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ROADMAP

 Uninformed search (Blind search)

 Are the search strategies in which we have no 

additional information about states, beyond that 

provided in the problem definition

 Breadth-first search

 Dept-first search

 Uniform-cost search

 Depth-limited search: iterative deepening depth-first 

search

 Bidirectional search

 Graph search
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PROBLEM REPRESENTATION

 We can see problem solving as a transition 

 starting from the initial state 

 Use transitions or operations to pass to different 

states

 Reach a final state called the goal

 The most natural representation of the problem 

space is by a tree. A certain state (node) is 

connected to its parent state and to its children 

states which are all the states in which we can 

get by applying the operators on that current 

state. 
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EXAMPLE (R-3-5): ROMANIA

 On holiday in Romania; currently in Arad.

 Flight leaves tomorrow from Bucharest

 Formulate goal:

 be in Bucharest

 Formulate problem:

 states: various cities

 actions: drive between cities

 Find solution:

 sequence of cities, e.g., Arad, Sibiu, Fagaras, 

Bucharest
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EXAMPLE (R-3-6)
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PROBLEM TYPES (R-3-7):

 Deterministic, fully observable => single-state 

problem

 Agent knows exactly which state it will be in; solution is a 

sequence

 Non-observable => conformant problem

 Agent may have no idea where it is; solution (if any) is a 

sequence

 Nondeterministic and/or partially observable => 

contingency problem

 percepts provide new information about current state

 solution is a contingent plan or a policy

 often interleave search, execution

 Unknown state space =) exploration problem 
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SINGLE-STATE PROBLEM FORMULATION (R-3-

12)

 A problem is dened by four items:

 initial state e.g., \at Arad"

 successor function S(x) = set of <action, state> pairs

e.g., S(Arad) = { <Arad --> Zerind, Zerind>, …}

 goal test, can be

 explicit, e.g., x = \at Bucharest"

 implicit, e.g., NoDirt(x)

 path cost (additive)

 e.g., sum of distances, number of actions executed, etc.

 c(x; a; y) is the step cost, assumed to be  0

 A solution is a sequence of actions 

leading from the initial state to a goal state
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EXAMPLE: VACUUM WORLD STATE SPACE

GRAPH (R-3-15)
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 States: 0 and 1 dirt and robot locations, ignore 
dirt amounts

 Actions: Left, Right, Suck, NoOp

 Goal test: no dirt

 Path cost: 1 per action (o for NoOp)



EXAMPLE: THE 8-PUZZLE (R-3-23)
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UNINFORMED SEARCH STRATEGIES

 Uninformed search strategies use only the 

information available in the problem definition.

 Examples of such algorithms:

 Breadth-first search

 Uniform-cost search

 Depth-first search 

 Depth-limited search

 Iterative deepening search
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GENERAL PROTOTYPE FOR THE SEARCH

ALGORITHMS R-3-25

 The tree search algorithm can be the pattern from 
which all the search algorithms can be derived

 The ideea is to explore the state space generating 
successors of already explored states. If by that we 
obtain a goal node then we have a solution

function Tree-Search(problem,strategy) returns a 
solution, or failure 

initialize the search tree using the initial state of problem 

loop do 

if there are no candidates for expansion then return failure 
choose a leaf node for expansion according to strategy 

if the node contains a goal state then return the corresponding 
solution 

else expand the node and add the resulting nodes to the 
search tree 
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GENERAL TREE-SEARCH ALGORITHM (R-3-30)
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SEARCH STRATEGIES (R-3-31)

 A strategy is defined by picking the order of node 

expansion

 Strategies are evaluated along the following 

dimensions: 

 completeness—does it always find a solution if one exists? 

 time complexity—number of nodes generated/expanded 

 space complexity—maximum number of nodes in memory 

 optimality—does it always find a least-cost solution?

 Time and space complexity are measured in terms of 

 b—maximum branching factor of the search tree 

 d—depth of the least-cost solution 

 m—maximum depth of the state space (may be ∞)
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BREADTH-FIRST SEARCH

 Expand the shallowest unexpanded node

 The fringe is a FIFO queue, the successors go at 

the end of the queue
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PROPERTIES OF BREADTH-FIRST SEARCH (R-3-

41)
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DEPT-FIRST SEARCH (R-3-43)
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 Expands deepest unexpanded node

 The fringe is a LIFO queue, the successors sre 

put at the front of the queue

 Backtracking is a varaint of DFS, but not the 

same!



PROPERTIES OF THE DEPTH-FIRST SEARCH (R-

3-59)
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UNIFORM COST SEARCH (R-3-42)

 Expand least-cost unexpanded node

 Implementation: fringe = queue ordered by path 

cost, lowest first

 Equivalent to breadth-first if step costs all equal
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DEPTH-LIMITED SEARCH (R-3-60)

 Is a dept-first search with a depth limit = l

 i.e., nodes at depth l have no successors
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ITERATIVE DEEPENING DEPTH-FIRST SEARCH

(R-3-70)
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 It is a depth-limited search that progressively 
increases the depth if a solution is not found

 Complete?? Yes

 Time?? (d + 1)b0 + db1 + (d 􀀀 1)b2 + : : : + bd = O(bd)

 Space?? O(bd)

 Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

 Numerical comparison for b = 10 and d = 5, solution at far right leaf:
N(IDS) = 50 + 400 + 3; 000 + 20; 000 + 100; 000 = 123; 450

N(BFS) = 10 + 100 + 1; 000 + 10; 000 + 100; 000 + 999; 990 = 1; 111; 100

 IDS does better because other nodes at depth d are not expanded

 BFS can be modified to apply goal test when a node is generated



BIDIRECTIONAL SEARCH (RN-80)
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 The idea is to run 2 searches simultaneously:
 One forward from the original state

 One backward from the goal

 We stop when the 2 searches meet

 The motivation is that bd/2 + bd/2 is much less than bd

 Bidirectional search is implemented by having one or both of the searches 
check each

 Bidirectional search is implemented by having one or both of the searches check each 
node before it is expanded to see if it is in the fringe of the other search tree;



GRAPH SEARCH
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SUMMARY OF ALGORITHMS (R-3-71)
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