ARTIFICIAL INTELLIGENCE

LECTURE 3

‘ Ph. D. Lect. Horia Popa Andreescu

® 2012-2013 3'd year, semester 5

The slides for this lecture are based (partially) on
chapter 4 of the Stuart Russel Lecture Notes [R,
ch4], and on the same chapter from Russel &
Norvig’s book [RN, ch. 4]

Artificial Intelligence, lecture 3

INFORMED SEARCH

Informed search (Heuristic search)

The search strategies in which we have additional information
about states, mainly problem-specific knowledge, beyond that
provided in the problem definition, are called informed search.

The general approach is the best-first search, using an
evaluation function f(n) to decide about the node n to be
expanded. It will choose the node with the best value for f(n).
Algorithms specific to informed search treated:

Best-first search

Greedy best-first search

A* (and variants: IDA*, SMAY*)

RBFS

Hill-climbing

Simulated annealing

Genetic algorithms (brief introduction)

Artificial Intelligence, lecture 3

BEST-FIRST SEARCH

The node with the lowest value for the evaluation
function Is selected

A family of B-F uses instead of f(n), a heuristic
function

h(n) = estimated cost of the cheapest path to the goal
node

Artificial Intelligence, lecture 3

GREEDY BEST-FIRST SEARCH
[R, ch4/slide5]

Romania with step costs in km

Straight-line distance
to Bucharest

Arad T3]
Bucharest i
Craiova 160
Dobreta 242
Yrad Eforie 161
Fagaras 178
” Giurgin 77
!1 Vaslui Hirsova 151
Ia=i 175
Timisoara Lugoj 244
Mehadia 41
1) Neamt 234
Lugoj Oradea 380
7 Hirsowa Pitesti 98
||:| Mehadia R.j.ul.'nuicu Vilcea o3
75 86 Sibiu 253
f 120 '.[:mumm'a 370
Dobreta [}~ Urziceni a0
N Earie Vashui 109
Lerind 374

Artificial Intelligence, lecture 3

Artificial Intelligence, lecture 3

A* SEARCH

Uses the function

f(n) = g(n) + h(n)
Where f(n) — the cost from start, through n, to the goal
g(n) — the cost from start to node n

h(n) — the cost from node n to the goal

Artificial Intelligence, lecture 3

A* SEARCH (EXAMPLE 1)

(a) The initial state

(b) After expanding Arad

e I

393=140+253 447=118+329 449=75+374.

(c) After expanding Sibiu

MI=T5+374
646=280+366 415=239+176 671=291+380 413=220+193
(d) After expanding Rimnicu Vilcea

449754374

526=366+ 1600 417=317+100 553=3004253

Artificial Intelligence, lecture 3

A* SEARCH (EXAMPLE 2)
o [RN, 98] A* example

(e) After expanding Fagaras

449=T5+374

591=338+4253 450=450+0 526=366+160 417=3717+100 331.300+253

(f) After expanding Pitesti

418=418+0 615=455+160 607=414+193

Artificial Intelligence, lecture 3

IDA* - ITERATIVE DEEPENING A*

lterative deepening A* (IDA*) uses the idea from
Iterative Deepening (ID) algorithm (lecture 3) to the
A* algorithm in order to decrease memory
requirements.

The cutoff used is based on f(n) instead of the
depth, as for ID. The cutoff value is the smallest f-
cost of any node that is grater than the value of the
previous cutoff.

It is practical since it avoids keeping a sorted queue
of nodes

Artificial Intelligence, lecture 3

RBFS — RECURSIVE BEST-FIRST SEARCH

RBFS tries to mimic the behavior of best-first
search, but using only linear space.

It works as a recursive depth-search algorithm, but
Instead of expanding nodes indefinitely, it keeps
track of the f-value of the best alternative path
available from any ancestor of the current node.

If the current node exceeds this limit, then the
recursion unwinds back to the alternative path.

As Is unwinds, it also updates the values of the
nodes with those of the best f-value of its chldren.

The consequence is that for each "forgotten”
subtree it keeps a value that will determine in the
future if that subtree is worth re expanding.

Artificial Intelligence, lecture 3

RBFS — EXAMPLE [RN, 103]

(a) After expanding Arad, Sibiu,
and Rimnicu Vilcea

(b) After unwinding back to Sibiu
and expanding Fagaras

Artificial Intelligence, lecture 3

RBFS — EXAMPLE (2)

(c) After switching back to Rimnicu Vllcea B
and expanding Pitesti L 166

447

Artificial Intelligence, lecture 3

SMA¥* - SIMPLIFIED MEMORY BOUNDED A*

Similar to A*, only that it uses a limited amount of
memory.

