
ARTIFICIAL INTELLIGENCE

LECTURE 5

Ph. D. Lect. Horia Popa Andreescu

2017-2018   3rd year, semester 5



 The slides for this lecture are based (partially) on 

chapter 5 of the Stuart Russel Lecture Notes [R, 

ch5], and on the same chapter from Russel & 

Norvig’s book [RN, ch. 5]
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CONSTRAIN SATISFACTION PROBLEM

(CSP)

 CSP are solved with general-purpose heuristics 
rather than problem-specific ones.

 Formally, a CSP is defined by a set of constrains C1, 
C2, …, Cm; a set of variables X1, X2, …, Xn having as 
possible values in the domains D1, D2, …,Dn. 

 Each constraint Ci involves some subset of the 
variables and specifies an allowable combination of 
the values for that subset.

 A state of the problem is defined by an assignment of 
values to some or all the variables. ( Xi=vi, Xj=vj, …)

 An assignment that doesn’t violate any constraint is 
called consistent or legal assignment.

 A solution to the problem is a complete assignment 
(all variables have legal values), that satisfies all the 
constraints.

3

Artificial Intelligence, lecture 5



 Some CSP also require a solution that maximizes 

some objective function.

 Example: 

 Graph coloring problem – we have a map and we 

want to color the countries such as no two 

neighboring countries are colored with the same 

color.

 Crypto arithmetic puzzle problem: the letters in the 

problem are in fact digits which are to be determined, 

so that the addition remains correct

TWO+

TWO=

FOUR
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VARIETIES OF CSP [R, 5/7]

 Discrete variables

 On finite domains – with complete assignments
 E.g. boolean CSP, including boolean satisfiability

 On infinite domains (integers, strings, etc.)
 E.g. job scheduling, variables are start / stop day for each 

job

 Need a constraint language, e.g. StartJob1+5<=StartJob3

 Linear constraints are solvable, nonlinear are undecidable

 Continuous variables

 E.g. start/end times for Hubble Telescope 
observations

 Linear constraints are solvable in polynomial time by 
LP methods

 Simple CSP

 Distributed CSP 5
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VARIETIES OF CONSTRAINTS [R, 5/8]

 Unary constraints involving a single variable 

 e.g. SA is not green

 Binary constraints involving pairs of variables

 e.g.  SA different than WA

 Higher order constraints involving 3 or more 

variables

 e.g.  Cryptarithmetic column constraints

 Preferences (soft constraints) e.g red is better 

than green 

 They are representable by a cost for each variable 

assignment  constrained optimization problems

6

Artificial Intelligence, lecture 5



EXAMPLE: CRYPTARITHMETIC [R, 5/9]
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STANDARD SEARCH FORMULATION [R, 

5/11]

 Let's start with the straightforward, dumb approach, 
then fix it

 States are defined by the values assigned so far

 Initial state: the empty assignment, { }

 Successor function: assign a value to an unassigned 
variable

 that does not conflict with current assignment.

  fail if no legal assignments (not doable!)

 Goal test: the current assignment is complete

 1) This is the same for all CSPs!

 2) Every solution appears at depth n with n variables

  use depth-first search

 3) Path is irrelevant, so can also use complete-state 
formulation

 4) b=(n-l)d at depth l, hence n!dn leaves!!!! 8
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BACKTRACKING SEARCH [R, 5/13]

 Dept-first search for CSP with single-variable 

assignments is called backtracking  search (BS).

 BS is the basic uninformed algorithm for CSPs

 It can solve n-queens problem for approx. n=25
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EXAMPLES, OPTIMIZATION

 Slides 14-36 from [R, 5/14-36]
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Backtracking example (R-5-17)



Improving backtracking efficiency (R-5-

18)

 Based on the specific problem that we try to solve we can 

try improving the Backtracking (BT) algorithm by 

considering:

 Which variable should be assigned next?

 In what order should its values be tried?

 Can we detect inevitable failure early?

 Can we take advantage of problem structure?

 Improved BT:

 Minimum remaining values (MRV)

 Degree heuristic

 Least constraining value

 Forward checking

 Constraint propagation

 Arc consistency 



Minimum remaining values (R-5-19)

 Consists of: choosing the variable with the fewest 

legal values



Degree heuristic (R-5-20)

 Tie-breaker among MRV variables

 Degree heuristic:

 choose the variable with the most constraints on 

remaining variables



Least constraining value (R-5-21)

 Given a variable, choose the least constraining 

value:

the one that rules out the fewest values in the 

remaining variables

 Combining these heuristics makes 1000 queens 

feasible



Forward checking (R-5-25)

 Idea: Keep track of remaining legal values for 

unassigned variables. 

 Terminate search when any variable has no legal 

values



Constraint propagation (R-5-26)

 Forward checking propagates information from assigned to 
unassigned variables, but doesn't provide early detection 
for all failures:

 NT and SA cannot both be blue!

