine can determine that fir-
ing some other rule would cause it to be fully matched, the engine tries to fire
that second rule. This behavior is often called goal secking.
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As an example, think about the ways Sherlock Holmes might solve a mystery.
He has a collection of evidence (a handkerchief, a fingerprint, a dead body) and
can proceed in two different ways. First, he can draw conclusions from the avail-
able evidence, adding his conclusions to the available information, and continue
until he’s found a link between the evidence and the crime. This is a forward-
chaining method. Alternatively, he can start from the circumstances of the crime,
form a hypothesis about how it happened, and then search for clues that support
this hypothesis. This latter technique is an example of backward chaining.
Holmes generally used both techniques in combination to solve a mystery; as a
Jess programmer, you’ll do the same.

Jess supports both forward and backward chaining, but Jess’s version of back-
ward chaining is not transparent to the programmer. You have to declare which
kinds of facts can serve as backward-chaining triggers, and only specific rules you
define can be used in backward chaining. In truth, Jess’s reasoning engine is
strictly a forward-chaining engine, and so backward chaining is effectively simu-
lated in terms of forward-chaining rules. Still, the simulation is quite effective, and
Jess’s backward-chaining mechanism has many useful applications. You will apply
it in several of the systems you develop later in this book.

Backward chaining is often used as a way to pull required data into Jess’s work-
ing memory from a database on demand. In the example given here, backward
chaining is used to avoid computing the factorial of a number more than once (the
factorial of an integer is the product of every integer between 1 and the number
itself, inclusive; for large numbers this value can be expensive to compute). You
use the deftemplate factorial to store computed factorials. The fact (factorial
5 125) signifies that the factorial of 5 is 125. Figure 7.1 shows how this example
works: The rule print-factorial-10 won’t fire unless a fact giving the factorial of
10 is present. Because factorial has been registered for backward chaining with
the do-backward-chaining function, Jess automatically asserts the fact (need-
factorial 10 nil). This fact matches the need-factorial pattern in the do-
factorial rule, which fires and asserts the fact (factorial 10 3628800). Finally,
this fact activates the print-factorial-10 rule, which fires and prints its output.
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(defrule print-factorial-10

(factorial 10 ?rl) \

(need-factorial 10 nil)

(defrule do-factorial Figure 7.1
(need-factorial ?x ?) A pictorial representation of the
(assert (factorial ?x ?r))) factorial example from the text

To use backward chaining in Jess, you must first declare that specific deftemplates
are backward-chaining reactive using the do-backward-chaining function:
Jess> (do-backward-chaining factorial)

TRUE
If the template is unordered—if it is explicitly defined with a deftemplate or
defclass construct—then you must define it before calling do-backward-
chaining. You can use do-backward-chaining on ordered deftemplates before
they are created, however.

Once you have declared your reactive deftemplates, you can define rules with
patterns that match facts of the corresponding types. Note that you must call do-
backward-chaining before defining any rules that use the template.

This rule prints the factorial of 10, assuming a fact recording this information
exists:

Jess> (defrule print-factorial-10
(factorial 10 ?rl)
=>
(printout t "The factorial of 10 is " ?rl crlf))

TRUE
Patterns that match backward-chaining reactive deftemplates are called goals.
When the rule compiler sees a goal pattern, it rewrites the rule and inserts some
special code into the internal representation of the rule’s LHS. If, when the rule
engine is reset, there are no matches for this pattern, the code asserts a fact into
working memory that looks like this:

(need-factorial 10 nil)

The head of the fact is constructed by taking the head of the reactive pattern and
adding the prefix need-. These need-x facts are called goal-secking or trigger facts.
This particular trigger fact means that another fact (factorial 10 ?) is needed to
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satisfy some rule. Jess got the number 10 directly from the pattern in print-
factorial-10;nil is a placeholder that means “any value.”

Now, let’s write a rule that calculates the factorial of a number when it is
needed. The rule should directly match the need-factorial trigger facts:

Jess> (defrule do-factorial
(need-factorial ?x ?)
=>
;; compute the factorial of ?x in ?r
(bind ?r 1)
(bind ?n ?x)
(while (> ?n 1)
(bind ?r (* ?r ?n))
(bind ?n (- ?n 1)))
(assert (factorial ?x ?r)))

TRUE
The rule compiler rewrites rules like this too: It adds a negated match for the
(factorial ?x ?) pattern to the rule’s LHS, so the rule won’t fire if both the goal
fact and the corresponding goal-seeking fact are both present.

The end result is that you can write rules that match on factorial facts, and if
they are close to firing except they need a factorial fact to do so, any need-
factorial rules may be activated. If these rules fire, then the needed facts appear,
and the factorial-matching rules fire. This, then, is backward chaining! Note
that any needed factorial facts are created only once, so the expensive computa-
tion need not be repeated. Often, avoiding redundant computation is one of the
main benefits of backward chaining.

Jess chains backward through any number of reactive patterns. In the example
in listing 7.4, imagine you have a database that allows you to look up the price of an
item given its item number, or the item number given its name. To find the price
given the name, you need to do two separate queries. When the price-check fact
is first asserted, none of the rules can be activated. Jess sees that price-check
could be activated if there were an appropriate price fact, so it generates the trig-
ger (need-price waffles nil). This matches part of the LHS of rule find-price,
but this rule cannot be activated because there is no item-number fact. Jess there-
fore creates a (need-item-number waffles nil) request. This matches the LHS of
the rule f£ind-item-number, which fires and asserts something like (item-number
waffles 123). This fact activates find-price, which fires and asserts (price
waffles "$1.99"), thereby activating rule price-check, which then fires. The
price is reported. Each of the rules has fired once. The definitions of the functions
fetch-price-from-database and fetch-number-from-database are not shown;
they are presumably written in Java using JDBC.
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Listing 7.4 Multilevel backward chaining

Jess> (clear)

TRUE

Jess> (do-backward-chaining item-number)
TRUE

Jess> (do-backward-chaining price)

TRUE

Jess> (defrule price-check
(do-price-check ?name)
(price ?name ?price)
=>
(printout t "Price of " ?name " is " ?price crlf))

Jess> (defrule find-price
(need-price ?name ?)
item-number ?name ?number)

(
(bind ?price (fetch-price-from-database ?number))
(assert (price ?name ?price)))

Jess> (defrule find-item-number
(need-item-number ?name ?)

(bind ?number (fetch-number-from-database ?name))
(assert (item-number ?name ?number)))

TRUE

Jess> (reset)

TRUE

Jess> (assert (do-price-check waffles))
<Fact-1>

Jess> (run)

Price of waffles is $1.99

3

||

You can wrap a special conditional element, (explicit), around a pattern to
inhibit backward chaining on an otherwise reactive pattern. explicit can be used
in any combination with all other conditional elements.

Most rule-based systems consist of dozens if not hundreds of rules. While such a
program is running, at any one time a large number of rules may be simultaneously
activated. How does Jess decide which rule to fire next? Read on to find out.

Managing the agenda

In section 7.1, you used (watch activations) and (watch rules) to observe the
operation of a simple rule. In particular, you learned that a rule is activated when its
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LHS matches working memory, but it won’t immediately fire. The agenda is the list
of rules that have been activated but haven’t fired yet. For some applications, the
agenda never contains more than one activated rule, and so managing the agenda
isn’t a very interesting topic. But in most applications, the agenda contains multi-
ple rules at once. When this is the case, managing the agenda becomes important.
In this section, we’ll study how Jess chooses which rule to fire next from among all
the activated rules on the agenda, and how you can influence this choice.

Conflict resolution

A typical rule-based system may contain hundreds or thousands of rules. It’s very
likely that at any given moment, more than one rule is activated. The set of acti-
vated rules that are eligible to be fired is called the conflict set, and the process of
putting the rules in firing order is called conflict resolution. The output of the con-
flict-resolution process is the ordered list of activations called the agenda. You can
see this ordered list of activated, but not yet fired, rules with the agenda function.

Conflict resolution in Jess is controlled by pluggable conflict-resolution strategies.
Jess comes with two strategies: depth (the default) and breadth. You can set the cur-
rent strategy with the set-strategy command. Using (set-strategy depth)
causes the most recently activated rules to fire first, and (set-strategy breadth)
makes rules fire in activation order—the most recently activated rules fire last. In
many situations, the difference does not matter, but for some problems the con-
flict-resolution strategy is important. Although the default strategy is intuitive and
correct in most situations, it runs into trouble if every rule that fires activates
another rule. The oldest activations then get pushed far down the agenda and
never get a chance to fire. The breadth strategy avoids this problem, but the “first-
in, first-out” firing order can be confusing.

You can write your own strategies in Java by implementing the jess.Strategy
interface and then calling set-strategy with the name of your class as the argu-
ment. The Strategy interface has a single nontrivial method compare that com-
pares two activations and returns -1, 1, or 0 to signify that the first activation, the
second activation, or either one should fire first.

The conflict-resolution strategy determines how activations are ordered based
on when they are added to the agenda. Sometimes, though, you may find that you
want to fine-tune the ordering a bit. You can use salience to accomplish this.

Changing rule priority with salience

Sometimes you may find that a particular rule should be treated as a special case
by the conflict-resolution strategy. A rule that reports a security breach might
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need to fire immediately, regardless of what else is on the agenda. On the other
hand, a rule that cleans up unused facts might only need to run during the idle
time when no other rules are activated. You can tell the conflict resolver to treat
these rules specially using rule salience.

Each rule has a property called salience that acts as a priority setting for that
rule. Activated rules of the highest salience always fire first, followed by rules of
lower salience. Within a set of rules with identical salience, the order is deter-
mined as described in the previous section. You can use a salience declaration to set
the salience of a rule:

Jess> (defrule defer-exit-until-agenda-empty

(declare (salience -100))

(command exit-when-idle)
=>
(

printout t "exiting..." crlf))

TRUE
This rule won'’t fire until no other rules of higher salience are on the agenda.
Declaring a low salience value for a rule makes it fire after all other rules of higher
salience. A high value makes a rule fire before all rules of lower salience. The
default salience value is 0, so if this is the only rule with an explicit salience value,
it will not fire until the agenda is empty.

You can specify salience values using literal integers, global variables, or func-
tion calls. How the salience values are evaluated depends on the current value of
the salience evaluation method. These values are as follows:

m when-defined—(Default.) A fixed salience value is computed when the
rule is defined.

m when-activated—The salience of a rule is reevaluated each time the rule is
activated.

m every-cycle—The salience value of every rule on the agenda is recom-
puted after every rule firing. Evaluating every-cycle is very computation-
ally expensive and isn’t used much.

