
ARTIFICIAL INTELLIGENCE

LECTURE 5

Ph. D. Lect. Horia Popa Andreescu

2017-2018 3rd year, semester 5

 The slides for this lecture are based (partially) on

chapter 5 of the Stuart Russel Lecture Notes [R,

ch5], and on the same chapter from Russel &

Norvig’s book [RN, ch. 5]

2

Artificial Intelligence, lecture 5

CONSTRAIN SATISFACTION PROBLEM

(CSP)

 CSP are solved with general-purpose heuristics
rather than problem-specific ones.

 Formally, a CSP is defined by a set of constrains C1,
C2, …, Cm; a set of variables X1, X2, …, Xn having as
possible values in the domains D1, D2, …,Dn.

 Each constraint Ci involves some subset of the
variables and specifies an allowable combination of
the values for that subset.

 A state of the problem is defined by an assignment of
values to some or all the variables. (Xi=vi, Xj=vj, …)

 An assignment that doesn’t violate any constraint is
called consistent or legal assignment.

 A solution to the problem is a complete assignment
(all variables have legal values), that satisfies all the
constraints.

3

Artificial Intelligence, lecture 5

 Some CSP also require a solution that maximizes

some objective function.

 Example:

 Graph coloring problem – we have a map and we

want to color the countries such as no two

neighboring countries are colored with the same

color.

 Crypto arithmetic puzzle problem: the letters in the

problem are in fact digits which are to be determined,

so that the addition remains correct

TWO+

TWO=

FOUR
4

Artificial Intelligence, lecture 5

VARIETIES OF CSP [R, 5/7]

 Discrete variables

 On finite domains – with complete assignments
 E.g. boolean CSP, including boolean satisfiability

 On infinite domains (integers, strings, etc.)
 E.g. job scheduling, variables are start / stop day for each

job

 Need a constraint language, e.g. StartJob1+5<=StartJob3

 Linear constraints are solvable, nonlinear are undecidable

 Continuous variables

 E.g. start/end times for Hubble Telescope
observations

 Linear constraints are solvable in polynomial time by
LP methods

 Simple CSP

 Distributed CSP 5

Artificial Intelligence, lecture 5

VARIETIES OF CONSTRAINTS [R, 5/8]

 Unary constraints involving a single variable

 e.g. SA is not green

 Binary constraints involving pairs of variables

 e.g. SA different than WA

 Higher order constraints involving 3 or more

variables

 e.g. Cryptarithmetic column constraints

 Preferences (soft constraints) e.g red is better

than green

 They are representable by a cost for each variable

assignment  constrained optimization problems

6

Artificial Intelligence, lecture 5

EXAMPLE: CRYPTARITHMETIC [R, 5/9]

7

Artificial Intelligence, lecture 5

STANDARD SEARCH FORMULATION [R,

5/11]

 Let's start with the straightforward, dumb approach,
then fix it

 States are defined by the values assigned so far

 Initial state: the empty assignment, { }

 Successor function: assign a value to an unassigned
variable

 that does not conflict with current assignment.

  fail if no legal assignments (not doable!)

 Goal test: the current assignment is complete

 1) This is the same for all CSPs!

 2) Every solution appears at depth n with n variables

  use depth-first search

 3) Path is irrelevant, so can also use complete-state
formulation

 4) b=(n-l)d at depth l, hence n!dn leaves!!!! 8

Artificial Intelligence, lecture 5

BACKTRACKING SEARCH [R, 5/13]

 Dept-first search for CSP with single-variable

assignments is called backtracking search (BS).

 BS is the basic uninformed algorithm for CSPs

 It can solve n-queens problem for approx. n=25

9

Artificial Intelligence, lecture 5

EXAMPLES, OPTIMIZATION

 Slides 14-36 from [R, 5/14-36]

10

Artificial Intelligence, lecture 5

Backtracking example (R-5-17)

Improving backtracking efficiency (R-5-

18)

 Based on the specific problem that we try to solve we can

try improving the Backtracking (BT) algorithm by

considering:

 Which variable should be assigned next?

 In what order should its values be tried?

 Can we detect inevitable failure early?

 Can we take advantage of problem structure?

 Improved BT:

 Minimum remaining values (MRV)

 Degree heuristic

 Least constraining value

 Forward checking

 Constraint propagation

 Arc consistency

Minimum remaining values (R-5-19)

 Consists of: choosing the variable with the fewest

legal values

Degree heuristic (R-5-20)

 Tie-breaker among MRV variables

 Degree heuristic:

 choose the variable with the most constraints on

remaining variables

Least constraining value (R-5-21)

 Given a variable, choose the least constraining

value:

the one that rules out the fewest values in the

remaining variables

 Combining these heuristics makes 1000 queens

feasible

Forward checking (R-5-25)

 Idea: Keep track of remaining legal values for

unassigned variables.

 Terminate search when any variable has no legal

values

Constraint propagation (R-5-26)

 Forward checking propagates information from assigned to
unassigned variables, but doesn't provide early detection
for all failures:

 NT and SA cannot both be blue!

 Constraint propagation repeatedly enforces constraints
locally

Arc consistency (R-5-30)

 Simplest form of propagation makes each arc consistent

 X  Y is consistent iff for every value x of X there is some

allowed y

 If X loses a value, neighbors of X need to be rechecked

 Arc consistency detects failure earlier than forward

checking

 Can be run as a preprocessor or after each assignment

Arc consistency algorithm (R-5-31)

Exploit the problem structure (R-5-33)

 Suppose each subproblem has c variables out of n

total

 Worst-case solution cost is n=c dc, linear in n

 E.g., n=80, d=2, c=20

 280 = 4 billion years at 10 million nodes/sec

 4 *220 = 0.4 seconds at 10 million nodes/sec

 The second variant is after decomposing the

original problem into subproblems.