When the memory if full, it has to discard a node,
and it does so with the “worst” one — the one with
the highest f-value.

When discarding a node it backs up the value of the
discarded node to it's parent, similar to RBFS.

Artificial Intelligence, lecture 3

HEURISTIC FUNCTION

In practice, choosing a better heuristic function
proofs itself very useful.

For example, for the 8-puzzle problem we can
choose
h1(n) = the number of misplaced tiles

h2(n) = the sum of the Manhattan distances of the
misplaced tiles

Artificial Intelligence, lecture 3

HEURISTIC FUNCTION [R, 4A/32]

7 2 4 1 2 3
5 6 4 5 6
B 3 1 7 B
Start State Coal State
hi(n) =6

h2(n) = 4+0+3+3+1+0+2+1=14
If h2(n) >= h1(n) for all n, then h2 dominates hl and is better for

search

Typical search costs:
d=14 IDS = 3,473,941 nodes
A* (h1) = 539 nodes
A* (h2) = 113 nodes
d=24 IDS =54,000,000 nodes (approximatively)
A* (h1) = 39,135 nodes
A* (h2) = 1,641 nodes

Artificial Intelligence, lecture 3

HILL-CLIMBING SEARCH [R, 4B/6]

function HILL-CLIMBING(problem) returns a state that is a local maximum
inputs: problem, a problem
local variables: current, a node
neighbor, a node

current+— MAKE-NODE(INITIAL-STATE[problem])

loop do
netghbor«— a highest-valued successor of current
if VALUE[neighbor] < VALUE[current] then return STATE[current]
current+«— neighbor

end

The problem is to overcome local maximum, flat local maximum

and find, as possible the global maximum. See figure on the next
slide [R, 4b/7]

Random restart hill climbing overcomes local maxima

Random sideways moves escape shoulders, but loop on flat maxima.

Artificial Intelligence, lecture 3

objectiye function lobal maximum
f]

shoulder

local maximum
"flat" local maximum

current =state space

state

Artificial Intelligence, lecture 3

SIMULATED ANNEALING [R, 4B/8]

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

function SIMULATED- ANNEALING(problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”
local variables: current, a node
nert, a node
T, a "temperature” controlling prob. of downward steps

current+«— MAKE-NODE(INITIAL-STATE[problem])
for t+ 1 to oo do

T'+— schedule[{]

if T'= 0 then return current

nert+— a randomly selected successor of current

AE+— VALUE[nert] — VALUE[current]

if AFE = 0 then current+«— next

else current «+— next only with probability e #/7

Artificial Intelligence, lecture 3

LOCAL BEAM SEARCH

ldea: keep k states instead of 1, choose top k of all
their successors

It is different from k searches running in parallel

Problem: often all k searches land on the same
local hill

Solution: choose k successors randomly, biased
toward good ones.

It is similar to natural selection which is “captured”
better in genetic algorithms

Artificial Intelligence, lecture 3

GENETIC ALGORITHMS [R, 4B/11]

= stochastic local beam search + generate successors from pairs of states

24748552

A,

32752411

723 2% ™

24415124

32543213

e
20 26%

11 14% ™

Fitness Selection

32752411

24748552

32752411

<
)~

32748552

24752411

32752124

24415124

Pairs

24415411

Cross-Qver

3274812

24752411

32124

| 2441541f]

Artificial Intelligence, lecture 3

CONTINUOUS STATE SPACES

The idea Is to use discretization methods that turn
continuous spaces into discrete ones.

For example for the problem: we have 3 airports in
Romania

Artificial Intelligence, lecture 3

BIBLIOGRAPHY

[RN] Russel S., Norvig P. — Artificial Intelligence — A
Modern Approach, 2" ed. Prentice Hall, 2003 (1112
pages)

[R] Stuart Russel — Course slides (visited oct. 2012
at

http://aima.cs.berkeley.edu/instructors.html#homew
ork)

[W1] Mark Watson — Practical Artificial Intelligence
Programming With Java Al 3" ed., 2008

[C] D. Carstoiu — Sisteme Expert, Editura ALL,
Bucuresti, 1994

Artificial Intelligence, lecture 3

http://aima.cs.berkeley.edu/instructors.html
http://aima.cs.berkeley.edu/instructors.html

