
ARTIFICIAL INTELLIGENCE

LECTURE 3

Ph. D. Lect. Horia Popa Andreescu

2012-2013 3rd year, semester 5

 The slides for this lecture are based (partially) on

chapter 4 of the Stuart Russel Lecture Notes [R,

ch4], and on the same chapter from Russel &

Norvig’s book [RN, ch. 4]

2

Artificial Intelligence, lecture 3

INFORMED SEARCH

 Informed search (Heuristic search)

 The search strategies in which we have additional information

about states, mainly problem-specific knowledge, beyond that

provided in the problem definition, are called informed search.

 The general approach is the best-first search, using an

evaluation function f(n) to decide about the node n to be

expanded. It will choose the node with the best value for f(n).

 Algorithms specific to informed search treated:

 Best-first search

 Greedy best-first search

 A* (and variants: IDA*, SMA*)

 RBFS

 Hill-climbing

 Simulated annealing

 Genetic algorithms (brief introduction)

3

Artificial Intelligence, lecture 3

BEST-FIRST SEARCH

 The node with the lowest value for the evaluation

function is selected

 A family of B-F uses instead of f(n), a heuristic

function

 h(n) = estimated cost of the cheapest path to the goal

node

4

Artificial Intelligence, lecture 3

GREEDY BEST-FIRST SEARCH

5

Artificial Intelligence, lecture 3

 [R, ch4/slide5]

6

Artificial Intelligence, lecture 3

A* SEARCH

 Uses the function

 f(n) = g(n) + h(n)

Where f(n) – the cost from start, through n, to the goal

g(n) – the cost from start to node n

h(n) – the cost from node n to the goal

7

Artificial Intelligence, lecture 3

A* SEARCH (EXAMPLE 1)

8

Artificial Intelligence, lecture 3

A* SEARCH (EXAMPLE 2)

 [RN, 98] A* example

9

Artificial Intelligence, lecture 3

IDA* - ITERATIVE DEEPENING A*

 Iterative deepening A* (IDA*) uses the idea from

Iterative Deepening (ID) algorithm (lecture 3) to the

A* algorithm in order to decrease memory

requirements.

 The cutoff used is based on f(n) instead of the

depth, as for ID. The cutoff value is the smallest f-

cost of any node that is grater than the value of the

previous cutoff.

 It is practical since it avoids keeping a sorted queue

of nodes

10

Artificial Intelligence, lecture 3

RBFS – RECURSIVE BEST-FIRST SEARCH

 RBFS tries to mimic the behavior of best-first
search, but using only linear space.

 It works as a recursive depth-search algorithm, but
instead of expanding nodes indefinitely, it keeps
track of the f-value of the best alternative path
available from any ancestor of the current node.

 If the current node exceeds this limit, then the
recursion unwinds back to the alternative path.

 As is unwinds, it also updates the values of the
nodes with those of the best f-value of its chldren.

 The consequence is that for each ”forgotten”
subtree it keeps a value that will determine in the
future if that subtree is worth re expanding.

11

Artificial Intelligence, lecture 3

RBFS – EXAMPLE [RN, 103]

12

Artificial Intelligence, lecture 3

RBFS – EXAMPLE (2)

13

Artificial Intelligence, lecture 3

SMA* - SIMPLIFIED MEMORY BOUNDED A*

 Similar to A*, only that it uses a limited amount of

memory.

 When the memory if full, it has to discard a node,

and it does so with the “worst” one – the one with

the highest f-value.

 When discarding a node it backs up the value of the

discarded node to it’s parent, similar to RBFS.

14

Artificial Intelligence, lecture 3

HEURISTIC FUNCTION

 In practice, choosing a better heuristic function

proofs itself very useful.

 For example, for the 8-puzzle problem we can

choose

 h1(n) = the number of misplaced tiles

 h2(n) = the sum of the Manhattan distances of the

misplaced tiles

15

Artificial Intelligence, lecture 3

HEURISTIC FUNCTION [R, 4A/32]

16

Artificial Intelligence, lecture 3

h1(n) = 6

h2(n) = 4+0+3+3+1+0+2+1=14

If h2(n) >= h1(n) for all n, then h2 dominates h1 and is better for

search

Typical search costs:
d=14 IDS = 3,473,941 nodes

 A* (h1) = 539 nodes

 A* (h2) = 113 nodes

d=24 IDS = 54,000,000 nodes (approximatively)

 A* (h1) = 39,135 nodes

 A* (h2) = 1,641 nodes

HILL-CLIMBING SEARCH [R, 4B/6]

17

Artificial Intelligence, lecture 3

The problem is to overcome local maximum, flat local maximum

and find, as possible the global maximum. See figure on the next

slide [R, 4b/7]

Random restart hill climbing overcomes local maxima

Random sideways moves escape shoulders, but loop on flat maxima.

18

Artificial Intelligence, lecture 3

SIMULATED ANNEALING [R, 4B/8]

19

Artificial Intelligence, lecture 3

LOCAL BEAM SEARCH

 Idea: keep k states instead of 1, choose top k of all

their successors

 It is different from k searches running in parallel

 Problem: often all k searches land on the same

local hill

 Solution: choose k successors randomly, biased

toward good ones.

 It is similar to natural selection which is “captured”

better in genetic algorithms

20

Artificial Intelligence, lecture 3

GENETIC ALGORITHMS [R, 4B/11]

21

Artificial Intelligence, lecture 3

CONTINUOUS STATE SPACES

 The idea is to use discretization methods that turn

continuous spaces into discrete ones.

 For example for the problem: we have 3 airports in

Romania

22

Artificial Intelligence, lecture 3

BIBLIOGRAPHY

 [RN] Russel S., Norvig P. – Artificial Intelligence – A

Modern Approach, 2nd ed. Prentice Hall, 2003 (1112

pages)

 [R] Stuart Russel – Course slides (visited oct. 2012

at

http://aima.cs.berkeley.edu/instructors.html#homew

ork)

 [W1] Mark Watson – Practical Artificial Intelligence

Programming With Java AI 3rd ed., 2008

 [C] D. Cârstoiu – Sisteme Expert, Editura ALL,

București, 1994

23

Artificial Intelligence, lecture 3

http://aima.cs.berkeley.edu/instructors.html
http://aima.cs.berkeley.edu/instructors.html

