
PROGRAMMING III
JAVA LANGUAGE

COURSE 7-8



PREVIOUS COURSE 
CONTENT
qCollections

q Streams
q Aggregate operations

q Exceptions



COURSE CONTENT
q Input/Output Streams

q Text Files

q Byte Files

q RandomAcessFile

q IO Exceptions

q Serialization

q NIO



WHAT IS A FILE?
q A file is a collection of data in mass storage.

q The same file can be read or modified by different programs.

q The program must be aware of the format of the data in the file.

q The files are maintained by the operating system.

q The system provides commands and/or GUI utilities for viewing 
file directories and for copying, moving, renaming, and deleting 
files.

q The operating system also provides basic functions, callable 
from programs, for  reading and writing directories and files.



FILE TYPES
q Text files

q A computer user distinguishes text (“ASCII”) files and “binary” files.  
This distinction is based on how you treat the file.

q A text file is assumed to contain lines of text (for example, in ASCII 
code).

q Each line terminates with a newline character (or a combination, 
carriage return plus line feed).

q Examples:
q Any plain-text file, typically named something.txt
q Source code of programs in any language (for example, Something.java)
q HTML documents
q .....



FILE TYPES
Binary Files

q A “binary” file can contain any information, any combination of bytes.

q Only a programmer/designer knows how to interpret it.

q Different programs may interpret the same file differently (for example, 
one program displays an image, another extracts an encrypted 
message).

q Examples
q Compiled programs (for example, Something.class)
q Image files (for example, something.gif)
q Music files  (for example, something.mp3)

q Any file can be treated as a binary file (even a text file, if we forget 
about the special meaning of CR-LF).



STREAM
q Stream

q A stream is a connection to a source of data or to a 
destination for data (sometimes both)

q An input stream may be associated with the keyboard

q An input stream or an output stream may be associated 
with a file 

q Different streams have different characteristics
q A file has a definite length, and therefore an end
q Keyboard input has no specific end



STREAM
q A stream is an abstraction derived from sequential input 

or output devices.
q An input stream produces a stream of characters; an 

output stream receives a stream of characters, “one at a 
time.”

q Streams apply not just to files, but also to IO devices, 
Internet streams, and so on.

q A file can be treated as an input or output stream.
q In reality file streams are buffered for efficiency: it is not 

practical to read or write one character at a time from or to 
mass storage.

q It is common to treat text files as streams.



FILES AND STREAMS
q Java views each files as a sequential stream of bytes

q Operating system provides mechanism to determine end 
of file
q End-of-file marker
q Count of total bytes in file
q Java program processing a stream of bytes receives an 

indication from the operating system when program reaches 
end of stream



FILES AND STREAMS
q File streams

q Byte-based streams – stores data in binary format
q Binary files – created from byte-based streams, read by a 

program that converts data to human-readable format
q Character-based streams – stores data as a sequence of 

characters
q Text files – created from character-based streams, can be 

read by text editors

q Java opens file by creating an object and associating a stream 
with it

q Standard streams – each stream can be redirected
q System.in – standard input stream object, can be redirected with 

method setIn
q System.out – standard output stream object, can be redirected 

with method setOut
q System.err – standard error stream object, can be redirected with 

method setErr



I/0 API
q I/O (input/outpu)

q refers to the interface between a computer and the rest of the 
world

q between a single program and the rest of the computer

q java.io.*
q Stream oriented
q Blocking IO

q java.nio.* (java version ≥ 1.7)
q Buffer oriented
q Non blocking IO
q Selectors



IO API
BufferedInputStream 
BufferedOutputStream 
BufferedReader 
BufferedWriter 
ByteArrayInputStream 
ByteArrayOutputStream 
CharArrayReader 
CharArrayWriter 
DataInputStream 
DataOutputStream 
File 
FileDescriptor 
FileInputStream 
FileOutputStream 
FilePermission 
FileReader 
FileWriter 
FilterInputStream 
FilterOutputStream 
FilterReader 
FilterWriter 

