ARTIFICIAL INTELLIGENCE

LECTURE 2

‘ Ph. D. Lect. Horia Popa Andreescu
o 2017-2018 3rd year, semester 5

ROADMAP

Uninformed search (Blind search)

Are the search strategies in which we have no
additional information about states, beyond that
provided in the problem definition

Breadth-first search
Dept-first search
Uniform-cost search

Depth-limited search: iterative deepening depth-first
search

Bidirectional search
Graph search

Artificial Intelligence, lecture 2

PROBLEM REPRESENTATION

We can see problem solving as a transition
starting from the initial state

Use transitions or operations to pass to different
states

Reach a final state called the goal

The most natural representation of the problem
space 1s by a tree. A certain state (node) 1s
connected to 1ts parent state and to its children
states which are all the states 1n which we can
get by applying the operators on that current
state.

Artificial Intelligence, lecture 2

EXAMPLE (R-3-5): ROMANIA

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest
Formulate goal:

be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities
Find solution:

sequence of cities, e.g., Arad, Sibiu, Fagaras,
Bucharest

Artificial Intelligence, lecture 2

EXAMPLE (R-3-6)

Pitesti

Hirsova

56

Dobreta [

M Giurgiu Eforie

Artificial Intelligence, lecture 2

PROBLEM TYPES (R-3-7):

Deterministic, fully observable => single-state
problem

Agent knows exactly which state it will be in; solution is a
sequence
Non-observable => conformant problem
Agent may have no idea where 1t is; solution (if any) is a
sequence
Nondeterministic and/or partially observable =>
contingency problem
percepts provide new information about current state
solution 1s a contingent plan or a policy
often interleave search, execution

Unknown state space =) exploration problem
(\online")

Artificial Intelligence, lecture 2

SINGLE-STATE PROBLEM FORMULATION (R-3-
12)

A problem is dened by four items:
1itial state e.g., \at Arad"
successor function S(x) = set of <action, state> pairs
e.g., S(Arad) = { <Arad --> Zerind, Zerind>, ...}
goal test, can be
o explicit, e.g., x = \at Bucharest"
o implicit, e.g., NoDirt(x)
path cost (additive)

o e.g., sum of distances, number of actions executed, etc.
o c(x; a; y) 1s the step cost, assumed to be 0

A solution 1s a sequence of actions
leading from the initial state to a goal state

Artificial Intelligence, lecture 2

EXAMPLE: VACUUM WORLD STATE SPACE
GRAPH (R-3-15)

R
L |’ﬁ‘ =) =0 'ﬁ‘| R
_a TR _ ool S ol Rl
o #-5-- -\---S-\-\----\--"\-\.
—— R] R —

L fﬂx\ = =) L =] =) ’ﬁ“l R
A 8 R N _a BB e >
7w — — 7 S
5 e T
N ~ (-

Y —— R —— Pt
Ll ﬁ A | R
—w— F TS
A N A
5 5

States: 0 and 1 dirt and robot locations, ignore
dirt amounts

Actions: Left, Right, Suck, NoOp
Goal test: no dirt
Path cost: 1 per action (o for NoOp)

Artificial Intelligence, lecture 2

EXAMPLE: THE 8-PUZZLE (R-3-23)

7 2 4 1 2 3
5 6 4 5 6
8 3 1 7 8

Start State Goal State

states/?: integer locations of tiles (ignore intermediate positions)
actions’’: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)

path cost??: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard|

Artificial Intelligence, lecture 2

UNINFORMED SEARCH STRATEGIES

Uninformed search strategies use only the
information available 1n the problem definition.

Examples of such algorithms:
Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search

Artificial Intelligence, lecture 2

(GENERAL PROTOTYPE FOR THE SEARCH
ALGORITHMS R-3-25

The tree search algorithm can be the pattern from
which all the search algorithms can be derived

The 1deea 1s to explore the state space generating
successors of already explored states. If by that we
obtain a goal node then we have a solution

function Tree-Search(problem,strategy) returns a
solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding
solution

else expand the node and add the resulting nodes to the
search tree

end

Artificial Intelligence, lecture 2

GENERAL TREE-SEARCH ALGORITHM (R-3-30)

function TREE-SEARCIH(problem, fringe) returns a solution, or failure
Jringe < INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE(node)) then return node
fringe «+— INSERTALL(EXPAND(node, problem), fringe)

function EXPAND(node, problem) returns a set of nodes
successors <— the empty set
for each action, result in SUCCESSOR-FN(problem, STATE[node]) do

s<—a new NODE
PARENT-NODE[s] «— node; ACTION[s] «— action; STATE[s] < result

PATH-COST[s] < PATH-CoOST[node] + STEP-COST(node, action, s)
DEPTH[s] «+— DEPTH[node] + 1
add s to successors

return successors

Artificial Intelligence, lecture 2

SEARCH STRATEGIES (R-3-31)