You can query or set the salience evaluation method with the set-salience-
evaluation and get-salience-evaluation functions.

Note that extensive use of salience is generally discouraged, for two reasons.
First, use of salience has a negative impact on performance, at least with the built-
in conflict-resolution strategies. Second, it is considered bad style in rule-based
programming to try to force rules to fire in a particular order. If you find yourself
using salience on most of your rules, or if you are using more than two or three
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different salience values, you probably need to reconsider whether you should be
using a rule-based approach to your problem. If you want strict control over exe-
cution order, then you’re trying to implement a procedural program. Either
change your rules to be less sensitive to execution order, or consider implement-
ing your algorithm as one or more deffunctions or as Java code. Alternatively,
you might consider structuring your program using modules.

Partitioning the rule base with defmodule

A typical rule-based system can easily include hundreds of rules, and a large one
can contain many thousands. Developing such a complex system can be a difficult
task, and preventing such a multitude of rules from interfering with one another
can be hard too.

You might hope to mitigate the problem by partitioning a rule base into man-
ageable chunks. The defmodule construct lets you divide rules and facts into dis-
tinct groups called modules. Modules help you in two ways: First, they help you
physically organize large numbers of rules into logical groups. The commands for
listing constructs (rules, facts, and so on) let you specify the name of a module
and can then operate on one module at a time. Second, modules provide a con-
trol mechanism: The rules in a module fire only when that module has the focus,
and only one module can be in focus at a time (you’ll learn about module focus in
section 7.6.3).

We’ll discuss the following functions and constructs in this section:

m clear-focus-stack—Empties the focus stack

m defmodule—Defines a new module

m focus—Sets the focus module

®m get-current-module—Returns the current module

m get-focus-stack—Returns the focus stack’s contents as a list
m list-focus-stack—Displays the focus stack’s contents

® pop-focus—Pops a module from the focus stack

Defining constructs in modules

So far in this book, you haven’t explicitly used modules. If you don’t specify a
module by name when defining a rule or template, it belongs by default to the cur-
rent module. If you never explicitly define any modules, the current module is
always the main module, which is named MAIN. All the constructs you’ve seen so far
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have been defined in MAIN, and therefore are often preceded by MAIN: : when dis-
played by Jess.
You can define a new module using the defmodule construct:

Jess> (defmodule WORK)
TRUE

You can then place a deftemplate, defrule, or deffacts into a specific module
by qualifying the name of the construct with the module name:

Jess> (deftemplate WORK::job (slot salary))

TRUE
Jess> (list-deftemplates WORK)
WORK : : job

For a total of 1 deftemplates.

Once you have defined a module, it becomes the current module:

Jess> (get-current-module)

WORK

Jess> (defmodule COMMUTE)
TRUE

Jess> (get-current-module)
COMMUTE

If you don’t specify a module, all deffacts, templates, and rules you define auto-
matically become part of the current module:

Jess> (deftemplate bus (slot route-number))
TRUE
Jess> (defrule take-the-bus
?bus <- (bus (route-number 76))
(have-correct-change)
=>
(get-on ?bus))
TRUE
Jess> (ppdefrule take-the-bus)
"(defrule COMMUTE: :take-the-bus
?bus <- (COMMUTE: :bus (route-number 76))
(COMMUTE : : have-correct-change)
=>
(get-on ?bus))"

Note that the implied deftemplate have-correct-change was created in the
COMMUTE module, because that’s where the rule was defined. You can set the cur-
rent module explicitly using the set-current-module function.

Modules, scope, and name resolution

A module defines a namespace for templates and rules. This means two different mod-
ules can each contain a rule with a given name without conflicting—for example,
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rules named MAIN: :initialize and COMMUTE: :initialize could be defined
simultaneously and coexist in the same program. Similarly, the templates coM-
PUTER: : bus and COMMUTE: : bus could both be defined. Obviously, then, Jess needs a
way to decide which template the definition of a rule or query is referring to.

When Jess is compiling a rule, query, or deffacts definition, it looks for tem-
plates in three places, in order:

1 Ifa pattern explicitly names a module, only that module is searched.

2 If the pattern does not specify a module, then the module in which the
rule is defined is searched first.

3 If the template is not found in the rule’s module, the module MAIN is
searched last. Note that this makes the MAIN module a sort of global
namespace for templates.

The example in listing 7.5 illustrates each of these possibilities. In this example,
three deftemplates are defined in three different modules: MAIN: :mortgage-
payment, WORK: : job, and HOME: : hobby. Jess finds the WORK: : job template because
the rule is defined in the WORK module. It finds the HOME: : hobby template because
itis explicitly qualified with the module name. And the MAIN: :mortgage-payment
template is found because the MAIN module is always searched as a last resort if no
module name is specified.

Jess> (clear)

TRUE

Jess> (assert (MAIN::mortgage-payment 2000))
<Fact-0>

Jess> (defmodule WORK)

TRUE

Jess> (deftemplate job (slot salary))

TRUE

Jess> (defmodule HOME)

TRUE

Jess> (deftemplate hobby (slot name) (slot income))
TRUE

Jess> (defrule WORK::quit-job
(job (salary ?s))
(HOME: :hobby (income ?i&: (> ?1 (/ ?s 2))))
(mortgage-payment ?mé&: (< ?m ?1i))
=>
(call-boss)
(quit-job))
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Jess> (ppdefrule WORK::quit-job)
"(defrule WORK::quit-job
(WORK: : job (salary ?s))
(HOME: : hobby (income ?i&: (> ?1i (/ ?s 2))))
(MAIN: :mortgage-payment ?m&: (< ?m ?1))
=>
(call-boss)
(quit-job))"
||

Commands that accept the name of a construct as an argument (like ppdefrule,
ppdeffacts, and so on) search for the named construct as described earlier. Note
that many of the commands that list constructs (such as facts, list-
deftemplates, and rules) accept a module name or * as an optional argument.
If no argument is specified, these commands operate on the current module. If a
module name is given, they operate on the named module. If * is given, they
operate on all modules (see appendix A for full descriptions of all Jess functions
and the arguments they accept).

Module focus and execution control
You’ve learned how modules provide a kind of namespace facility, allowing you to
partition a rule base into manageable chunks. You can also use modules to con-
trol execution. In general, although any Jess rule can be activated at any time,
only rules in the focus module will fire. Note that the focus module is independent
from the current module discussed earlier.
Initially, the module MAIN has the focus, so only rules in the MAIN module can fire:
Jess> (defmodule DRIVING)
TRUE
Jess> (defrule get-in-car
=>
(printout t "Ready to go!" crlf))

TRUE

Jess> (reset)
TRUE

Jess> (run)

0

In this example, the rule doesn’t fire because the DRIVING module doesn’t have
the focus. You can move the focus to another module using the focus function
(which returns the name of the previous focus module):

Jess> (focus DRIVING)
MAIN

Jess> (run)

Ready to go!

1
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Note that you can call focus from the RHS of a rule to change the focus while the
engine is running. The focus can move many times during a single run of a program.

Jess maintains a focus stack containing an arbitrary number of modules. The
focus command pushes the new focus module onto the top of this stack; the focus
module is, by definition, the module on top of the stack. When there are no more
activated rules in the focus module, it is popped from the stack, and the next mod-
ule underneath becomes the focus module. The module MAIN is always at least on
the bottom of the stack; it can also be explicitly pushed onto the focus stack.

You can manipulate the focus stack directly with the functions pop-focus,
clear-focus-stack, list-focus-stack, and get-focus-stack. pop-focus
removes the focus module from the focus stack, so that the next module on the
stack becomes active. clear-focus-stack removes all the modules from the focus
stack. The other functions let you examine the contents of the focus stack.

Rule bases are commonly divided into modules along functional lines. For
example, you might put all your input-gathering rules into one module, your
data-processing rules into another, and your reporting rules into a third. Then,
changing the focus from input, to processing, to output represents a natural pro-
gression through well-defined phases of your application’s execution.

The auto-focus declaration

When a rule that declares the auto-focus property is activated, its module auto-
matically gets the focus, as illustrated in listing 7.6. In this example, the rule crash
fires even though its module PROBLEMS didn’t have the focus and the agenda of
the previous focus module DRIVING was not empty. Modules with auto-focus
rules make great background tasks in conjunction with using return from a rule,
as described next.

Jess> (defmodule PROBLEMS)
TRUE
Jess> (defrule crash

(declare (auto-focus TRUE))
DRIVING: :me ?location)
DRIVING: :other-car ?location)

\

(
(
(printout t "Crash!" crlf)
(halt))
TRUE
Jess> (defrule DRIVING::travel
?me <- (me ?location)
=>
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(printout t ".")
(retract ?me)
(assert (me (+ ?location 1))))

TRUE

Jess> (assert (me 1))
<Fact-1>

Jess> (assert (other-car 4))
<Fact-2>

Jess> (focus DRIVING)

MAIN

Jess> (run)

...Crash!

4

Returning from a rule’s RHS

If the function return is called from a rule’s RHS, the execution of that rule’s
RHS is immediately terminated. Furthermore, the current focus module is
popped from the focus stack. This suggests that you can call a module like a sub-
routine. You can call a module from a rule’s RHS using focus, and the module
can return from the call using return. Alternatively, a module can act as a kind of
background process or periodic task by using auto-focus rules to wake itself and
return to put itself back to sleep.

Both forward- and backward-chaining rules can only react to the contents of
working memory. They are passive in the sense that they wait for facts to appear
before they can take action, and then nothing happens until they get to the top of
the agenda. Sometimes you may want to take a more active stance and deliber-
ately search through working memory to find particular information. Jess lets you
do this easily, as you’ll see in the next section.

Searching working memory with defquery

Jess’s working memory is a lot like a relational database. Each deftemplate is like
a relation—a table in the database. The individual slots are the columns of the
tables. If you’re familiar with industrial-strength relational databases, you’re prob-
ably aware of database triggers, which are a lot like forward-chaining rules attached
to a database that fire when the data matches some criterion. You can apply rules
to relational databases, so it’s a reasonable question to ask whether you can make
queries against the working memory of a rule-based system. Jess offers the
defquery construct, which lets you do just that.

