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Data transformations
● Attribute selection

♦ Scheme-independent, scheme-specific
● Attribute discretization

♦ Unsupervised, supervised, error- vs entropy-based, converse of discretization
● Projections

♦ Principal component analysis, random projections, partial least-squares, text, time 
series

● Sampling
♦ Reservoir sampling

● Dirty data
♦ Data cleansing, robust regression, anomaly detection

● Transforming multiple classes to binary ones
♦ Simple approaches, error-correcting codes, ensembles of nested 

dichotomies
● Calibrating class probabilities 
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Just apply a learner? NO!
● Scheme/parameter selection

treat selection process as part of the learning process
● Modifying the input:

♦ Data engineering to make learning possible or easier
● Modifying the output

♦ Re-calibrating probability estimates
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Attribute selection
● Adding a random (i.e. irrelevant) attribute can significantly 

degrade C4.5’s performance
♦ Problem: attribute selection based on smaller and smaller 

amounts of data
● IBL very susceptible to irrelevant attributes 

♦ Number of training instances required increases exponentially 
with number of irrelevant attributes

● Naïve Bayes doesn’t have this problem
● Relevant attributes can also be harmful
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Scheme-independent attribute selection
● Filter approach: assess based on general characteristics of the data
● One method: find smallest subset of attributes that separates data
● Another method: use different learning scheme 

♦ e.g. use attributes selected by C4.5 and 1R, or coefficients of linear model, 
possibly applied recursively (recursive feature elimination)

● IBL-based attribute weighting techniques:
♦ can’t find redundant attributes (but fix has been suggested)

● Correlation-based Feature Selection (CFS):
♦ correlation between attributes measured by symmetric uncertainty:

♦ goodness of subset of attributes measured by (breaking ties in favor of smaller 
subsets):

UA ,B=2 HA HB−HA,B
HA HB ∈[0,1 ]

∑ jUA j ,C/∑i ∑ jUA i ,A j
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Attribute subsets for weather data
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Searching attribute space

● Number of attribute subsets is
exponential in number of attributes

● Common greedy approaches:
● forward selection 
● backward elimination

● More sophisticated strategies:
● Bidirectional search
● Best-first search: can find optimum solution
● Beam search: approximation to best-first search
● Genetic algorithms
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Scheme-specific selection
● Wrapper approach to attribute selection
● Implement “wrapper” around learning scheme

● Evaluation criterion: cross-validation performance
● Time consuming

● greedy approach, k attributes ⇒   k2 × time 
● prior ranking of attributes ⇒   linear in k 

● Can use significance test to stop cross-validation for subset 
early if it is unlikely to “win” (race search)

● can be used with forward, backward selection, prior ranking, or special-purpose 
schemata search

● Learning decision tables: scheme-specific attribute selection 
essential

● Efficient for decision tables and Naïve Bayes 
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Attribute discretization 

● Avoids normality assumption in Naïve Bayes and 
clustering

● 1R: uses simple discretization scheme
● C4.5 performs local discretization
● Global discretization can be advantageous because it’s 

based on more data
● Apply learner to 

♦ k -valued discretized attribute or  to
♦ k – 1 binary attributes that code the cut points
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Discretization: unsupervised
● Determine intervals without knowing class labels

● When clustering, the only possible way!
● Two strategies:

● Equal-interval binning
● Equal-frequency binning

(also called histogram equalization)
● Normally inferior to supervised schemes in classification 

tasks
● But equal-frequency binning works well with naïve Bayes if number of 

intervals is set to square root of size of dataset 
(proportional k-interval discretization)
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Discretization: supervised
● Entropy-based method
● Build a decision tree with pre-pruning on the attribute 

being discretized
● Use entropy as splitting criterion
● Use minimum description length principle as stopping criterion

● Works well: the state of the art
● To apply min description length principle:

● The “theory” is
● the splitting point (log2[N – 1] bits)
● plus class distribution in each subset

● Compare description lengths before/after adding split
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Example: temperature attribute

Play

Temperature

Yes No Yes Yes Yes No No Yes Yes Yes No Yes Yes No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
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Formula for MDLP

● N instances
● Original set: k classes, entropy E 
● First subset: k1 classes, entropy E1 
● Second subset:k2 classes, entropy E2

● Results in no discretization intervals for 
temperature attribute

gain log2 N−1
N  log2 3k−2−kEk1E1k2E2

N
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Supervised discretization: other methods

● Can replace top-down procedure by bottom-up method
● Can replace MDLP by chi-squared test
● Can use dynamic programming to find optimum k-way 

split for given additive criterion
♦ Requires time quadratic in the number of instances
♦ But can be done in linear time if error rate is used instead of 

entropy
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Error-based vs. entropy-based
● Question:

could the best discretization ever have two 
adjacent intervals with the same class?