A strategy is defined by picking the order of node
expansion

Strategies are evaluated along the following
dimensions:

completeness—does it always find a solution if one exists?
time complexity—number of nodes generated/expanded
space complexity—maximum number of nodes in memory
optimality—does it always find a least-cost solution?
Time and space complexity are measured in terms of

b—maximum branching factor of the search tree
d—depth of the least-cost solution

m—maximum depth of the state space (may be)

Artificial Intelligence, lecture 2

BREADTH-FIRST SEARCH

Expand the shallowest unexpanded node

The fringe 1s a FIFO queue, the successors go at
the end of the queue

>O ® ©® @

Artificial Intelligence, lecture 2

PROPERTIES OF BREADTH-FIRST SEARCH (R-3-
41)

Complete?? Yes (if b is finite)

Time?? 14+b4+b2+b3+ ...+ b2+ b(b?— 1) = OB, ie., exp. in d

Space?? O(b%!) (keeps every node in memory)
Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB /sec
so 24hrs = 8640GB.

Artificial Intelligence, lecture 2

DEPT-FIRST SEARCH (R-3-43)

Expands deepest unexpanded node

The fringe is a LIFO queue, the successors sre
put at the front of the queue

Backtracking is a varaint of DFS, but not the
same!

Artificial Intelligence, lecture 2

PROPERTIES OF THE DEPTH-FIRST SEARCH (R-
3-59)

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
= complete in finite spaces

Time?? O(b™): terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? O(bm), i.e., linear spacel!

Optimal?? No

Artificial Intelligence, lecture 2

UNIFORM COST SEARCH (R-3-42)

Expand least-cost unexpanded node

Implementation: fringe = queue ordered by path
cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost > ¢

Time?? # of nodes with ¢ < cost of optimal solution, O(b/¢/<1)
where (' is the cost of the optimal solution

Space?? # of nodes with ¢ < cost of optimal solution, O(bm*/d)

Optimal?? Yes—nodes expanded in increasing order of g(n)

Artificial Intelligence, lecture 2

DEPTH-LIMITED SEARCH (R-3-60)

Is a dept-first search with a depth limit =1
1.e., nodes at depth 1 have no successors

Recursive implementation:

function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail /cutoff
RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail /cutoff
cutoff-occurred? < false
if GOAL-TEST(problem, STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
result «— RECURSIVE-DLS(successor, problem, limat)
if result = cutoff then cutoff-occurred? < true
else if result # failure then return result
if cutoff-occurred? then return cutoff else return failure

Artificial Intelligence, lecture 2

ITERATIVE DEEPENING DEPTH-FIRST SEARCH
(R-3-70)

It 1s a depth-limited search that progressively
increases the depth if a solution is not found

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution
inputs: problem, a problem

for depth— 0 to oo do
result +—— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

end

Complete?? Yes

Time?? (d+ 1)b0O+dbl1+(d I 1)b2+:::+bd=0(bd)
Space?? O(bd)

Optimal?? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for b = 10 and d = 5, solution at far right leaf:
N(@DS) = 50 + 400 + 3; 000 + 20; 000 + 100; 000 = 123; 450
N(BFS) = 10 + 100 + 1; 000 + 10; 000 + 100; 000 + 999; 990 = 1; 111; 100

IDS does better because other nodes at depth d are not expanded
BF'S can be modified to apply goal test when a node is generated

Artificial Intelligence, lecture 2

BIDIRECTIONAL SEARCH (RN-80)

o The idea is to run 2 searches simultaneously:
¢ One forward from the original state
¢ One backward from the goal

o We stop when the 2 searches meet

o The motivation is that b¥2 + b¥92 is much less than bd

o Bidirectional search is implemented by having one or both of the searches
check each

o Bidirectional search is implemented by having one or both of the searches check each
node before it is expanded to see if it is in the fringe of the other search tree;

Artificial Intelligence, lecture 2

(GRAPH SEARCH

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed — an empty set
fringe — INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)
loop do
if fringe is empty then return failure
node — REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node]) then return node
if STATE[node] is not in closed then
add STATE[node| to closed
fringe — INSERTA LL(EXPAND(node, problem), fringe)
end

Artificial Intelligence, lecture 2

SUMMARY OF ALGORITHMS (R-3-71)

Criterion Breadth- Uniform- Depth- Depth- [terative
First Cost First Limited Deepening
Complete? Yes* Yes* No Yes, if [> d Yes
Time b plc/e b bl b
Space ptl plC /e bm bl bd
Optimal? Yes" Yes No No Yes'

Artificial Intelligence, lecture 2

BIBLIOGRAPHY

[RN] Russel S., Norvig P. — Artificial Intelligence
— A Modern Approach, 27 ed. Prentice Hall, 2003
(1112 pages)

[R] Stuart Russel — Course slides (visited oct.
2012 at
http://aima.cs.berkeley.edu/instructors.html#hom
ework)

Artificial Intelligence, lecture 2

http://aima.cs.berkeley.edu/instructors.html