A defguery is a special kind of rule with no RHS. Jess controls when regular
rules fire, but queries are used to search the working memory under direct program
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control. A rule is activated once for each matching set of facts, whereas a query gives
you a java.util.Iterator of all the matches. An example should make this clear.
Suppose you have defined the query find-affordable-gifts:
Jess> (deftemplate gift (slot name) (slot price))
TRUE
Jess> (defquery find-affordable-gifts
"Finds all gifts in a given price range"
(declare (variables ?lower ?upper))
(gift (price ?p&: (and (> ?p ?lower) (< ?p ?upper)))))
TRUE
The pattern here matches all the gifts whose price slot holds a number between
?lower and ?upper.
Now you define some facts, including some that match the criterion and some
that don’t:

Jess> (deffacts catalog
gift (name red-scarf) (price 20))

(

(gift (name leather-gloves) (price 35))
(gift (name angora-sweater) (price 250))
(gift (name mohair-sweater) (price 99))
(gift (name keychain) (price 5))

(gift (name socks) (price 6))

(gift (name leather-briefcase) (price 300)))

TRUE

You can invoke the query to find the perfect gift using concrete upper and lower
price limits:
Jess> (reset)
TRUE
Jess> (bind ?it (run-query find-affordable-gifts 20 100))
<External-Address:java.util.AbstractListSItr>
Jess> (while (?it hasNext)
(bind ?token (call ?it next))
(bind ?fact (call ?token fact 1))
(bind ?name (fact-slot-value ?fact name))
(printout t ?name crlf))
leather-gloves
mohair-sweater
FALSE

Here you’re looking for gifts between $20 and $100, and the query finds mohair-
sweater and leather-gloves.

Let’s break down this code to see what it’s doing. As previously stated, (run-
query) returns the query results as a Java java.util.Iterator object. The
Iterator interface has a method next () that you call to retrieve each individual
result; it also has a hasNext () method that returns true as long as there are more
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results to return. That explains the (while (?it hasNext) ... (call ?it next))
control structure; it steps through each of the results returned by the query.

Each individual result is a jess.Token object. A Token is just a collection of
jess.Fact objects; each Token holds one match for the query. You call the fact ()
method of jess.Token to retrieve the individual jess.Fact objects within the
Token. Each match begins with an extra fact, a query trigger fact that initiates the
matching process; it is asserted by the run-query command (this fact is retracted
automatically after the query is run). Hence the argument to the call to fact () is
1, not 0. Once you have the right fact, you use the fact-slot-value function to
extract the contents of the name slot. Printing the name slot of each fact leads to
the output shown earlier.

The defquery construct can use virtually all the same features that defrule
LHSs can, including all the special conditional elements described in this chapter.
The function ppdefrule can also pretty-print queries. Jess treats a defquery as a
special kind of defrule in many contexts; for instance, the rules command lists
defquerys as well as defrules.

As you can see, the run-query function lets you pass parameters to a query; you
passed numbers representing the upper and lower limits of a price range to the
find-affordable-gifts query. Let’s examine this process a little more closely.

The variable declaration

You might have already realized that two different kinds of variables can appear in
a query: those that are internal to the query, like ?p in find-affordable-gifts,
and those that are external, or to be specified in the run-query command when
the query is executed. Jess assumes all variables in a query are internal by default;
you must declare any external variables explicitly using this syntax:

(declare (variables ?x ?y ...))

When you invoke a query using the run-query function, you must supply exactly as
many variables as are listed in the variables declaration. Some queries may not
have any external variables; in this case, the variables declaration is optional.

Query trigger facts

When Jess compiles a defquery, it inserts an extra pattern as the first one in the
query. This first pattern is of the form

(__query-trigger-name ?x ?y ...)

where name is the name of the query and ?x, ?y, and so on are the variables
named in the variables declaration for the query. run-query works by asserting
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afact to match this pattern, using the arguments you supply to instantiate the vari-
ables. This fact completes any pending matches of the defquery’s LHS, and run-
query collects these matches and returns them.

The count-query-results function

To obtain just the number of matches for a query, rather than a full Tterator over
all the matches, you can use the count-query-results function. This function
accepts the same arguments as run-query but returns an integer specifying the
number of matches.

Backward chaining and queries

It can be convenient to use queries as triggers for backward chaining. For exam-
ple, look back at the backward-chaining example in section 7.4. If you were writ-
ing a deffunction that needed to use factorials, that deffunction might want to
use a defquery to fetch the ones that are already available from working memory,
rather than recomputing them. The backward-chaining rules would then com-
pute missing values.

For this technique to be useful, (run) must somehow be called while the query
is being evaluated, to allow the backward chaining to occur. Facts generated by
rules fired during this run may appear as part of the query results.

By default, no rules fire while a query is being executed. If you want to allow
backward chaining to occur in response to a query, you can include the max-
background-rules declaration in that query’s definition. For example, this query
allows a maximum of five rules to fire while it is being executed:

Jess> (defquery find-factorial
(declare (max-background-rules 5)

(variables ?arg))
(factorial 2arg ?))

Summary

You can define rules to take action based on the contents of Jess’s working mem-
ory, and you can write queries to investigate it procedurally. Both rules and que-
ries can use consiraints (conditions on the slot data of facts) and conditional elements
(relationships between facts) to express specity detailed requirements on working
memory elements.

You can write both forward- and backward-chaining rules. Roughly, you can say
that forward-chaining rules discover the conclusions that can be drawn from an
existing set of facts, and backward-chaining rules search for the premises from
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which existing facts can be derived. You can also write queries to probe working
memory directly.

In real systems, many rules are activated simultaneously. Conflict resolution, or
choosing which rule to fire next, is an important part of any rule-based system. Jess
lets you influence conflict resolution in a number of ways: by setting the conflict-
resolution strategy, by using salience, or by partitioning your rule base into modules.
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= Learn how to make your rules more efficient
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You can drive a car without understanding anything about what’s under the hood.
But if you’re driving through a desert, miles from a phone, and your engine starts
to sputter and cough, a little knowledge and a full toolbox could go a long way.

So it is with much of the software you use as a developer. As long as everything
is working well, you can get by without much knowledge of its internal workings.
When something starts to go wrong, however, you may need extra knowledge and
a few tools to fix it. This chapter gives you both, as far as Jess is concerned. We’ll
look at the Rete algorithm, the technique that Jess uses to do fast pattern matching.
You’ll also learn about some tools built into Jess that let you kick the tires and look
under the hood.

Some of the information in this chapter is generally true of any system based
on the Rete algorithm, and a little is specific to one version of Jess. I'll try to make
the distinction as we go along. In general, the version-specific parts of Jess are in
nonpublic Java classes, so you’d have to go out of your way to use them. If you do,
though, consider yourself warned that they are internal implementation details,
and any Java code you write that uses them may well break each time a new ver-
sion of Jess is released.

Review of the problem

Before looking at Jess’s implementation, let’s review the problem Jess is meant to
solve. Jess is a shell for rule-based systems. In the simplest terms, this means Jess’s
purpose is to continuously apply a set of if. . .then statements (rules) to a set of
data (the working memory). Each system built from the shell defines its own rules.
Jess rules look like this:

(defrule library-rule-1
(book (name ?x) (status late) (borrower ?vy))
(borrower (name ?y) (address ?z))
=>

(send-late-notice ?x ?y ?z))
This rule might be translated into pseudo-English as follows:

Library rule #1:
IF

A late book X exists, borrowed by a person Y
AND That borrower's address is known to be Z
THEN

Send a late notice to Y at Z about the book X.
END

The information about books and borrowers would be found in the working
memory, which is therefore a kind of database of bits of factual knowledge about
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the world. Entities like books and borrowers are called facts. Facts have attributes
called slots, like a name, a status, and so on. Each kind of fact can have only a fixed
set of slots. The allowed slots for a given type are defined in Jess statements called
deftemplates. Actions like send-late-notice can be defined in user-written
functions in the Jess language (deffunctions) or in Java (see chapter 15). For
more information about rule syntax, you can refer to chapter 7.

Therefore, the main problem Jess must solve is that of matching the rules in
the rule base to the facts in working memory. Jess has to perform the following
steps in an infinite loop:

1 Find all the rules that are satisfied by a set of facts in working memory.
2 Form activation records out of these rule/fact associations.

3 Choose one activation record to execute.

8.2 An inefficient solution

The obvious implementation of pattern matching would be to keep a list of the
rules and simply check each one’s left-hand side (LHS) in turn against the work-
ing memory, forming a set of activation records for any that match. After choosing
one rule and executing it, you could discard the set of activation records and start
again. You might call this the rules finding facts approach. It is obviously not very
efficient and doesn’t scale well. After every rule firing, the system must recheck
every fact against every rule. Doubling the number of facts or the number of rules
roughly halves the performance of the system.

It is difficult to analyze pattern-matching algorithms like this one in the gen-
eral case, because the actual performance is dependent on the makeup of work-
ing memory and on the exact nature of the rules. For the example rule in the
previous section, though, we can say that this naive algorithm will take time pro-
portional to the product B;B, on each cycle, where B, is the number of books and
B, is the number of borrowers. This is easy to see; on each cycle, every book must
be checked to see if it is overdue, and the overdue ones must be checked against
every borrower to find the right address. On the average, for many rules, the
worst-case performance of this simple algorithm will be something like the B;B,
expression, extended to deal with any number of patterns and multiplied by the
number of rules. We could write the result RF’, where Ris the number of rules, F
is the total number of facts, and Pis the average number of patterns per rule. If P
is 2, then the runtime will scale as the square of the number of facts; doubling the
number of facts will multiply the runtime by a factor of 4.
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The Rete algorithm

We can improve on the performance of this simple but inefficient pattern-match-
ing algorithm by thinking about the source of its inefficiency. The typical rule-
based system has a more or less fixed set of rules, whereas the working memory
changes continuously. However, it is an empirical fact that in most rule-based sys-
tems, much of the working memory is also fairly fixed over time. Although new
facts arrive and old ones are removed as the system runs, the percentage of facts
that change per unit time is generally fairly small.

The rules finding facts algorithm is therefore needlessly inefficient, because most
of the tests made on each cycle will have the same results as on the previous itera-
tion. An algorithm that could somehow remember previous pattern-matching
results between cycles, only updating matches for facts that actually changed, could
do far less work and get the same results.

