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 The slides for this lecture are based (partially) on 

chapter 4 of the Stuart Russel Lecture Notes [R, 

ch4], and on the same chapter from Russel & 

Norvig’s book [RN, ch. 4] 
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INFORMED SEARCH 

 Informed search (Heuristic search) 

 The search strategies in which we have additional information 

about states, mainly problem-specific knowledge, beyond that 

provided in the problem definition, are called informed search. 

 The general approach is the best-first search, using an 

evaluation function f(n) to decide about the node n to be 

expanded. It will choose the node with the best  value for f(n). 

 Algorithms specific to informed search treated: 

 Best-first search 

 Greedy best-first search 

 A* (and variants: IDA*, SMA*) 

 RBFS 

 Hill-climbing 

 Simulated annealing 

 Genetic algorithms (brief introduction) 
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BEST-FIRST SEARCH 

 The node with the lowest value for the evaluation 

function is selected 

 A family of B-F uses instead of f(n), a heuristic 

function  

 h(n) =  estimated cost of the cheapest path to the goal 

node 

4 

Artificial Intelligence, lecture 3 



GREEDY BEST-FIRST SEARCH 
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 [R, ch4/slide5] 
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A* SEARCH 

 Uses the function 

 f(n) = g(n) + h(n) 

Where f(n) – the cost from start, through n, to the goal 

g(n) – the cost from start to node n 

h(n) – the cost from node n to the goal 
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A* SEARCH (EXAMPLE 1) 
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A* SEARCH (EXAMPLE 2) 

 [RN, 98] A* example 
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IDA* - ITERATIVE DEEPENING A* 

 Iterative deepening A* (IDA*) uses the idea from 

Iterative Deepening (ID) algorithm (lecture 3) to the 

A* algorithm in order to decrease memory 

requirements. 

 The cutoff used is based on f(n) instead of the 

depth, as for ID. The cutoff value is the smallest f-

cost of any node that is grater than the value of the 

previous cutoff. 

 It is practical since it avoids keeping a sorted queue 

of nodes  
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RBFS – RECURSIVE BEST-FIRST SEARCH 

 RBFS tries to mimic the behavior of best-first 
search, but using only linear space. 

 It works as a recursive depth-search algorithm, but 
instead of expanding nodes indefinitely, it keeps 
track of the f-value of the best alternative path 
available from any ancestor of the current node. 

 If the current node exceeds this limit, then the 
recursion unwinds back to the alternative path. 

 As is unwinds, it also updates the values of the 
nodes with those of the best f-value of its chldren. 

 The consequence is that for each ”forgotten” 
subtree it keeps a value that will determine in the 
future if that subtree is worth re expanding.  
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RBFS – EXAMPLE [RN, 103] 
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RBFS – EXAMPLE (2) 
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SMA* - SIMPLIFIED MEMORY BOUNDED A* 

 Similar to A*, only that it uses a limited amount of 

memory. 

 When the memory if full, it has to discard a node, 

and it does so with the “worst” one – the one with 

the highest f-value. 

 When discarding a node it backs up the value of the 

discarded node to it’s parent, similar to RBFS. 
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HEURISTIC FUNCTION 

 In practice, choosing a better heuristic function 

proofs itself very useful.  

 For example, for the 8-puzzle problem we can 

choose 

 h1(n) = the number of misplaced tiles 

 h2(n) = the sum of the Manhattan distances of the 

misplaced tiles 
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HEURISTIC FUNCTION [R, 4A/32] 
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h1(n) = 6 

h2(n) = 4+0+3+3+1+0+2+1=14 

If h2(n) >= h1(n) for all n, then h2 dominates h1 and is better for 

search 

Typical search costs: 
d=14    IDS = 3,473,941 nodes 

   A* (h1) = 539 nodes 

   A* (h2) = 113 nodes 

d=24   IDS = 54,000,000 nodes (approximatively) 

   A* (h1) = 39,135 nodes 

   A* (h2) = 1,641 nodes    



HILL-CLIMBING SEARCH [R, 4B/6] 
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The problem is to overcome local maximum, flat local maximum  

and find, as possible the global maximum. See figure on the next  

slide [R, 4b/7] 

Random restart hill climbing overcomes local maxima 

Random sideways moves escape shoulders, but loop on flat maxima. 
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SIMULATED ANNEALING [R, 4B/8] 
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LOCAL BEAM SEARCH 

 Idea: keep k states instead of 1, choose top k of all 

their successors 

 It is different from k searches running in parallel 

 Problem: often all k searches land on the same 

local hill 

 Solution: choose k successors randomly, biased 

toward good ones. 

 It is similar to natural selection which is “captured” 

better in genetic algorithms 

20 

Artificial Intelligence, lecture 3 



GENETIC ALGORITHMS [R, 4B/11] 
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CONTINUOUS STATE SPACES 

 The idea is to use discretization methods that turn 

continuous spaces into discrete ones. 

 For example for the problem: we have 3 airports in 

Romania 
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