● Wrong answer: No. For if so,
● Collapse the two
● Free up an interval
● Use it somewhere else
● (This is what error-based discretization will do)

● Right answer: Surprisingly, yes.
● (and entropy-based discretization can do it)
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Error-based vs. entropy-based
A 2-class,
2-attribute 
problem

Entropy-based discretization can detect change of class distribution
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The converse of discretization
● Make nominal values into “numeric” ones
1. Indicator attributes (used by IB1)

• Makes no use of potential ordering information
2. Code an ordered nominal attribute into binary ones 

(used by M5’)
• Can be used for any ordered attribute
• Better than coding ordering into an integer (which implies a 

metric)
● In general: code subset of attribute values as binary
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Projections
● Simple transformations can often make a large difference in 

performance
● Example transformations (not necessarily for performance 

improvement):
♦ Difference of two date attributes
♦ Ratio of two numeric (ratio-scale) attributes
♦ Concatenating the values of nominal attributes
♦ Encoding cluster membership
♦ Adding noise to data
♦ Removing data randomly or selectively
♦ Obfuscating the data
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Principal component analysis
● Method for identifying the important “directions” in the 

data
● Can rotate data into (reduced) coordinate system that is 

given by those directions
● Algorithm:

1. Find direction (axis) of greatest variance
2. Find direction of greatest variance that is perpendicular to 

previous direction and repeat
● Implementation: find eigenvectors of covariance matrix 

by diagonalization
● Eigenvectors (sorted by eigenvalues) are the directions
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Example: 10-dimensional data

● Can transform data into space given by components 
● Data is normally standardized for PCA
● Could also apply this recursively in tree learner
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Random projections
● PCA is nice but expensive: cubic in number of 

attributes
● Alternative: use random directions (projections) 

instead of principle components
● Surprising: random projections preserve distance 

relationships quite well (on average)
♦ Can use them to apply kD-trees to high-dimensional 

data
♦ Can improve stability by using ensemble of models 

based on different projections
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Partial least-squares regression
● PCA is often a pre-processing step before applying a 

learning algorithm
♦ When linear regression is applied the resulting model is 

known as principal components regression 
♦ Output can be reexpressed in terms of the original 

attribues
● Partial least-squares differs from PCA in that it takes 

the class attribute into account
♦ Finds directions that have high variance and are 

strongly correlated with the class
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Algorithm
1.Start with standardized input attributes
2.Attribute coefficients of the first PLS direction:

● Compute the dot product between each attribute vector and the 
class vector in turn

3.Coefficients for next PLS direction:
● Original attribute values are first replaced by difference (residual) 

between the attribute's value and the prediction from a simple 
univariate regression that uses the previous PLS direction as a 
predictor of that attribute

● Compute the dot product between each attribute's residual vector 
and the class vector in turn

4.Repeat from 3
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Text to attribute vectors
● Many data mining applications involve textual data (eg. string 

attributes in ARFF)
● Standard transformation: convert string into bag of words by 

tokenization
♦ Attribute values are binary, word frequencies (f

ij
), log(1+f

ij
), or 

TF × IDF:

● Only retain alphabetic sequences?
● What should be used as delimiters?
● Should words be converted to lowercase?
● Should stopwords be ignored?
● Should hapax legomena be included? Or even just the k most frequent 

words?

f ij log
#documents
#documents that includeword i
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Time series
● In time series data, each instance represents a different time step
● Some simple transformations:

♦ Shift values from the past/future
♦ Compute difference (delta) between instances (ie. 