Jess uses a very efficient version of this idea, known as the Rete algorithm.
Charles Forgy’s classic paper describing the Rete algorithm! became the basis for
several generations of fast rule-based system shells: OPS5, its descendant ART,
CLIPS, Jess, and others. Each system has enhanced and refined the algorithm to
improve performance or flexibility. This chapter describes the algorithm as imple-
mented in Jess.

Briefly, the Rete algorithm eliminates the inefficiency in the simple pattern
matcher by remembering past test results across iterations of the rule loop. Only
new or deleted working memory elements are tested against the rules at each
step. Furthermore, Rete organizes the pattern matcher so that these few facts are
only tested against the subset of the rules that may actually match.

How Rete works

Rete is Latin for net (it’s pronounced “ree-tee”). The Rete algorithm is imple-
mented by building a network of interconnected nodes. Every node represents one
or more tests found on the LHS of a rule. Each node has one or two inputs and any
number of outputs. Facts that are being added to or removed from the working
memory are processed by this network of nodes. The input nodes are at the fop of
the network, and the output nodes are at the botfom. Together, these nodes form
the Rele network, and this network is how Jess’s working memory is implemented.

1

Charles L. Forgy, “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match Problem,”

Artificial Intelligence 19 (1982): 17-37.
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At the top of the network, the input nodes separate the facts into categories
according to their head—for example, books go through one path, and borrowers
go through another. Inside the network, finer discriminations and associations
between facts are made, until the facts get to the bottom. At the bottom of the net-
work are nodes representing individual rules. When a set of facts filters all the way
down to the bottom of the network, it has passed all the tests on the LHS of a par-
ticular rule; this set, together with the rule itself, becomes either a new activation
record or a command to cancel a previously existing activation record (recall that
an activation record is an association of a list of facts with a rule that they activate).

Between the inputs and the outputs, the network is composed of two broad
categories of nodes: one-input nodes and two-input nodes. One-input nodes perform
tests on individual facts, and two-input nodes perform tests across multiple facts.
An example would probably be useful at this point. The following rules might be
compiled into the network shown in figure 8.1:

Jess> (deftemplate x (slot a))

TRUE
Jess> (deftemplate y (slot b))
TRUE
Jess> (deftemplate z (slot c))
TRUE

Jess> (defrule example-1
(x (a 2?vl))

(y (b ?vl1))
=> )
TRUE
Jess> (defrule example-2
(x (a ?v2))
(y (b ?v2))
(z)
=> )
TRUE
=x? =y? =x? =y? Q
LEFT.0.a=RIGHT.b? LEFT.0.a=RIGHT.b?

Figure 8.1

‘ An unoptimized Rete network for the
two rules example-1 and example-2
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In this diagram, each box represents a node. A node’s inputs are shown on
the top, and its outputs are on the bottom. The diamond-shaped nodes marked
=g? are one-input or pattern nodes. The pattern nodes in this example test if the
head of a fact is ¢. Facts that pass this test are sent to the node’s output; others
are ignored.

The trapezoidal nodes are two-input or join nodes. Each join node joins the
results of matching the first n-1 patterns (coming from upper left in the diagram)
with the nth pattern (attached at upper right in the diagram). Join nodes remem-
ber all facts or groups of facts that arrive on either of their two inputs. The network
is built so that the left input can receive groups of one or more facts; the right
input receives only single facts. Every join node produces groups of two or more
facts as at its output. The arrivals from the two inputs are kept in separate memory
areas, traditionally called the alpha and beta memories. We’ll refer to them as the
left and right memories instead, because it’s easier to keep these names straight!
The notation LEFT. p. g==RIGHT. r? indicates a test comparing the contents of slot
gin the pth fact in a group from the left memory to the slot rin a fact from the
right memory. Join nodes produce one output for each ordered pairing of a left-
memory element and a right-memory element that passes the tests in that node.

The oval nodes at the bottom of the network are the ferminal nodes that repre-
sent individual rules. They have a single input and no outputs. When they receive
an input, they build an activation record from the input item and the rule they
represent and place it on the agenda. Note that any facts that reach the top of a
join node could potentially contribute to an activation; they have already passed
all the tests that can be applied to single facts.

To run the network, you present every new fact to each node at the top of the
network. The example pattern network eliminates all facts except the x, y, and z
ones. The join network then sends all {x, y} pairs with x.a == y.b to the termi-
nal node for example-1, and all {x, y, z} triples (given the same restriction) to
the terminal node for example-2. The terminal nodes thus know what activation
records to create.

What happens if, after processing the initial facts, we assert an additional fact
(z (c 17))? The fact is presented to the =z? pattern node and sent down to the
join node below. The left memory of that join node already contains all the
acceptable x, y pairs, so the correct x, y, z triples can be formed without repeat-
ing the pattern matching computation done on the first cycle. One new activation
will be created for each precomputed x, y pair. You can now see how the Rete
architecture lets you avoid repeating computation over time.
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Handling retract

So far, you’ve seen how the Rete algorithm can be used to efficiently handle the
pattern matching that happens during assert commands; but what about
retract? Rete can handle removing activation records as easily as it can handle
creating them. The trick to doing so is that you don’t send facts through the net-
work: You send tokens. A token is an association between one or more facts and a
tag, or command. The tag tells the individual nodes how to interpret the token.
Jess uses four different tags, defined as constants in the jess.RU class: ADD,
REMOVE, CLEAR, and UPDATE. ADD is used for asserting facts, as you’ve already seen.
The behavior described so far only applies for token with a tag value of ADD.

The REMOVE tag is used for retractions. If a REMOVE token arrives at a join node,
the node looks in the appropriate memory to find a matching token. If it finds
one, the token is deleted. All allowed pairings between that token and all the
tokens in the opposite memory are then composed, also with the REMOVE tag.
These tokens are sent to the join node’s output. Finally, if a terminal node receives
a REMOVE token, the corresponding activation record is found and deleted.

The remaining two tags are more subtle. UPDATE is used when a new rule has
been added to a preexisting Rete network, and the join nodes belonging to that
new rule have to be populated with facts. The UPDATE tag lets the nodes that
already existed know they can safely ignore a token, because it’s a duplicate of
one sent some time in the past; this prevents the preexisting nodes from storing
duplicate tokens in their memories. Finally, the CLEAR tag tells the join and ter-
minal nodes to flush their memories; it is used to implement the (reset) com-
mand efficiently.

Easy optimizations for Rete

That’s it for the basic Rete algorithm. There are many optimizations, however,
which can make it even better. Two easy ones work by introducing node sharing
into the network. The first optimization is to share nodes in the pattern network.
In figure 8.1, there are five nodes across the top, although only three are distinct.
You can modify the network to share these nodes across the two rules. The result
is shown in figure 8.2.
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=x? =y? Q

LEFT.0.a=RIGHT.b?, LEFT.0.a=RIGHT.b?

‘ Figure 8.2
A Rete network that
shares pattern nodes

But that’s not all the redundancy in the original network. Looking at figure 8.2,
you can see that one join node is performing exactly the same function (integrat-
ing x, y pairs) in both rules; you can share that also, as shown in figure 8.3. Sharing
join nodes is an especially fruitful optimization. Because joining involves compar-
ing facts to one another, the tests in join nodes tend to be executed many more
times than those in pattern nodes—so much so that the time spent in the join net-
work generally dominates the running time of the system. By sharing this one join
node, then, you’ve effectively doubled the performance of your program.

The pattern and join networks in figure 8.3 are collectively only half the size
they were in the first version. This kind of sharing comes up frequently in real sys-
tems and is a significant performance booster.

LEFT.0.a=RIGHT.b?,

example—1

Figure 8.3

A Rete network that shares both
( example-2 ) pattern and join nodes
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8.5 Performance of the Rete algorithm

8.5.1

The Rete algorithm’s performance is even harder to analyze precisely than the
simple rules finding facts algorithm. In general, the performance on the first
cycle is basically the same for the two algorithms; Rete has to do pattern matching
for every fact in working memory, because there are no previous results to con-
sult. In the worst case, where every fact changes on every cycle and there is no net-
work sharing between rules, then the performance for later cycles is the same as
well. This means Jess won’t be very efficient if you populate the working memory,
run the pattern matcher for just one cycle, and then reset working memory and
repopulate it again from scratch. But in the typical case of a slowly changing work-
ing memory, moderate sharing in the network, and effective indexing, Rete will
vastly outperform the naive algorithm for all cycles after the first. The runtime will
be proportional to something like R'F”, where R’is a number less than R, the
number of rules; /' is the number of facts that change on each iteration; and P’is
a number greater than one but less than the average number of patterns per rule.

Node index hash value

Jess uses a fairly sophisticated data structure to represent the two memories in
each join node. It is basically a hash table with a fixed number of buckets. The
interesting feature here is that the hash function uses the part of each token that
is most relevant to the specific tests in each join node. This lets Jess presort the
tokens before running the join node tests. In many cases, running some or all of
the tests can be avoided altogether, because once the tokens are sorted into the
hash buckets, questions involving comparisons of slot data can often be answered
categorically for a whole bin.

The node index hash valueis a tunable performance-related parameter that can
be set globally or on a per-rule basis. It is simply the number of buckets to use in
each individual hash table. A small value saves memory, possibly at the expense of
performance; a larger value uses more memory but leads (up to a point) to faster
pattern matching. The default, used if you don’t declare an explicit value, is cho-
sen for optimal performance.

In general, you might want to declare a large value for a rule that is likely to gen-
erate many partial matches. Conventional wisdom has it that prime numbers are
the best choices. Experimentation is the only way to determine the best value for a
particular rule. If nis the number of i tem facts, then the following rule will need n’
tokens in the left memory of its third join node; it’s an excellent candidate for a
large node index hash value if you expected there to be more than a few item facts:
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Jess> (defrule many-matches
(declare (node-index-hash 167))
(item ?a)
(item ?b)
(item 2c)
(item 2d)
(

printout t ?a " " ?b " " ?c " " 2?d crlf))

The set-node-index-hash function sets the default value for this parameter, used
for rules without a specific declaration. If you don’t set a value, the defaultis 101.

More complexity and initial-fact

A number of pattern-matching situations can’t be handled by what we’ve discussed
so far. Studying them is enlightening because it explains some otherwise seemingly
arbitrary properties of software like Jess that is based on the Rete algorithm.