 Constraint propagation repeatedly enforces constraints 
locally



Arc consistency (R-5-30)

 Simplest form of propagation makes each arc consistent

 X  Y is consistent iff for every value x of X there is some 

allowed y

 If X loses a value, neighbors of X need to be rechecked

 Arc consistency detects failure earlier than forward 

checking

 Can be run as a preprocessor or after each assignment



Arc consistency algorithm (R-5-31)



Exploit the problem structure (R-5-33)

 Suppose each subproblem has c variables out of n 

total

 Worst-case solution cost is n=c  dc, linear in n

 E.g., n=80, d=2, c=20

 280 = 4 billion years at 10 million nodes/sec

 4 *220 = 0.4 seconds at 10 million nodes/sec

 The second variant is after decomposing the 

original problem into subproblems.



Problem decomposition into subproblems 

(RN-154)

 We view each subproblem as a mega-variable whose domain is the set of all solutions 
for the subproblem. E.g. for the leftmost problem, one solution is { WA = red, SA = 
blue, NT = green}.

 Then, we solve the constraints connecting the subproblems using the efficient 
algorithm for trees.

 The constraints between subproblems simply insist that the subproblem solutions 
agree on their shared variables.



ITERATIVE ALGORITHMS FOR CSPS 

[R-5-37]

 Hill-climbing, simulated annealing typically work 

with “complete" states, i.e., all variables assigned

 To apply to CSPs:

 allow states with unsatisfied constraints

 operators reassign variable values

 Variable selection: randomly select any conflicted 

variable

 Value selection by min-conflicts heuristic:

 choose value that violates the fewest constraints

 i.e., hillclimb with h(n) = total number of violated 

constraints
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EXAMPLE: 4-QUEENS [R-5-38]
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PERFORMANCE OF MIN-CONFLICTS 

[R-5-39]
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DISTRIBUTED CSP (DCSP)

 A  DCSP problem is a CSP problem, where the 
variables are shared among agents, e.g. each 
agent has one variable assigned.

 A solution is a complete assignment for the 
variables, that satisfies the constraints

 The solution is attained by means of agent 
communication, each agent communicating the 
assignments it has made along with the known 
list of neighbors assignments

 The agents are connected if there is a constrain 
between them. 

 Connections between agents may appear later, 
depending on the algorithm used
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DSCP ALGORITHMS

 There are a series of algorithms in the literature, 
most known are:

 ABT (Asynchronous Backtracking) [Yok98]

 ABT kernel [Bes05]

 Distributed Dynamic Backtracking (DisDB) [Bes05]

 ABT algorithm:
 The Asynchronous Backtracking algorithm uses 3 types of 

messages [Yok98]:

 the OK message, which contains an assignment variable–
value, is sent by an agent to the constraint-evaluating-
agent in order to see if the value is good.

 the nogood message which contains a list (called nogood) 
with the assignments for which the inconsistency was 
found is being sent in case the constraint-evaluating-agent 
found an unfulfilled constraint.

 the add-link message, sent to announce the necessity to 
create a new direct link, caused by a nogood appearance.
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ABT FAMILY ALGORITHMS

 Starting from the algorithm of asynchronous backtracking (ABT), 
several derived techniques were suggested [Yok98], based on this 
one and known as the ABT family.

 They differ in the way that they store nogoods, but they all use 
additional communication links between unconnected agents to 
detect obsolete information.

 These techniques are based on a common core (called ABT 
kernel) from which some of the known techniques can be 
obtained, including the algorithm of asynchronous backtracking, 
by eliminating the old information among the agents.

 The ABTkernel algorithm requires, like ABT, that constraints are 
directed- from the value-sending agent to the constraint-
evaluating agent-forming a directed acyclic graph. Agents are 
ordered statically in agreement with constraint orientation. 

 The ABT kernel algorithm, is a new ABT-based algorithm that 
does not require to add communication links between initially 
unconnected agents. The ABT kernel algorithm is sound but may 
not terminate (the ABT kernel may store obsolete information).
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ABT FAMILY ALGORITHMS (II)

 A first way to remove obsolete information is to 
add new communication links to allow a nogood 
owner to determine whether this nogood is 
obsolete or not. These added links were proposed 
in the original ABT algorithm[Yok98][Bes05]. 

 A second way to remove obsolete information is to 
detect when a nogood could become obsolete. This 
solution leads to the DisDB algorithm.  No new 
links are added among the agents. To achieve 
completeness, this algorithm has to remove 
obsolete information in finite time. To do so, 
when an agent backtracks, it forgets all nogoods 
that hypothetically could become obsolete[Bes05].
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 A classification of the main DCSP algorithms can 

be found at [3], with the observation that those 

algorithms had been first introduced between 

1992 and 2006. In the meantime variants, hybrid 

versions, optimizations of those algorithms were 

studied.
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