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 The slides for this lecture are based (partially) on 

chapter 4 of the Stuart Russel Lecture Notes [R, 

ch4], and on the same chapter from Russel & 

Norvig’s book [RN, ch. 4] 
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INFORMED SEARCH 

 Informed search (Heuristic search) 

 The search strategies in which we have additional information 

about states, mainly problem-specific knowledge, beyond that 

provided in the problem definition, are called informed search. 

 The general approach is the best-first search, using an 

evaluation function f(n) to decide about the node n to be 

expanded. It will choose the node with the best  value for f(n). 

 Algorithms specific to informed search treated: 

 Best-first search 

 Greedy best-first search 

 A* (and variants: IDA*, SMA*) 

 RBFS 

 Hill-climbing 

 Simulated annealing 

 Genetic algorithms (brief introduction) 
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BEST-FIRST SEARCH 

 The node with the lowest value for the evaluation 

function is selected 

 A family of B-F uses instead of f(n), a heuristic 

function  

 h(n) =  estimated cost of the cheapest path to the goal 

node 
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GREEDY BEST-FIRST SEARCH 
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 [R, ch4/slide5] 
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A* SEARCH 

 Uses the function 

 f(n) = g(n) + h(n) 

Where f(n) – the cost from start, through n, to the goal 

g(n) – the cost from start to node n 

h(n) – the cost from node n to the goal 
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A* SEARCH (EXAMPLE 1) 
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A* SEARCH (EXAMPLE 2) 

 [RN, 98] A* example 
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IDA* - ITERATIVE DEEPENING A* 

 Iterative deepening A* (IDA*) uses the idea from 

Iterative Deepening (ID) algorithm (lecture 3) to the 

A* algorithm in order to decrease memory 

requirements. 

 The cutoff used is based on f(n) instead of the 

depth, as for ID. The cutoff value is the smallest f-

cost of any node that is grater than the value of the 

previous cutoff. 

 It is practical since it avoids keeping a sorted queue 

of nodes  
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RBFS – RECURSIVE BEST-FIRST SEARCH 

 RBFS tries to mimic the behavior of best-first 
search, but using only linear space. 

 It works as a recursive depth-search algorithm, but 
instead of expanding nodes indefinitely, it keeps 
track of the f-value of the best alternative path 
available from any ancestor of the current node. 

 If the current node exceeds this limit, then the 
recursion unwinds back to the alternative path. 

 As is unwinds, it also updates the values of the 
nodes with those of the best f-value of its chldren. 

 The consequence is that for each ”forgotten” 
subtree it keeps a value that will determine in the 
future if that subtree is worth re expanding.  

11 

Artificial Intelligence, lecture 3 



RBFS – EXAMPLE [RN, 103] 
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RBFS – EXAMPLE (2) 
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SMA* - SIMPLIFIED MEMORY BOUNDED A* 

 Similar to A*, only that it uses a limited amount of 

memory. 

 When the memory if full, it has to discard a node, 

and it does so with the “worst” one – the one with 

the highest f-value. 

 When discarding a node it backs up the value of the 

discarded node to it’s parent, similar to RBFS. 

14 

Artificial Intelligence, lecture 3 



HEURISTIC FUNCTION 

 In practice, choosing a better heuristic function 

proofs itself very useful.  

 For example, for the 8-puzzle problem we can 

choose 

 h1(n) = the number of misplaced tiles 

 h2(n) = the sum of the Manhattan distances of the 

misplaced tiles 
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HEURISTIC FUNCTION [R, 4A/32] 
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h1(n) = 6 

h2(n) = 4+0+3+3+1+0+2+1=14 

If h2(n) >= h1(n) for all n, then h2 dominates h1 and is better for 

search 

Typical search costs: 
d=14    IDS = 3,473,941 nodes 

   A* (h1) = 539 nodes 

   A* (h2) = 113 nodes 

d=24   IDS = 54,000,000 nodes (approximatively) 

   A* (h1) = 39,135 nodes 

   A* (h2) = 1,641 nodes    



HILL-CLIMBING SEARCH [R, 4B/6] 
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The problem is to overcome local maximum, flat local maximum  

and find, as possible the global maximum. See figure on the next  

slide [R, 4b/7] 

Random restart hill climbing overcomes local maxima 

Random sideways moves escape shoulders, but loop on flat maxima. 
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SIMULATED ANNEALING [R, 4B/8] 
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LOCAL BEAM SEARCH 

 Idea: keep k states instead of 1, choose top k of all 

their successors 

 It is different from k searches running in parallel 

 Problem: often all k searches land on the same 

local hill 

 Solution: choose k successors randomly, biased 

toward good ones. 

 It is similar to natural selection which is “captured” 

better in genetic algorithms 
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GENETIC ALGORITHMS [R, 4B/11] 

21 

Artificial Intelligence, lecture 3 



CONTINUOUS STATE SPACES 

 The idea is to use discretization methods that turn 

continuous spaces into discrete ones. 

 For example for the problem: we have 3 airports in 

Romania 
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