Implementing the not conditional element

The not conditional element matches the absence of a fact. Its implementation
involves a special kind of join node and a special field in every token. The special
field is called the negation count. The special NOT join node uses the negation
count to keep track of the number of times the node’s conditions are met for
each token in the left memory. The count is incremented whenever the node’s
tests pass for a given token and decremented whenever they do not. When the
count reaches zero for a given left-memory token, a new token is formed from it
and a special null fact (which represents the nonexistent right-memory input) and
sent to the node’s output.

The important thing to notice about this description is that although the facts
matching the pattern in the not conditional element arrive at the NOT node’s right
input, only the tokens arriving at the left input form part of the output tokens. A
moment’s reflection shows that it has to be this way; the not conditional element
is matched when there is no matching fact. If there are no tokens in the right
memory, that means the not conditional element will always succeed, so the NOT
node will pass every token received on the left input directly to its output.

Now, what should a NOT node do if it doesn’t have a left input? Such a case
would arise if a not conditional element was the first pattern on the LHS of a rule
or the first pattern in a given branch of an or conditional element. The NOT node
clearly can’t function without a left input; it can’t create output tokens without left
input tokens as seeds. For this reason, Jess inserts the (initial-fact) pattern
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into rules that have this problem. Without this pattern, the not conditional ele-
ment wouldn’t work.

Implementing the test conditional element

The test conditional element doesn’t match a fact; it simply evaluates a function.
To implement test, Jess uses another special join node that ignores its right
input. For each token arriving on the left input, the TEST join node evaluates its
function. If the function doesn’t evaluate to FALSE, the left input token and a null
fact are composed to make a new token, which is then sent to the node’s output.
The TEST node, just like the NOT node, clearly can’t work properly without a left
input. Therefore, test conditional elements can also cause Jess to insert
(initial-fact) patterns into rules.

Implementing backward chaining

Jess implements backward chaining on top of the forward-chaining Rete algo-
rithm. The basic problem is detecting when the LHS of a rule has been matched
up to, but not including, a pattern that matches a backward-chaining reactive tem-
plate (see section 7.4). At this point, a signal must be sent describing the fact that
would complete the match; as you might guess, having read section 7.4, that sig-
nal is a need-x fact. Once this fact is asserted, rules that match it can once again
be processed in a forward-chaining fashion.

To implement this functionality, the join nodes that receive facts from a back-
ward-chaining reactive template must act specially. Each time a new left input
token is received, the number of successful pairings with right input tokens is
counted. If the count is zero, a need-x fact is generated. The left input token rep-
resents the facts that match a rule up to, but not including, the pattern for the
reactive template. Once again, you see that the left input token is crucial to the
correct operation of this special type of join node, and so Jess inserts (initial-
fact) patterns as necessary to provide them.

Exploring the Rete network in Jess

The compiled Rete network is a complex and (often) large data structure. Some-
times, understanding it can mean the difference between an efficient program and
a dreaded outOfMemoryError. In this section, we’ll look at some functions that
will help you explore the Rete network: watch compilations, view, and match.

The (watch compilations) command
You can see the amount of node sharing in a Rete network by using Jess’s (watch
compilations) function. Executing this function tells the rule compiler to print
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some diagnostics to the screen when each rule is compiled. For each rule, Jess
prints a string of characters something like this, the actual output from compiling
rule example-1 from section 8.3.1:

MAIN: :example-1: +1+1+1+42+t

Each time +1 appears in this string, it means a new one-input node was created.
+2 indicates a new two-input node. +t indicates a terminal node.
Now, watch what happens when we compile example-2 from the same section:

MAIN: :example-2: =1=1+1=1=2+2+t

The string =1 is printed whenever a preexisting one-input node was shared; simi-
larly, =2 means a two-input node was shared. You can see from these diagnostics
that, as expected, one of the two join nodes in example-2 was shared, along with
most of the pattern nodes. If you want to study what happens more precisely, you
can use the view command, described in the next section.

The view function

The view command (see figure 8.4) is a graphical viewer for the Rete network. By
giving you feedback about the data structures Jess builds from your rule defini-
tions, it may help you to design more efficient rule-based systems. Issuing the
view command after entering the rules example-1 and example-2 from section
8.3.1 produces a very good facsimile of the diagram in figure 8.3 (with some sub-
tle differences). The various nodes are color-coded according to their roles in the
network. Nodes in the pattern network are red, normal join nodes are green, not
nodes are yellow, and terminal nodes are blue. The bottom node in the left col-
umn of the figure is a right to left adapter; one of these is always used to connect the
first pattern on a rule’s LHS to the network. Passing the mouse over a node dis-
plays information about the node and the tests it contains. Double-clicking on a
node brings up a dialog box containing additional information; for join nodes,
the memory contents are also displayed (the same information displayed by the
matches function), and for terminal nodes, a pretty-print representation of the
rule is shown. You can move the individual nodes around by dragging them with
your mouse. In figure 8.4, the nodes have been dragged into position by hand to
resemble the diagrams in the other figures.
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Figure 8.4

Home 1 Jess’s view command displays

the Rete network in a window.

To fully appreciate what’s happening in the view command’s display, you need to
know something about how Jess implements the Rete algorithm. Jess’s network is
literally a network of interconnected Node objects. Network nodes are repre-
sented by subclasses of the abstract type jess.Node. Pattern network nodes,
which perform tests on single facts, have Nodel as part of their name. There are
also three classes of join nodes—jess.Node2, jess.NodeNot2, and NodeTest—
that implement normal joins, the not conditional element, and the test condi-
tional element, respectively. Terminal nodes are instances of jess.NodeTerm.

There are quite a few different Nodel classes. jess.NodelTECT nodes, for
example, test the head of a fact, and therefore provide the entrance route into
the network. NodelTEQ nodes compare the value of a single slot to a constant
value, and NodelTEV1 nodes test whether two slots within a single fact contain the
same value. There are separate multislot variations of these types; their names
begin with NodelM. NodelMTEQ nodes, for example, compare a single datum at a
particular location in a multislot to a constant value. Finally, there are negated
versions, too: NodelTNEV1 nodes test that two slots in a single fact do not contain
the same value.

Besides the menagerie of nodes types listed here, other types serve a structural
role in the network: NodelRTL nodes, for example, adapt an output that would
normally lead to the right input of a join node so that it connects to the left input
instead, and NodelNONE nodes serve as stand-ins for nodes that aren’t really
there—specifically, for the part of the pattern network that leads to the right
input of a NodeTest. The information that the matches or view functions display
about individual nodes is generally fairly descriptive of each node’s function.
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8.7.3 The matches function

The matches function lets you see the contents of the left and right memories of
the join nodes used by any rule. It can be an invaluable aid in determining why a
particular rule isn’t behaving the way you expect. It also is a good way to check for
computational hot spots that might be slowing down your programs.

The matches function is easy to use. Give it the name of a rule as an argument,
and it will show you information about each of the rule’s join nodes in left-to-right
order. In the following example, the rule matches-demo’s single join node has
one token in its left memory and one in its right; each memory gets its input from
one pattern of the original rule:

Jess> (defrule matches-demo
(a)
(b)
:>)
TRUE
Jess> (deffacts matches-demo-facts (a) (b))
TRUE
Jess> (reset)
TRUE

Jess> (matches matches-demo)

>>> [Node2 ntests=0 ;usecount = 1;unique = false]

*** Left Memory:

[Token: size=1;sortcode=1;tag=ADD;negcnt=0;facts=(MAIN::a);]
*** RightMemory:

[Token: size=1;sortcode=2;tag=ADD;negcnt=0;facts=(MAIN::b) ;]

TRUE

8.8 Summary

Jess uses the fast, efficient Rete algorithm for pattern matching. The strength of
Rete is that it uses a set of memories to retain information about the success or fail-
ure of pattern matches during previous cycles.

The Rete algorithm involves building a network of pattern-matching nodes. Jess
uses many different kinds of nodes to represent the many different kinds of pat-
tern-matching activities. There are also special nodes to handle some conditional
elements like not and test, as well as special behavior in some nodes to handle
backward chaining.

This chapter concludes the introduction to Jess. In the next part of this book,
and in each subsequent part, you will develop a nontrivial application. Each appli-
cation is standalone, but each part of the book builds on the knowledge and skills
developed during the previous parts.



Part 3

Creating your first
rule-based application:
the lax Forms Aduvisor

Uing a classic expert system is something like being interviewed: The pro-
gram asks you a series of questions and then provides some advice or information.
In part 3, you’ll develop your first nontrivial program to follow this model. We’ll
concentrate on the mechanics of rule-based system development. There are spe-
cial sections on knowledge engineering and on testing.

The system you’ll be developing is called the Tax Forms Advisor. Given some
information about your personal finances, the program will recommend which
income tax forms you may need to file. It is suitable for installation in a kiosk in
the lobby of a post office.






Collecting the knowledge

In this chapter you’ll...

= Learn about knowledge engineering
= Learn to interview experts

= Collect requirements

= Assemble domain knowledge
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CHAPTER 9
Collecting the knowledge

A journey of a thousand miles begins with the first step.

—Lao Tzu

The first step in developing any rule-based system is collecting the knowledge the
system will embody. In this chapter, your major concern will be to learn how this
can be accomplished. As a practical example, you’ll gather the knowledge you’ll
build into your first nontrivial rule-based program.

The Tax Forms Advisor

For the next three chapters, you’ll be developing a simple rule-based application
that recommends United States income tax forms. The application asks the user a
series of questions and, based on the answers, tells the user which paper Internal
Revenue Service forms she will likely need. You will populate the application with
enough data to make it realistic, although you won’t try to make it exhaustive.
Your application might be used in an information kiosk at the post office.

You'll follow a realistic development process as you create this application, start-
ing in this chapter by collecting the actual knowledge. In chapters 10 and 11 you’ll
write the application using an iterative methodology, including lots of testing.

The Tax Forms Advisor has a command-line interface. You’ll concentrate on
developing the rules themselves, so the entire program will be written in the Jess
rule language without using any Java reflection capabilities. In the next part of
this book, we’ll examine one way to add a graphical interface to applications like
this one.

DISCLAIMER The system you’re developing is intended only to provide guidelines
about what tax forms a taxpayer might need to file. It is not intended to
give authoritative legal advice about tax filing.

