
ARTIFICIAL INTELLIGENCE

LECTURE 3

Ph. D. Lect. Horia Popa Andreescu

2012-2013 3rd year, semester 5

 The slides for this lecture are based (partially) on

chapter 4 of the Stuart Russel Lecture Notes [R,

ch4], and on the same chapter from Russel &

Norvig’s book [RN, ch. 4]

2

Artificial Intelligence, lecture 3

INFORMED SEARCH

 Informed search (Heuristic search)

 The search strategies in which we have additional information

about states, mainly problem-specific knowledge, beyond that

provided in the problem definition, are called informed search.

 The general approach is the best-first search, using an

evaluation function f(n) to decide about the node n to be

expanded. It will choose the node with the best value for f(n).

 Algorithms specific to informed search treated:

 Best-first search

 Greedy best-first search

 A* (and variants: IDA*, SMA*)

 RBFS

 Hill-climbing

 Simulated annealing

 Genetic algorithms (brief introduction)

3

Artificial Intelligence, lecture 3

BEST-FIRST SEARCH

 The node with the lowest value for the evaluation

function is selected

 A family of B-F uses instead of f(n), a heuristic

function

 h(n) = estimated cost of the cheapest path to the goal

node

4

Artificial Intelligence, lecture 3

GREEDY BEST-FIRST SEARCH

5

Artificial Intelligence, lecture 3

 [R, ch4/slide5]

6

Artificial Intelligence, lecture 3

A* SEARCH

 Uses the function

 f(n) = g(n) + h(n)

Where f(n) – the cost from start, through n, to the goal

g(n) – the cost from start to node n

h(n) – the cost from node n to the goal

7

Artificial Intelligence, lecture 3

A* SEARCH (EXAMPLE 1)

8

Artificial Intelligence, lecture 3

A* SEARCH (EXAMPLE 2)

 [RN, 98] A* example

9

Artificial Intelligence, lecture 3

IDA* - ITERATIVE DEEPENING A*

 Iterative deepening A* (IDA*) uses the idea from

Iterative Deepening (ID) algorithm (lecture 3) to the

A* algorithm in order to decrease memory

requirements.

 The cutoff used is based on f(n) instead of the

depth, as for ID. The cutoff value is the smallest f-

cost of any node that is grater than the value of the

previous cutoff.

 It is practical since it avoids keeping a sorted queue

of nodes

10

Artificial Intelligence, lecture 3

RBFS – RECURSIVE BEST-FIRST SEARCH

 RBFS tries to mimic the behavior of best-first
search, but using only linear space.

 It works as a recursive depth-search algorithm, but
instead of expanding nodes indefinitely, it keeps
track of the f-value of the best alternative path
available from any ancestor of the current node.

 If the current node exceeds this limit, then the
recursion unwinds back to the alternative path.

 As is unwinds, it also updates the values of the
nodes with those of the best f-value of its chldren.

 The consequence is that for each ”forgotten”
subtree it keeps a value that will determine in the
future if that subtree is worth re expanding.

11

Artificial Intelligence, lecture 3

RBFS – EXAMPLE [RN, 103]

12

Artificial Intelligence, lecture 3

RBFS – EXAMPLE (2)

13

Artificial Intelligence, lecture 3

SMA* - SIMPLIFIED MEMORY BOUNDED A*

 Similar to A*, only that it uses a limited amount of

memory.

 When the memory if full, it has to discard a node,

and it does so with the “worst” one – the one with

the highest f-value.

 When discarding a node it backs up the value of the

discarded node to it’s parent, similar to RBFS.

14

Artificial Intelligence, lecture 3

HEURISTIC FUNCTION

 In practice, choosing a better heuristic function

proofs itself very useful.

 For example, for the 8-puzzle problem we can

choose

 h1(n) = the number of misplaced tiles

 h2(n) = the sum of the Manhattan distances of the

misplaced tiles

15

Artificial Intelligence, lecture 3

HEURISTIC FUNCTION [R, 4A/32]

16

Artificial Intelligence, lecture 3

h1(n) = 6

h2(n) = 4+0+3+3+1+0+2+1=14

If h2(n) >= h1(n) for all n, then h2 dominates h1 and is better for

search

Typical search costs:
d=14 IDS = 3,473,941 nodes

 A* (h1) = 539 nodes

 A* (h2) = 113 nodes

d=24 IDS = 54,000,000 nodes (approximatively)

 A* (h1) = 39,135 nodes

 A* (h2) = 1,641 nodes

HILL-CLIMBING SEARCH [R, 4B/6]

17

Artificial Intelligence, lecture 3

The problem is to overcome local maximum, flat local maximum

and find, as possible the global maximum. See figure on the next

slide [R, 4b/7]

Random restart hill climbing overcomes local maxima

Random sideways moves escape shoulders, but loop on flat maxima.

18

Artificial Intelligence, lecture 3

SIMULATED ANNEALING [R, 4B/8]

19

Artificial Intelligence, lecture 3

LOCAL BEAM SEARCH

 Idea: keep k states instead of 1, choose top k of all

their successors

 It is different from k searches running in parallel

 Problem: often all k searches land on the same

local hill

 Solution: choose k successors randomly, biased

toward good ones.

 It is similar to natural selection which is “captured”

better in genetic algorithms

20

Artificial Intelligence, lecture 3

GENETIC ALGORITHMS [R, 4B/11]

21

Artificial Intelligence, lecture 3

CONTINUOUS STATE SPACES

 The idea is to use discretization methods that turn

continuous spaces into discrete ones.

 For example for the problem: we have 3 airports in

Romania

22

Artificial Intelligence, lecture 3

BIBLIOGRAPHY

 [RN] Russel S., Norvig P. – Artificial Intelligence – A

Modern Approach, 2nd ed. Prentice Hall, 2003 (1112

pages)

 [R] Stuart Russel – Course slides (visited oct. 2012

at

http://aima.cs.berkeley.edu/instructors.html#homew

ork)

 [W1] Mark Watson – Practical Artificial Intelligence

Programming With Java AI 3rd ed., 2008

 [C] D. Cârstoiu – Sisteme Expert, Editura ALL,

București, 1994

23

Artificial Intelligence, lecture 3

http://aima.cs.berkeley.edu/instructors.html
http://aima.cs.berkeley.edu/instructors.html

