
ARTIFICIAL INTELLIGENCE

LECTURE 2

Ph. D. Lect. Horia Popa Andreescu

2017-2018 3rd year, semester 5

ROADMAP

 Uninformed search (Blind search)

 Are the search strategies in which we have no

additional information about states, beyond that

provided in the problem definition

 Breadth-first search

 Dept-first search

 Uniform-cost search

 Depth-limited search: iterative deepening depth-first

search

 Bidirectional search

 Graph search

2

Artificial Intelligence, lecture 2

PROBLEM REPRESENTATION

 We can see problem solving as a transition

 starting from the initial state

 Use transitions or operations to pass to different

states

 Reach a final state called the goal

 The most natural representation of the problem

space is by a tree. A certain state (node) is

connected to its parent state and to its children

states which are all the states in which we can

get by applying the operators on that current

state.

3

Artificial Intelligence, lecture 2

EXAMPLE (R-3-5): ROMANIA

 On holiday in Romania; currently in Arad.

 Flight leaves tomorrow from Bucharest

 Formulate goal:

 be in Bucharest

 Formulate problem:

 states: various cities

 actions: drive between cities

 Find solution:

 sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

4

Artificial Intelligence, lecture 2

EXAMPLE (R-3-6)

5

Artificial Intelligence, lecture 2

PROBLEM TYPES (R-3-7):

 Deterministic, fully observable => single-state

problem

 Agent knows exactly which state it will be in; solution is a

sequence

 Non-observable => conformant problem

 Agent may have no idea where it is; solution (if any) is a

sequence

 Nondeterministic and/or partially observable =>

contingency problem

 percepts provide new information about current state

 solution is a contingent plan or a policy

 often interleave search, execution

 Unknown state space =) exploration problem

(\online") 6

Artificial Intelligence, lecture 2

SINGLE-STATE PROBLEM FORMULATION (R-3-

12)

 A problem is dened by four items:

 initial state e.g., \at Arad"

 successor function S(x) = set of <action, state> pairs

e.g., S(Arad) = { <Arad --> Zerind, Zerind>, …}

 goal test, can be

 explicit, e.g., x = \at Bucharest"

 implicit, e.g., NoDirt(x)

 path cost (additive)

 e.g., sum of distances, number of actions executed, etc.

 c(x; a; y) is the step cost, assumed to be 0

 A solution is a sequence of actions

leading from the initial state to a goal state

7

Artificial Intelligence, lecture 2

EXAMPLE: VACUUM WORLD STATE SPACE

GRAPH (R-3-15)

8

Artificial Intelligence, lecture 2

 States: 0 and 1 dirt and robot locations, ignore
dirt amounts

 Actions: Left, Right, Suck, NoOp

 Goal test: no dirt

 Path cost: 1 per action (o for NoOp)

EXAMPLE: THE 8-PUZZLE (R-3-23)

9

Artificial Intelligence, lecture 2

UNINFORMED SEARCH STRATEGIES

 Uninformed search strategies use only the

information available in the problem definition.

 Examples of such algorithms:

 Breadth-first search

 Uniform-cost search

 Depth-first search

 Depth-limited search

 Iterative deepening search

10

Artificial Intelligence, lecture 2

GENERAL PROTOTYPE FOR THE SEARCH

ALGORITHMS R-3-25

 The tree search algorithm can be the pattern from
which all the search algorithms can be derived

 The ideea is to explore the state space generating
successors of already explored states. If by that we
obtain a goal node then we have a solution

function Tree-Search(problem,strategy) returns a
solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding
solution

else expand the node and add the resulting nodes to the
search tree

end 11

Artificial Intelligence, lecture 2

GENERAL TREE-SEARCH ALGORITHM (R-3-30)

12

Artificial Intelligence, lecture 2

SEARCH STRATEGIES (R-3-31)

 A strategy is defined by picking the order of node

expansion

 Strategies are evaluated along the following

dimensions:

 completeness—does it always find a solution if one exists?

 time complexity—number of nodes generated/expanded

 space complexity—maximum number of nodes in memory

 optimality—does it always find a least-cost solution?

 Time and space complexity are measured in terms of

 b—maximum branching factor of the search tree

 d—depth of the least-cost solution

 m—maximum depth of the state space (may be ∞)

13

Artificial Intelligence, lecture 2

BREADTH-FIRST SEARCH

 Expand the shallowest unexpanded node

 The fringe is a FIFO queue, the successors go at

the end of the queue

14

Artificial Intelligence, lecture 2

PROPERTIES OF BREADTH-FIRST SEARCH (R-3-

41)

15

Artificial Intelligence, lecture 2

DEPT-FIRST SEARCH (R-3-43)

16

Artificial Intelligence, lecture 2

 Expands deepest unexpanded node

 The fringe is a LIFO queue, the successors sre

put at the front of the queue

 Backtracking is a varaint of DFS, but not the

same!

PROPERTIES OF THE DEPTH-FIRST SEARCH (R-

3-59)

17

Artificial Intelligence, lecture 2

UNIFORM COST SEARCH (R-3-42)

 Expand least-cost unexpanded node

 Implementation: fringe = queue ordered by path

cost, lowest first

 Equivalent to breadth-first if step costs all equal

18

Artificial Intelligence, lecture 2

DEPTH-LIMITED SEARCH (R-3-60)

 Is a dept-first search with a depth limit = l

 i.e., nodes at depth l have no successors

19

Artificial Intelligence, lecture 2

ITERATIVE DEEPENING DEPTH-FIRST SEARCH

(R-3-70)

20

Artificial Intelligence, lecture 2

 It is a depth-limited search that progressively
increases the depth if a solution is not found

 Complete?? Yes

 Time?? (d + 1)b0 + db1 + (d 1)b2 + : : : + bd = O(bd)

 Space?? O(bd)

 Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

 Numerical comparison for b = 10 and d = 5, solution at far right leaf:
N(IDS) = 50 + 400 + 3; 000 + 20; 000 + 100; 000 = 123; 450

N(BFS) = 10 + 100 + 1; 000 + 10; 000 + 100; 000 + 999; 990 = 1; 111; 100

 IDS does better because other nodes at depth d are not expanded

 BFS can be modified to apply goal test when a node is generated

BIDIRECTIONAL SEARCH (RN-80)

21

Artificial Intelligence, lecture 2

 The idea is to run 2 searches simultaneously:
 One forward from the original state

 One backward from the goal

 We stop when the 2 searches meet

 The motivation is that bd/2 + bd/2 is much less than bd

 Bidirectional search is implemented by having one or both of the searches
check each

 Bidirectional search is implemented by having one or both of the searches check each
node before it is expanded to see if it is in the fringe of the other search tree;

GRAPH SEARCH

22

Artificial Intelligence, lecture 2

SUMMARY OF ALGORITHMS (R-3-71)

23

Artificial Intelligence, lecture 2

BIBLIOGRAPHY

 [RN] Russel S., Norvig P. – Artificial Intelligence

– A Modern Approach, 2nd ed. Prentice Hall, 2003

(1112 pages)

 [R] Stuart Russel – Course slides (visited oct.

2012 at

http://aima.cs.berkeley.edu/instructors.html#hom

ework)

24

Artificial Intelligence, lecture 2

http://aima.cs.berkeley.edu/instructors.html