Introduction to knowledge engineering

Every rule-based system is concerned with some subset of all the world’s collected
knowledge. This subset is called the domain of the system. The process of collecting
information about a domain for use in a rule-based system is called knowledge engi-
neering, and people who do this for a living are called knowledge engineers. On small
projects, the programmers themselves might do all the knowledge engineering,
whereas very large projects might include a team of dedicated knowledge engineers.
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Professional knowledge engineers may have degrees in a range of disciplines:
obvious ones like computer science or psychology, and domain-related ones like
physics, chemistry, or mathematics. Obviously it helps if the knowledge engineer
knows a lot about rule-based systems, although she doesn’t have to be a programmer.

A good knowledge engineer has to be a jack of all trades, because knowledge
engineering is really just learning—the knowledge engineer must learn a lot
about the domain in which the proposed system will operate. A knowledge engi-
neer doesn’t need to become an expert, although that sometimes happens. But
the knowledge engineer does have to learn something about the topic. In gen-
eral, this information will include:

»  The requirements—Looking at the problem the system needs to solve is the
first step. However, you might not fully understand the problem until later
in the process.

= The principles—You need to learn the organizing principles of the field.

»  The resources—Once you understand the principles, you need to know where
to go to learn more.

= The frontiers—Every domain has its dark corners and dead ends. You need to
find out where the tough bits, ambiguities, and limits of human understand-
ing lie.

The knowledge engineer can use many potential sources of information to
research these points. Broadly, though, there are two: interviews and desk research.
In the rest of this section, we’ll look at techniques for mining each of these infor-
mation sources to gather the four categories of information we just listed.

Where do you start?

When you’re starting on a new knowledge engineering endeavor, it can be diffi-
cult to decide what to do first. Knowledge engineering is an iterative process. You
usually can’t make a road map in advance; instead you feel your way along, adjust-
ing your course as you go. As the saying goes, though, a journey of a thousand
miles begins with a single step, and taking that first step can be hard.

With most projects, you should first talk to the customers—the people who are
paying you to write the system. Find out what their needs are and what resources
they can make available. This isn’t knowledge engineering per se, but requirements
engineering—part of planning any software project. But the customer might point
you to particular sources of technical information and help you plan your
approach to knowledge engineering. After talking to the customers, you should
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have a rough idea of what the system should do and how long development is
expected to take.

Next, it’s best to seek out general resources you can use to learn about the fun-
damentals of the domain and do a bit of selfstudy. Being at least vaguely familiar
with the jargon and fundamental concepts in the domain will let you avoid wast-
ing the time of people you interview later. You should learn enough about the
fundamentals to have a rough idea of what kinds of knowledge the system needs
to have.

Once you’ve developed an understanding of the basics, you're ready to begin
the iterative process. Based on your initial research, write down a list of questions
about the domain which, if answered, would provide knowledge in the areas you
previously identified. Seek out a cooperative subject-matter expert, briefly explain
the project to him, and ask him the questions (often the customer will provide the
expert; otherwise they should pay the expert a consulting fee to work with you).
Usually the answers will lead to more questions.

After the initial interview, you can try to organize the information you’ve gath-
ered into some kind of structure—perhaps a written outline or a flowchart. As you
do this, you can begin to look for what might turn out to be individual rules. For
the Tax Forms Advisor, an individual rule you might encounter early in the pro-
cess would be (in the Jess language):

(defrule use-ez-form

; If filing status is "single", and...

(filing-status single)

; user made less than $50000

(income ?i&: (< ?i 50000))

=>

; recommend the user file Form 1040EZ

(recommend 1040EZ))
Detailed comments like those shown here will help non-technical people read
and understand the rules, if necessary. Buy a stack of white index cards and write
each potential rule on one side of an individual card. Use pencil so you can make
changes easily. The cards are useful because they let you group the rules accord-
ing to function, required inputs, or other criteria. When you have a stack of 100
cards or more, the utility becomes obvious. You can use the reverse sides of the
cards to record issues regarding each rule. This stack of cards might be the final
product of knowledge engineering, or the cards’ contents might be turned into a
report. The cards themselves are often the most useful format, though.

After organizing the new knowledge on index cards, you may see obvious gaps
that require additional information. Develop a new set of interview questions and
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meet with the expert again. The appropriate number of iterations depends on the
complexity of the system.

Knowledge engineering doesn’t necessarily end when development begins.
After an initial version of a system is available, the expert should try it out as a user
and offer advice to correct its performance. If possible, a prototype of the system
should be presented to the expert at every interview—except perhaps the first one.

Likewise, development needn’t be deferred until knowledge engineering is
complete. For many small projects, the knowledge engineer is one of the develop-
ers, and in this case you may be able to dispense with the cards and simply encode
the knowledge you collect directly into a prototype system. This is what you’ll do
for the Tax Forms Advisor.

More on writing cards
To write down the rule use-ez-formon a card, I had to make up the deftemplate
names filing-status and income and also define an imaginary function
recommend. In general, you will write rules on these cards in pseudocode; they’re
meant to suggest how the real rules might be coded, but they’re just guides. When
actual development begins on the system, these early guesses will help the devel-
opers figure out what deftemplates and other infrastructure they need to define.
Finally, note that although I wrote use-ez-form in Jess syntax, it would be per-
fectly OK for a knowledge engineer to use natural language, or pseudocode that
looks like some other programming language. If you are a knowledge engineer
but not a programmer, writing rules in your native language may be the only
option, and that’s fine.

Interviews

People are the best source of information about the requirements for a system.
Many projects have requirements documents: written descriptions of how a proposed
system should behave. Despite the best intentions, such documents rarely capture
the expectations for a system in enough detail to allow the system to be imple-
mented. Often, you can get the missing details only by talking to stakeholders: the
customers and potential users of the system.

People can also direct you to books, web sites, and other people who will help you
learn about the problem domain. These days it’s common to suffer from information
overload when you try to research a topic—there are so many conflicting resources
available that it’s hard to know what information to believe. The stakeholders in the
system can tell you which resources they trust and which ones they don’t.
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If you find conflicting information among otherwise trustworthy references
during your research, or hear conflicting statements during interviews, don’t be
afraid to ask for clarification. You’ll need a strategy for resolving conflicts that
hinge on matters of opinion. Sometimes you can do this by picking a specific per-
son as the ultimate arbiter. Other times, especially on larger projects, it’s appropri-
ate to hold meetings to get the stakeholders to make decisions in a group setting.

Interviewing strategies

Cultivating a good relationship with the people you interview is important. This
sounds so simple, you might not think it needs to be said—but it does. Computer
people have a culture all their own, and it’s different enough from mainstream
culture that programmers can be perceived as rude. If you're a computer pro-
grammer working as a knowledge engineer, you may have to alter your accus-
tomed behavior when you’re interviewing nonprogrammers. Here are a few
things to watch out for:

»  Speak their language—It can be difficult for a programmer to remember that
stacks, loops, shifts, and pointers are not part of the everyday vocabulary of
most nonprogrammers. Don’t use programming terms if you can avoid it.
You'll also want to avoid geek words like grok, kludge, and lossage, which will
only distance you from the interviewee. Instead, work hard to learn the
technical jargon of the problem domain, and use it properly.

»  Show respect—No matter how trivial the domain may seem, the interviewee
knows more about it than you, so don’t look down on people just because
they don’t have the same education you do. Your knowledge of program-
ming is not more important than their knowledge of inventory procedures.
Your time is not more valuable than theirs. They’re doing you a favor by
talking to you, so be grateful.

= Be inlerested—Make eye contact when you talk to the interviewee. Ask follow-
up questions to show that you’re listening. Take notes so you don’t ask the
same question twice (unless, of course, you didn’t understand the answer
the first time). Generally look as though you’re happy to be talking to the
person—or they won’t talk to you again.

= Dress for the occasion—Gone are the days when all white-collar workers wore
white collars (and ties). But if you’re interviewing someone older than you,
she might remember those days quite clearly. If you’'re going to interview a
client at a bank, don’t show up in sandals and a t-shirt. Dressing appropri-
ately will help your interviewee relate to you.
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= Bereassuring—Often the interviewee is not the customer. A manager may be
asking you to capture knowledge from an employee, and that employee
may be afraid of being replaced by the proposed new system. Reassure the
employee that he’s smarter than any computer, and explain that although
the system may take over routine tasks, it will free the employee’s time to
work on more important things. You don’t want anyone to perceive you, or
the system you’re building, as an enemy.

Customers

The customers are the people who are paying you to build the system. Sometimes
they know a lot about the problem, and other times they just want the problem
solved. If the customer is also a domain expert, then your job is easy, because the
customer can direct you to all the information you need. If the customer doesn’t
know much about the problem domain, then the hardest part of your job may be
identifying someone who is.

For the forms advisor application, the customer may be the postal service. No
one at the post office will be able to supply much domain knowledge, but they will
be able to describe the problem well enough. Luckily, it’s obvious in this case who
the domain expert should be: a tax accountant. An accountant knows better than
anyone else which tax forms people need under various circumstances. The cus-
tomer should be willing to pay for some of an accountant’s time, or perhaps pro-
vide access to their own accountants.

Users

The users are the people who will interact with the system on a day-to-day basis.
Like the customers, the users may or may not know much about the domain in
which the system works. A particular category of user, the expert user, knows the
domain very well. Expert users are people who will use your system to automate
tasks they already know how to do. They are often the best kind of interviewee to
work with, because they understand the problem and simultaneously know how
they want the system to react.

The users for the forms advisor are not expert users—they are just people who
wander in to the post office to pick up tax forms. This kind of user isn’t particu-
larly useful to interview for knowledge-engineering purposes; however, it can be
useful to talk to naive users about things like user-interface issues.

Experts
A domain expert is someone who has technical knowledge in the relevant problem
area for your system. A good domain expert is worth her weight in gold, so it is
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important to seek one out and develop a good working relationship. Most of
knowledge engineering consists of extracting information from domain experts.

For the forms advisor application, potential experts include accountants and
Internal Revenue Service (IRS) workers. An accountant can tell you what forms
are required most often by her clients, whereas an IRS employee may have statis-
tics on form usage by the whole U.S. population. Both can help you understand
the tax rules.!

Desk research

Not all of your information should come from people. When possible, you should
instead collect basic or rote knowledge from written materials, so as not to waste
other people’s time. Of course, you can’t believe everything you read—make sure
the experts you talk to would trust the resources you use.

Books and journals

You might use two broad categories of written material: paper publications and
electronic ones. With the explosion of the World Wide Web during the last
decade, the amount of electronic research material available has mushroomed.
Still, scholarly books and periodicals have a significant advantage over most elec-
tronic publications: They are usually peer reviewed. In the peer-review process,
material destined for publication is read and critiqued by impartial experts. This
process improves the accuracy and trustworthiness of the information.