Problem decomposition into subproblems

(RN-154)

 We view each subproblem as a mega-variable whose domain is the set of all solutions
for the subproblem. E.g. for the leftmost problem, one solution is { WA = red, SA =
blue, NT = green}.

 Then, we solve the constraints connecting the subproblems using the efficient
algorithm for trees.

 The constraints between subproblems simply insist that the subproblem solutions
agree on their shared variables.

ITERATIVE ALGORITHMS FOR CSPS

[R-5-37]

 Hill-climbing, simulated annealing typically work

with “complete" states, i.e., all variables assigned

 To apply to CSPs:

 allow states with unsatisfied constraints

 operators reassign variable values

 Variable selection: randomly select any conflicted

variable

 Value selection by min-conflicts heuristic:

 choose value that violates the fewest constraints

 i.e., hillclimb with h(n) = total number of violated

constraints

22

Artificial Intelligence, lecture 5

EXAMPLE: 4-QUEENS [R-5-38]

23

Artificial Intelligence, lecture 5

PERFORMANCE OF MIN-CONFLICTS

[R-5-39]

24

Artificial Intelligence, lecture 5

DISTRIBUTED CSP (DCSP)

 A DCSP problem is a CSP problem, where the
variables are shared among agents, e.g. each
agent has one variable assigned.

 A solution is a complete assignment for the
variables, that satisfies the constraints

 The solution is attained by means of agent
communication, each agent communicating the
assignments it has made along with the known
list of neighbors assignments

 The agents are connected if there is a constrain
between them.

 Connections between agents may appear later,
depending on the algorithm used

25

Artificial Intelligence, lecture 5

DSCP ALGORITHMS

 There are a series of algorithms in the literature,
most known are:

 ABT (Asynchronous Backtracking) [Yok98]

 ABT kernel [Bes05]

 Distributed Dynamic Backtracking (DisDB) [Bes05]

 ABT algorithm:
 The Asynchronous Backtracking algorithm uses 3 types of

messages [Yok98]:

 the OK message, which contains an assignment variable–
value, is sent by an agent to the constraint-evaluating-
agent in order to see if the value is good.

 the nogood message which contains a list (called nogood)
with the assignments for which the inconsistency was
found is being sent in case the constraint-evaluating-agent
found an unfulfilled constraint.

 the add-link message, sent to announce the necessity to
create a new direct link, caused by a nogood appearance.

26

Artificial Intelligence, lecture 5

ABT FAMILY ALGORITHMS

 Starting from the algorithm of asynchronous backtracking (ABT),
several derived techniques were suggested [Yok98], based on this
one and known as the ABT family.

 They differ in the way that they store nogoods, but they all use
additional communication links between unconnected agents to
detect obsolete information.

 These techniques are based on a common core (called ABT
kernel) from which some of the known techniques can be
obtained, including the algorithm of asynchronous backtracking,
by eliminating the old information among the agents.

 The ABTkernel algorithm requires, like ABT, that constraints are
directed- from the value-sending agent to the constraint-
evaluating agent-forming a directed acyclic graph. Agents are
ordered statically in agreement with constraint orientation.

 The ABT kernel algorithm, is a new ABT-based algorithm that
does not require to add communication links between initially
unconnected agents. The ABT kernel algorithm is sound but may
not terminate (the ABT kernel may store obsolete information).

27

Artificial Intelligence, lecture 5

ABT FAMILY ALGORITHMS (II)

 A first way to remove obsolete information is to
add new communication links to allow a nogood
owner to determine whether this nogood is
obsolete or not. These added links were proposed
in the original ABT algorithm[Yok98][Bes05].

 A second way to remove obsolete information is to
detect when a nogood could become obsolete. This
solution leads to the DisDB algorithm. No new
links are added among the agents. To achieve
completeness, this algorithm has to remove
obsolete information in finite time. To do so,
when an agent backtracks, it forgets all nogoods
that hypothetically could become obsolete[Bes05].

28

Artificial Intelligence, lecture 5

 A classification of the main DCSP algorithms can

be found at [3], with the observation that those

algorithms had been first introduced between

1992 and 2006. In the meantime variants, hybrid

versions, optimizations of those algorithms were

studied.

29

Artificial Intelligence, lecture 5

BIBLIOGRAPHY

 [RN] Russel S., Norvig P. – Artificial Intelligence – A
Modern Approach, 2nd ed. Prentice Hall, 2003 (1112 pages)

 [R] Stuart Russel – Course slides (visited oct. 2012 at
http://aima.cs.berkeley.edu/instructors.html#homework)

 [Yok8]. Yokoo, M., Durfee, E. H., Ishida, T., Kuwabara, K.
The distributed constraint satisfaction problem:
formalization and algorithms. IEEE Transactions on
Knowledge and Data Engineering 10(5) (1998) 673--685

 [Bes05] Bessiere, C., Brito, I., Maestre, A., Meseguer, P.
Asynchronous Backtracking without Adding Links:A New
Member in the ABT Family. A.I., 161 (2005) 7--24.

 [3] http://en.wikipedia.org/wiki/DisCSP

30

Artificial Intelligence, lecture 5

http://aima.cs.berkeley.edu/instructors.html#homework

