
ARTIFICIAL INTELLIGENCE

LECTURE 2

Ph. D. Lect. Horia Popa Andreescu

2017-2018 3rd year, semester 5

ROADMAP

 Uninformed search (Blind search)

 Are the search strategies in which we have no

additional information about states, beyond that

provided in the problem definition

 Breadth-first search

 Dept-first search

 Uniform-cost search

 Depth-limited search: iterative deepening depth-first

search

 Bidirectional search

 Graph search

2

Artificial Intelligence, lecture 2

PROBLEM REPRESENTATION

 We can see problem solving as a transition

 starting from the initial state

 Use transitions or operations to pass to different

states

 Reach a final state called the goal

 The most natural representation of the problem

space is by a tree. A certain state (node) is

connected to its parent state and to its children

states which are all the states in which we can

get by applying the operators on that current

state.

3

Artificial Intelligence, lecture 2

EXAMPLE (R-3-5): ROMANIA

 On holiday in Romania; currently in Arad.

 Flight leaves tomorrow from Bucharest

 Formulate goal:

 be in Bucharest

 Formulate problem:

 states: various cities

 actions: drive between cities

 Find solution:

 sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

4

Artificial Intelligence, lecture 2

EXAMPLE (R-3-6)

5

Artificial Intelligence, lecture 2

PROBLEM TYPES (R-3-7):

 Deterministic, fully observable => single-state

problem

 Agent knows exactly which state it will be in; solution is a

sequence

 Non-observable => conformant problem

 Agent may have no idea where it is; solution (if any) is a

sequence

 Nondeterministic and/or partially observable =>

contingency problem

 percepts provide new information about current state

 solution is a contingent plan or a policy

 often interleave search, execution

 Unknown state space =) exploration problem

(\online") 6

Artificial Intelligence, lecture 2

SINGLE-STATE PROBLEM FORMULATION (R-3-

12)

 A problem is dened by four items:

 initial state e.g., \at Arad"

 successor function S(x) = set of <action, state> pairs

e.g., S(Arad) = { <Arad --> Zerind, Zerind>, …}

 goal test, can be

 explicit, e.g., x = \at Bucharest"

 implicit, e.g., NoDirt(x)

 path cost (additive)

 e.g., sum of distances, number of actions executed, etc.

 c(x; a; y) is the step cost, assumed to be 0

 A solution is a sequence of actions

leading from the initial state to a goal state

7

Artificial Intelligence, lecture 2

EXAMPLE: VACUUM WORLD STATE SPACE

GRAPH (R-3-15)

8

Artificial Intelligence, lecture 2

 States: 0 and 1 dirt and robot locations, ignore
dirt amounts

 Actions: Left, Right, Suck, NoOp

 Goal test: no dirt

 Path cost: 1 per action (o for NoOp)

EXAMPLE: THE 8-PUZZLE (R-3-23)

9

Artificial Intelligence, lecture 2

UNINFORMED SEARCH STRATEGIES

 Uninformed search strategies use only the

information available in the problem definition.

 Examples of such algorithms:

 Breadth-first search

 Uniform-cost search

 Depth-first search

 Depth-limited search

 Iterative deepening search

10

Artificial Intelligence, lecture 2

GENERAL PROTOTYPE FOR THE SEARCH

ALGORITHMS R-3-25

 The tree search algorithm can be the pattern from
which all the search algorithms can be derived

 The ideea is to explore the state space generating
successors of already explored states. If by that we
obtain a goal node then we have a solution

function Tree-Search(problem,strategy) returns a
solution, or failure

initialize the search tree using the initial state of problem

loop do

if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding
solution

else expand the node and add the resulting nodes to the
search tree

end 11

Artificial Intelligence, lecture 2

GENERAL TREE-SEARCH ALGORITHM (R-3-30)

12

Artificial Intelligence, lecture 2

SEARCH STRATEGIES (R-3-31)

 A strategy is defined by picking the order of node

expansion

 Strategies are evaluated along the following

dimensions:

 completeness—does it always find a solution if one exists?

 time complexity—number of nodes generated/expanded

 space complexity—maximum number of nodes in memory

 optimality—does it always find a least-cost solution?

 Time and space complexity are measured in terms of

 b—maximum branching factor of the search tree

 d—depth of the least-cost solution

 m—maximum depth of the state space (may be ∞)

13

Artificial Intelligence, lecture 2

BREADTH-FIRST SEARCH

 Expand the shallowest unexpanded node

 The fringe is a FIFO queue, the successors go at

the end of the queue

14

Artificial Intelligence, lecture 2

PROPERTIES OF BREADTH-FIRST SEARCH (R-3-

41)

15

Artificial Intelligence, lecture 2

DEPT-FIRST SEARCH (R-3-43)

16

Artificial Intelligence, lecture 2

 Expands deepest unexpanded node

 The fringe is a LIFO queue, the successors sre

put at the front of the queue

 Backtracking is a varaint of DFS, but not the

same!

PROPERTIES OF THE DEPTH-FIRST SEARCH (R-

3-59)

17

Artificial Intelligence, lecture 2

UNIFORM COST SEARCH (R-3-42)

 Expand least-cost unexpanded node

 Implementation: fringe = queue ordered by path

cost, lowest first

 Equivalent to breadth-first if step costs all equal

18

Artificial Intelligence, lecture 2

DEPTH-LIMITED SEARCH (R-3-60)

 Is a dept-first search with a depth limit = l

 i.e., nodes at depth l have no successors

19

Artificial Intelligence, lecture 2

ITERATIVE DEEPENING DEPTH-FIRST SEARCH

(R-3-70)

20

Artificial Intelligence, lecture 2

 It is a depth-limited search that progressively
increases the depth if a solution is not found

 Complete?? Yes

 Time?? (d + 1)b0 + db1 + (d 􀀀 1)b2 + : : : + bd = O(bd)

 Space?? O(bd)

 Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

 Numerical comparison for b = 10 and d = 5, solution at far right leaf:
N(IDS) = 50 + 400 + 3; 000 + 20; 000 + 100; 000 = 123; 450

N(BFS) = 10 + 100 + 1; 000 + 10; 000 + 100; 000 + 999; 990 = 1; 111; 100

 IDS does better because other nodes at depth d are not expanded

 BFS can be modified to apply goal test when a node is generated

BIDIRECTIONAL SEARCH (RN-80)

21

Artificial Intelligence, lecture 2

 The idea is to run 2 searches simultaneously:
 One forward from the original state

 One backward from the goal

 We stop when the 2 searches meet

 The motivation is that bd/2 + bd/2 is much less than bd

 Bidirectional search is implemented by having one or both of the searches
check each

 Bidirectional search is implemented by having one or both of the searches check each
node before it is expanded to see if it is in the fringe of the other search tree;

GRAPH SEARCH

22

Artificial Intelligence, lecture 2

SUMMARY OF ALGORITHMS (R-3-71)

23

Artificial Intelligence, lecture 2

BIBLIOGRAPHY

 [RN] Russel S., Norvig P. – Artificial Intelligence

– A Modern Approach, 2nd ed. Prentice Hall, 2003

(1112 pages)

 [R] Stuart Russel – Course slides (visited oct.

2012 at

http://aima.cs.berkeley.edu/instructors.html#hom

ework)

24

Artificial Intelligence, lecture 2

http://aima.cs.berkeley.edu/instructors.html