In many scientific and engineering fields, college textbooks are an excellent
way to get an overview of a domain. Introductory textbooks are often aimed at a
general audience, so you can read them without a specialized background. The
best textbooks have gone through several editions, honing their language and
presentation. Monographs on specific topics can also be useful; these are used as
texts for advanced college and graduate-level courses. They are sometimes less
well written and aimed at an audience with specific technical background. Univer-
sity and technical libraries are a good source for textbooks and monographs.

Professional and scholarly journals are published several times each year, and
they are an excellent way to keep up with advances in a particular field. They can
be very expensive, so you’ll want to find them in a library as well.

Newsletters, circulars, and other publications aren’t usually peer-reviewed, but
they can provide useful information. In particular, many government publications

' Or maybe not. The U.S. General Accounting Office released a much-publicized report in 2001 relating
its findings that IRS telephone personnel give out incorrect tax information 47% of the time.
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are an invaluable way to learn about laws, regulations, and practices; they com-
bine and distill information from various laws, orders, legal decisions, and policies
to produce practical guides.

Web sites and electronic media

You can often find hundreds or even thousands of references by typing a few key
words describing your domain into an Internet search engine. There are online
encyclopedias of every description, guides to technical fields, troves of engineer-
ing data, and countless other valuable resources.

Although the Internet is full of information, it is important to realize that not
all of it is correct or unbiased. In particular, many search engines either accept
payment for highly placed listings or use a ranking system that is easily fooled into
placing a particular page at the top of your search results. Before using a general
search engine, learn a little about how it is implemented and operated. Select one
that, to the extent possible, ranks results only on their relevance to your search
topic. You should also scrutinize individual web pages; check for the source of the
information, and try to verify it against another reference.

Sometimes, published electronic reference works on CD-ROM are useful,
although they are often simply expensive alternatives to (or worse, a repackaging
of) material already available on the Web. Again, you can often find and use these
references in libraries.

Collecting knowledge about tax forms

The domain for the example program is “distributing income tax forms.” The
project sponsors might describe it like this:

The system should ask the user a series of questions and then recom-
mend a list of income tax forms the user might need. The list doesn’t
need to be exhaustive, but it should be generous—that is, if in doubt,
recommend the form. The series of questions should be as short as
possible and should never include irrelevant or redundant questions.

This simple statement is certainly enough to get you started on the knowledge
engineering phase of the project.

An interview

If you’ve ever filed your own income taxes, you have a reasonable understanding of
the concepts behind this application. So, you probably don’t need to do any
advance desk work—in fact, you can probably gather all the necessary information
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from one or two interviews and from reading the forms themselves. The first step is
to talk to an accountant and ask her to list the 10 most-used income tax forms. She
gives you this list, in no particular order:

Form 1040—Income tax

Form 1040A—Income tax

Form 1040EZ—Income tax

Form 2441—Child and dependent care expenses
Form 2016E7Z—Employee business expenses
Form 3903—Moving expenses

Form 4684—Casualties and thefts

Form 4868—Application for filing extension
Form 8283—Noncash charitable distributions
Form 8829—Home office expenses

With the list in hand, you can begin asking questions about individual forms. The
most relevant question for each form is, “Who needs it?” The accountant’s
answers are reproduced here:

Form 1040is the standard long form. Everyone needs it.

Form 1040A is the short form. You can use it instead of Form 1040 if your
taxable income is less than $50,000. You can’t itemize deductions if you use
this form, but you can get a credit for child-care expenses.

Form 1040EZ is the really short form. You can use it instead of Form 1040A if
you made less than $50,000, you have no dependents, and you don’t itemize
deductions. If you’re married, you and your spouse must file a joint return
or you can’t use this form.

Form 2441 lets you claim a credit for daycare expenses.

With Form 2016EZ, you can deduct the unreimbursed part of any expenses
you incurred for your employer, primarily travel (except commuting). You
can use this short form only if you weren’t reimbursed for any expenses;
otherwise you have to use the long form.

Form 3903 gets you a deduction for unreimbursed moving expenses if you
moved this year because of your job.

Form 4684 lets you recover some of your losses during the year—the part
that was not covered by insurance. Many people use this form to deduct
costs due to car accidents.
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» You fill out Form 4868 to get an extension for filing your taxes. Note that you
still have to pay your taxes on time; you can pay an estimated amount with
this form.

» You need to file Form 8283 to get credit for donating more than $500 worth
of property to charity.

= You can file Form 8829 if you have a home office and you want to deduct
expenses associated with that office. The rules are fairly restrictive,
though—you have to be careful, or you will trigger an audit. You usually
shouldn’t file this form unless you are self~employed or your home is your
primary workplace.

The accountant’s expert knowledge is evident in a few of these answers, particu-
larly the descriptions of Forms 2016EZ, 4684, and 8829. Also evident, however, are
some of the common problems with interview data. The information is not very
precise; for example, it is not true that “everyone needs” Form 1040, because
there are two alternative forms.

After hearing these interview replies, a few follow-up questions suggest them-
selves immediately—for instance, you might want to confirm that the long version
of Form 2016EZ is Form 2016 (it is). Otherwise, you should be able to get the rest
of the information from the forms themselves; if you have questions about the
forms, you can arrange another interview.

9.3.2 Reviewing the forms

You can obtain copies of IRS forms from the IRS web site.? Studying the forms
turns up a few potentially useful facts that the accountant didn’t specify:

» You can’t file Form 1040EZif you earned more than $400 in taxable interest.
People with more than a certain bank balance (depending on current inter-
est rates) might not be able to use this form.

= You can only file Form 3903 if you changed work locations and if your new
workplace is more than 50 miles further from your old home than your old
workplace.

= With Form 2441, you can get credit for care for an elderly parent or other
dependent, not just care for children.

2 The IRS web site is at http://www.irs.gov. Alternatively, you can get the forms directly at ftp:/ /fip.fed-
world.gov/pub/irs-pdf/.
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Next steps

You’ve now amassed enough knowledge about the problem domain to write the
application, which you will begin to do in the next chapter. You first need to orga-
nize the data by defining deftemplates and organize the rules by defining
defmodules. You also need to write some infrastructure: functions for input and
output, for example. In chapter 11, with the infrastructure in place, you will write
the rules and deploy the application.

Summary

The application area for a rule-based system is called its problem domain. The pro-
cess of collecting information about a problem domain is called knowledge engineer-
ing. Knowledge engineering can include gathering data from interviews, books
and other publications, the Internet, and other sources.

You’ve begun work on an application that advises people about the forms they
need to use to file their United States federal income taxes. In this chapter, you
did the preliminary knowledge engineering, and the end result is several lists of
information chunks in prose form.



Designing the application

In this chapter you’ll...

= Desigh deftemplates for the Tax Forms Advisor
= Partition the application with defmodules
= Write code to ask questions of the user

161
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In this chapter, you will begin to develop the Tax Forms Advisor system described
in chapter 9. You will decide what the facts should look like and how to divide the
rules into modules (when you write them in the next chapter). You’ll also design
some 1/0 functions and other infrastructure the rules in the system need. In
chapter 11, you’ll write the actual rules on the foundation you develop here.

The design process you’ll follow in this chapter is idealized: There are no false
starts or backtracking. In truth, designing a system like this usually involves exper-
imentation, especially when you’re still gaining experience. Don’t be discouraged;
on the contrary, feel free to experiment with different approaches to implement-
ing this application and to the others in this book.

In previous chapters of this book, you’ve entered code directly at the Jess>
prompt. This approach is great for experimenting, but when you’re developing an
application, you’ll want to save the code in a text file instead. You can then execute
your code either by using Jess’s (batch) function (which executes the contents of a
file full of Jess code) or by specifying the filename on the command line like this:

C:\> java -classpath jess.jar jess.Main taxes.clp

The .clp extension is traditional but not required. Using a specific extension con-
sistently is helpful, because you may be able to train your programmer’s editor to
recognize Jess code by the filename.

Organizing the data

As you know, Jess rules work by pattern-matching on facts. Therefore, before you
can write any rules, you need to have some idea what the facts will look like. Of
course, in one of those classic chicken-and-egg problems, you don’t know what
the facts should look like until you see the rules. How do you get started?

Generally, the knowledge-engineering effort suggests some possible fact cate-
gories. If you record the knowledge as proposed rules or rule-like pseudocode
(perhaps using the index-card method described in chapter 9), the possible fact
types will be explicitly laid out. Otherwise, you’ll have to read through the col-
lected knowledge to get a feel for the kinds of facts that are required. The whole
process is subjective, and there is no “right” answer. With practice, you’ll get a feel-
ing for what will work and what will not.

Looking through chapter 9’s collected knowledge for the Tax Forms Advisor,
you can see some possible candidates for deftemplate types:

» form—A specific tax form

» user—The operator of the system
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» deduction—A way of reducing your taxable income

» credit—A way of reducing your tax burden

= dependent—A person the user cares for
Thinking about the general organization of the application suggests a few more
possibilities:

» question—A question the system might ask the user

» answer—An answer given by the user

= recommendation—A note that the system will recommend a specific form
These eight templates are good candidates for inclusion in the system. Next you

need to decide what form they will take—ordered or unordered facts? And for the
unordered ones, what slots should they have?

Filling in details

Most facts in this system will represent physical or conceptual objects, rather than
commands or actions. An object generally has observable properties—color, mass,
and so on. To represent an object and its properties as a fact, you can use an unor-
dered fact, declaring an explicit deftemplate with multiple slots, one for each
property.

The user fact will clearly play a central role. If you look back at the knowledge
collected in section 9.3.1, you can see that the user’s income and number of
dependents are each fairly important and are each referenced in more than one
place. These two items are therefore good candidates to be slots in a user
deftemplate, which might look like this:

(deftemplate user

(slot income)
(slot dependents))

This is a good start, but you need to worry about one detail: default slot values.

Default slot values

Jess’s mathematical functions generally throw an exception to report the error if
you pass in a nonnumeric argument:

Jess> (+ 1 2)

3

Jess> (+ one two)

Jess reported an error in routine Value.numericValue
while executing (+ one two).
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Message: Not a number: "one" (type = ATOM).
Program text: ( + one two ) at line 2.