“derivative”)
● In some datasets, samples are not regular but time is given by 

timestamp attribute
♦ Need to normalize by step size when transforming 

● Transformations need to be adapted if attributes represent 
different time steps
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Sampling
● Sampling is typically a simple procedure
● What if training instances arrive one by one but we don't 

know the total number in advance?
♦ Or perhaps there are so many that it is impractical to store 

them all before sampling?
● Is it possible to produce a uniformly random sample of a 

fixed size? Yes.
● Reservoir sampling

♦ Fill the reservoir, of size r, with the first r instances to 
arrive

♦ Subsequent instances replace a randomly selected 
reservoir element with probability r/i, where i is the 
number of instances seen so far
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Automatic data cleansing
● To improve a decision tree:

♦ Remove misclassified instances, then re-learn!
● Better (of course!):

♦ Human expert checks misclassified instances
● Attribute noise vs class noise

♦ Attribute noise should be left in training set
(don’t train on clean set and test on dirty one)

♦ Systematic class noise (e.g. one class substituted for 
another): leave in training set

♦ Unsystematic class noise: eliminate from training set, if 
possible
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Robust regression

● “Robust” statistical method ⇒   one that 
addresses problem of outliers 

● To make regression more robust:
● Minimize absolute error, not squared error
● Remove outliers (e.g. 10% of points farthest from the 

regression plane)
● Minimize median instead of mean of squares (copes 

with outliers in x and y direction)
● Finds narrowest strip covering half the observations
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Example: least median of squares

Number of  international phone calls from Belgium, 
1950–1973
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Detecting anomalies

● Visualization can help to detect anomalies
● Automatic approach:

committee of different learning schemes 
♦ E.g.

● decision tree
● nearest-neighbor learner
● linear discriminant function

♦ Conservative approach: delete instances incorrectly 
classified by all of them

♦ Problem: might sacrifice instances of small classes
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One-Class Learning
● Usually training data is available for all classes
● Some problems exhibit only a single class at training 

time
♦ Test instances may belong to this class or a new class 

not present at training time
● One-class classification

♦ Predict either target or unknown
● Some problems can be re-formulated into two-class ones
● Other applications truly don't have negative data

♦ Eg password hardening
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Outlier detection
● One-class classification is often called outlier/novelty 

detection
● Generic approach: identify outliers as instances that lie 

beyond distance d from percentage p of the training 
data

● Alternatively, estimate density of the target class and 
mark low probability test instances as outliers

♦ Threshold can be adjusted to obtain a suitable rate 
of outliers
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Generating artificial data
● Another possibility is to generate artificial data for the 

outlier class
♦ Can then apply any off-the-shelf classifier
♦ Can tune rejection rate threshold if classifier produces 

probability estimates
● Generate uniformly random data 

♦ Too much will overwhelm the target class!
● Can be avoided if learning accurate probabilities rather than 

minimizing classification error
♦ Curse of dimensionality – as # attributes increase it 

becomes infeasible to generate enough data to get good 
coverage of the space
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Generating artificial data
● Generate data that is close to the target class

♦ No longer uniformly distributed and must take this distribution 
into account when computing membership scores for the one-
class model

● T – target class, A – artificial class. Want Pr[X | T], for any  instance 
X; we know Pr[X | A]

● Combine some amount of A with instances of T and use a class 
probability estimator to estimate Pr[T | X]; then by Bayes' rule:

● For classification, choose a threshold to tune rejection rate
● How to choose Pr[X | A]? Apply a density estimator to the target class 

and use resulting function to model the artificial class

Pr [X |T ]= (1−Pr [T ])Pr [T | X ]
Pr [T ](1−Pr [T | X ]) Pr [X | A]
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Transforming multiple classes to binary ones
● Some learning algorithms only work with two class 

problems
♦ Sophisticated multi-class variants exist in many cases 

but can be very slow or difficult to implement
● A common alternative is to transform multi-class 

problems into multiple two-class ones
● Simple methods

♦ Discriminate each class agains the union of the 
others – one-vs.-rest

♦ Build a classifier for every pair of classes – 
pairwise classification
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Error-correcting output codes

● Multiclass problem ⇒   binary problems
● Simple one-vs.rest scheme: 

One-per-class coding
● Idea: use error-correcting 

codes instead
● base classifiers predict

1011111, true class = ??
● Use code words that have

large Hamming distance
between any pair

● Can correct up to (d – 1)/2 single-bit errors

0001d

0010c

0100b

1000a

class vectorclass

0101010d

0011001c

0000111b

1111111a

class vectorclass
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More on ECOCs
● Two criteria :

● Row separation:
minimum distance between rows

● Column separation:
minimum distance between columns

● (and columns’ complements)
● Why? Because if columns are identical, base classifiers will likely make 

the same errors
● Error-correction is weakened if errors are correlated

● 3 classes ⇒   only 23 possible columns 
● (and 4 out of the 8 are complements)
● Cannot achieve row and column separation

● Only works for problems with > 3 classes
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Exhaustive ECOCs

● Exhaustive code for k classes:
● Columns comprise every

possible k-string …
● … except for complements

and all-zero/one strings
● Each code word contains

2k–1 – 1 bits
● Class 1: code word is all ones
● Class 2: 2k–2 zeroes followed by 2k–2 –1 ones
● Class i : alternating runs of 2k–i 0s and 1s

● last run is one short

0101010d

0011001c

0000111b

1111111a

class vectorclass

Exhaustive code, k = 4
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More on ECOCs

● More classes ⇒   exhaustive codes infeasible
● Number of columns increases exponentially

● Random code words have good error-correcting properties 
on average!

● There are sophisticated methods for generating ECOCs 
with just a few columns

● ECOCs don’t work with NN classifier
● But: works if different attribute subsets are used to predict each 

output bit
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Ensembles of nested dichotomies
● ECOCs produce classifications, but what if we want class 

probability estimates as well?
♦ e.g. for cost-sensitive classification via minimum expected cost

● Nested dichotomies
♦ Decomposes multi-class to binary
♦ Works with two-class classifiers that can produce class 

probability estimates
♦ Recursively split the full set of classes into smaller and smaller 

subsets, while splitting the full dataset of instances into subsets 
corresponding to these subsets of classes

● Yields a binary tree of classes called a nested dichotomy
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Example
Full set of classes:   [a, b, c, d]

Two disjoint subsets:                [a, b]        [c, d]   

                                    [a]   [b]     [c]   [d]

Class Class vector
a 0 0 X
b 1 X 0
c 0 1 X
d 1 X 1

Nested dichotomy as a code matrix:   
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Probability estimation
● Suppose we want to compute Pr[a | x]?

♦ Learn two class models for each of the three internal nodes
♦ From the two-class model at the root:

Pr[{a, b} | x]
♦ From the left-hand child of the root:

Pr[{a} | x, {a | b}]
♦ Using the chain rule:

Pr[{a} | x] = Pr[{a} | {a, b}, x] × Pr[{a, b} | x]
● Issues

♦ Estimation errors for deep hierarchies
♦ How to decide on hierarchical decomposition of classes?
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Ensembles of nested dichotomies

● If there is no reason a priori to prefer any particular 
decomposition then use them all

♦ Impractical for any non-trivial number of classes
● Consider a subset by taking a random sample of possible 

tree structures
♦ Caching of models (since a given two class problem may 

occur in multiple trees)
♦ Average probability estimates over the trees
♦ Experiments show that this approach yields accurate 

multiclass classifiers
♦ Can even improve the performance of methods that can 

already handle multiclass problems!
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Calibrating class probabilities
● Class probability estimation is harder than 

classification
♦ Classification error is minimized as long as the correct 

class is predicted with max probability
♦ Estimates that yield correct classification may be quite 

poor with respect to quadratic or informational loss
● Often important to have accurate class probabilities

♦ e.g. cost-sensitive prediction using the minimum 
expected cost method
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Calibrating class probabilities 
● Consider a two class problem. Probabilities that are correct 

for classification may be:
♦ Too optimistic – too close to either 0 or 1
♦ Too pessimistic – not close enough to 0 or 1

Reliability diagram 
showing overoptimistic 
probability estimation for 
a two-class problem
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Calibrating class probabilities
● Reliability diagram generated by collecting predicted 

probabilities and relative frequencies from a 10-fold 
cross-validation

♦ Predicted probabilities discretized into 20 ranges via 
equal-frequency discretization

♦ Correct bias by using post-hoc calibration to map 
observed curve to the diagonal

♦ A rough approach can use the data from the reliability 
diagram directly

● Discretization-based calibration is fast...
♦ But determining the appropriate number of 

discretization intervals is not easy
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Calibrating class probabilities
● View as a function estimation problem

♦ One input – estimated class probability – and one output – 
the calibrated probability

● Assuming the function is piecewise constant and 
monotonically increasing

♦ Isotonic regression minimizes the squared error between 
observed class “probabilities (0/1) and resulting calibrated 
class probabilities

♦ Alternatively, use logistic regression to estimate the 
calibration function

● Must use the log-odds of the estimated class 
probabilities as input

● Multiclass logistic regression can be used for 
calibration in the multiclass case
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