An empty slot in an unordered fact contains the value nil, which is a symbol, not
a number. If you write a rule that matches this empty slot and uses a mathematical
function to do it, an exception will be thrown during pattern-matching, like this:

Jess> (deftemplate number (slot wvalue))

TRUE

Jess> (defrule print-big-numbers
(number (value ?v&: (> ?v 10000)))
=>
(printout t ?v " is a big number." crlf))

TRUE

Jess> (assert (number))

Jess reported an error in routine Value.numericValue
while executing (> ?v 10000)
while executing rule LHS (TEQ)
while executing rule LHS (TECT)
while executing (assert (MAIN::number (value nil))).
Message: Not a number: "nil" (type = ATOM) .
Program text: ( assert ( number ) ) at line 13.

If you plan to use mathematical functions on the left-hand side (LHS) of a rule, it
makes sense to add numeric defaults to any slots intended to hold numeric values.
The income and dependents slots of the user template will hold numbers, so you
should modify the template to look like this:
(deftemplate user

(slot income (default 0))

(slot dependents (default 0)))
Now the income and dependents slots will be created holding numeric values, and
you won’t encounter this kind of error.

More templates

A form has a code name like 1040A. It also has a descriptive name, like Federal
income tax short form. Therefore, the form template might look like this:

(deftemplate form (slot name) (slot description))

Because the system will ask the user a number of questions, you need a generic
way to represent a question and its answer. Although you don’t know yet what the
question-asking mechanism will look like, because you haven’t written the code,
you can guess that the following two templates might be a good start:
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(deftemplate question (slot text) (slot type) (slot ident))

(deftemplate answer (slot ident) (slot text))
The question template ties a symbolic name for a question (in the slot ident) to
the text of the question. You’ll use the working memory as a convenient database
in which to look up the question text by identifier, so that if two rules might need
to ask the same question, you won’t have to duplicate the text. You’ll use the type
slot to hold an indication of the expected category of answer (numeric, yes or no,
and so on). The answer template ties the answer to a question. A question and its
corresponding answer will have the same symbolic value in their ident slots. Once
an answer for a given question exists, you won’t ask it again. (You’ll develop the
code that uses these templates in section 10.6.)

Finally, a recommendation needs a slot to hold a form, and perhaps an expla-
nation:

(deftemplate recommendation (slot form) (slot explanation))

You’ve defined templates named user, form, question, answer, and recom-
mendation. It turns out that this collection is sufficient for your needs. Let’s con-
sider why these templates are enough.

Templates you don’t need

The other possible templates (dependent, credit, and deduction) probably
won’t be a part of the application. Looking back at chapter 9, you don’t see any-
thing about the collected knowledge that requires you to store information about
individual dependents—only the total number of dependents, which you’ll store
in the user template. As a result, you won’t need a dependent template after all.
The argument for not including credit and deduction is more involved, and
it’s related to an important architectural decision. If you stored credits and deduc-
tions as facts, you could write a generic set of rules to operate on these facts. The
advantage to this architecture is that new forms could be added simply by augment-
ing the set of credits and deductions—that is, by asserting new facts. You could do
this by extending a set of deffacts that would be read at application startup. In
general, adding new facts would be an easier way to add new tax forms than modi-
fying the rules. If you hard-coded the credit and deduction information into the
rules, though, then you could only extend the application by modifying the rules.
On the other hand, the generic rules might be hard to understand, and that
would itself make the code more difficult to modify. For the small set of forms
this application will work with, I think hard-coding the tax information will lead
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to a cleaner, simpler application. If you needed to work with 100 forms, or 1,000,
the other approach would be worth considering. For this system, though, you
won’t need credit or deduction facts; all the tax laws will be encoded directly in
the rules.

Organizing the rules

You've defined five templates to serve as data structures for the application. Now
let’s turn our attention from data to actual code. The first order of business is to
sketch out a rough structure for how the rules will be organized.

The Tax Forms Advisor needs to do four things:

1 Initialize the application
2 Conduct an interview with the user to learn about her tax situation
3 Figure out what tax forms to recommend

4 Present the list of forms to the user, removing any duplicate recommenda-
tions in the process

These four steps map nicely onto four separate processing phases, each with an
independent set of rules. You can put the rules for each phase into a separate
defmodule (as described in section 7.6) and take advantage of the support Jess
offers for partitioning a problem into steps. The four modules are named
startup, interview, recommend, and report, respectively.

Defmodules partition not only the rules of an application, but also the facts.
You need to decide which of the templates ought to go into which of the modules.
You can do this by looking at which module’s rules need access to the data.
Remember that if two or more modules need to share a deftemplate, it should go
into the module MAIN. Examination of the list of templates and of the modules
listed here shows that every template will be needed by at least two modules. For
instance, the question and answer templates need to be shared between the
interview and recommend modules, whereas recommendation is needed by both
recommend (which asserts recommendation facts) and by report (which displays
information derived from them). As a result, all of the deftemplates you define
will be in module MAIN. This is not unusual.

Building the infrastructure

Very often, many of the rules in a rule-based system follow a repeating pattern. You
know this application needs to ask the user a series of questions and record the
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answers in the working memory. You can develop code to ask a question and
receive an answer as a kind of subroutine, and all the rules that need this capability
can call it. Not only does this approach simplify the code for your system, but it also
makes it easier to change the interface—if you need to upgrade from a text-based
to a graphical kiosk, then you may only need to change this one part of the system.

Simple text-based 1/0

Recall (from section 3.1.4) Jess’s printout function, which you can use to print to
standard output. This function can accept any number of arguments and can per-
form rudimentary formatting (you can control where newlines go by using the
special symbol crlf as an argument). There is also a function read that reads a
single input token from standard input, returning what it reads. This suggests you
can put these two functions together into a deffunction that emits a prompt and
reads the response, like this:
(deffunction ask-user (?question)
"Ask a question, and return the answer"
(printout t ?question " ")
(return (read)))
You should test this function to make sure it works (assuming you’ve entered the
code for ask-user in the file taxes.clp):
Jess> (batch taxes.clp)
TRUE
Jess> (ask-user "What is the answer?")
What is the answer? 42
42
I entered 42 as the answer, and the function returned 42; it appears to work fine.
So far, ask-user doesn’t do any error checking. You’d like it to only accept
answers appropriate to the given question—for example, only yes or no, or only a
number. You need another function—one that can check the form of an answer.
Here’s one:
(deffunction is-of-type (?answer ?type)
"Check that the answer has the right form"
(if (eqg ?type yes-no) then
(return (or (eq ?answer yes) (eq ?answer no)))
else (if (eqg ?type number) then
(return (numberp ?answer)))
else (return (> (str-length ?answer) 0))))
The second parameter ?type to this function can be yes-no, number, or anything
else. If it is yes-no, the function returns FALSE unless ?answer is "yes" or "no". If
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?type is number, then the function returns true only if ?answer is a number
(using the built-in numberp function to test for this condition). If ?type is any-
thing else, is-of-type returns TRUE unless ?answer is the empty string.

Now it is easy to rewrite ask-user to use is-of-type for error checking. While
you’re at it, you can use the new ?type parameter to enhance the prompt by add-
ing a hint about the possible answers:

(deffunction ask-user (?question ?type)
"Ask a question, and return the answer"
(bind ?answer "")
(while (not (is-of-type ?answer ?type)) do
(printout t ?question " ")
(if (eqg ?type yes-no) then
(printout t " (yes or no) "))
(bind ?answer (read)))
(return ?answer))

Again, you should test these new functions:

Jess> (is-of-type yes yes-no)

TRUE

Jess> (is-of-type no yes-no)

TRUE

Jess> (is-of-type maybe yes-no)
FALSE

Jess> (is-of-type number abc)

FALSE

Jess> (is-of-type number 123)

TRUE

Jess> (ask-user "What is the answer?" yes-no)
What is the answer? (yes or no) 42
What is the answer? (yes or no) yes
yes

This time when I entered 42 as the answer, the function rejected it. When I typed
yes instead, the function returned yes.

Fetching the question text

The question template has a slot to hold the text of a question and another slot
to hold a unique identifier. Similarly, the answer template associates that same
identifier with an answer. You’d like to call something from the right-hand side
(RHS) of a rule in the interview module using just the identifier, and have that
something look up the question text, ask the question, and assert an answer fact.
There are two ways to fetch something in working memory: using a defquery
or using a defrule. Of the two, rules are cheaper computationally, because invok-
ing a query always involves clearing part of the Rete network and asserting one or
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more facts. Therefore, your subroutine could take the form of a single defrule in
its own defmodule. If that defrule has the auto-focus property (so that it fires as
soon as it’s activated, regardless of what other rules may be on the agenda) and
uses return on its RHS to resume the previous module focus as soon as it ran,
then the interview module can call it as a subroutine just by asserting a fact to
activate it. The trigger fact looks like (ask id), where 1d is a question identifier.
Such a rule can look like this:

(defmodule ask)
(defrule ask::ask-question-by-id
"Ask a question and assert the answer"
(declare (auto-focus TRUE))
;; If there is a question with ident ?id...
(MAIN: :question (ident ?id) (text ?text) (type ?type))
;7 ... and there is no answer for it
(not (MAIN::answer (ident ?2id)))
;; ... and the trigger fact for this question exists
?ask <- (MAIN::ask ?id)
=>
;; Ask the question
(bind ?answer (ask-user ?text ?type))
;; Assert the answer as a fact
(assert (MAIN::answer (ident ?id) (text ?answer)))
;; Remove the trigger
(retract ?ask)
;7 And finally, exit this module
(return) )

I’'ve explicitly qualified all the fact names with MAIN: :. Although doing so may not
be strictly necessary, it helps to avoid confusion. All of your templates are defined
in the module MAIN, and therefore they can be shared by all the other modules
you define.

You can test this rule after defining a deffacts to hold a few sample questions.
You should definitely put this test deffacts into a file, rather than just entering it
interactively—you’ll use it again and again to test the rules as you develop them.

NOTE You should be thinking about putting together a complete test harness
now. The details here will vary depending on your platform. On UNIX,
you might write a shell script to execute your test code, and on a Win-
dows operating system, you might use a .BAT file (or run the same UNIX
scripts using Cygwin).! The important thing is to make it convenient to

' Cygwin is a porting layer that lets UNIX tools run on Windows. The Cygwin home page is at http://
Wwww.cygwin.com.
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run your test code, and run it often, ideally after each change you make
to the developing system. Watch for changes that lead to test failures; if
you catch them right awa