InputStream 
InputStreamReader 
LineNumberInputStream 
LineNumberReader 
ObjectInputStream 
ObjectInputStream.GetField 
ObjectOutputStream 
ObjectOutputStream.PutField 
ObjectStreamClass 
ObjectStreamField 
OutputStream 
OutputStreamWriter 
PipedInputStream 
PipedOutputStream 
PipedReader 
PipedWriter 
PrintStream 
PrintWriter 
PushbackInputStream 
PushbackReader

RandomAccessFile 
Reader 
SequenceInputStream 
SerializablePermission 
StreamTokenizer 
StringBufferInputStream 
StringReader 
StringWriter 
Writer



IO API
q Uses four hierarchies of classes 

q Reader
q Writer
q InputStream
q OutputStream.

q InputStream/OutputStream hierarchies deal with bytes.  
Reader/Writer hierarchies deal with chars.

q Has a special stand-alone class RandomAccessFile.

q The Scanner class has been added to java.util in Java 5 to 
facilitate reading numbers and words.



IO. USAGE
q IO flow

q import java.io.*;
q Open the stream

q There is data external to your program that you want to get, or you 
want to put data somewhere outside your program

q When you open a stream, you are making a connection to that 
external place

q Once the connection is made, you forget about the external place 
and just use the stream

q Use the stream (read, write, or both)
q Using a stream means doing input from it or output to it
q But it’s not usually that simple--you need to manipulate the data in some way 

as it comes in or goes out
q Close the stream

q A stream is an expensive resource
q There is a limit on the number of streams that you can have open at 

one time
q You should not have more than one stream open on the same file
q You must close a stream before you can open it again
q Always close your streams



JAVA.IO.FILE
q The File class represents a file (or folder) in the file directory 

system.
q Class File useful for retrieving information about files and 

directories from disk
q Objects of class File do not open files or provide any file-

processing capabilities

q Methods:
q String getName( ) - returns file name
q boolean exists() - returns true if the file exists 
q String getAbsolutePath( ) - return the absolute file path
q long length( ) - return the size of file
q boolean isDirectory( ) - return true if the file is a directory
q File[ ]  list( ) - returns the list of the directory

String pathname = "../Data/words.txt“;
File file = new File(pathname);



JAVA.IO.FILE
q Class File provides four constructors:

q Takes one String specifying name and path (location of file on disk)
q Takes two Strings, first specifying path and second specifying name of 

file
q Takes File object specifying path and String specifying name of file
q Takes URI object specifying name and location of file

q Different kinds of paths
q Absolute path 

q contains all directories, starting with the root directory, that lead to a specific 
file or directory

q Relative path 
q normally starts from the directory in which the application began executing



JAVA.IO.FILE
q Separator character – used to separate directories and 

files in a path
q Windows uses \
q UNIX uses /
q Java process both characters, File.pathSeparator can 

be used to obtain the local computer’s proper separator 
character

q Common Programming Error
q Using \ as a directory separator rather than \\ in a string 

literal is a logic error. 
q A single \ indicates that the \ followed by the next character 

represents an escape sequence. 
q Use \\ to insert a \ in a string literal. 



IO. READING FROM 
STANDARD INPUT
q Can use

q BufferedReader
q BufferedReader stdin  =  new BufferedReader( new 

InputStreamReader(System.in))
q How to read?

q int read()
q returns character code, reads one character

q String readLine()
q returns a line of text

q ...

q Scanner
q Scanner stdin = new Scanner(System.in)
q How to read?

q int nextInt()
q double nextDouble()
q String nextLine()
q ...



IO. READING FROM 
TEXT FILES
q Can use

q BufferedReader

q Scanner

q LineNumberReader
q String readLine()

q reads a line from a file
q int getLineNumber()

q returns the number of lines read from the file so far

q StreamTokenizer



IO. READING FROM 
TEXT FILES
public class ReadingFromFile {

public static void main(String[] args) throws IOException {

// opening the file for reading

FileReader f = new FileReader("test.txt");

// creation of the object for reading

BufferedReader in = new BufferedReader(f);

// reading a line of text from the file

String line = in.readLine();

System.out.println(line);

// closing the file

f.close();

}

}



IO 
STREAMTOKENIZER
q Parses inputStreams into "tokens", allowing the tokens to be read one at 

a time

q Can recognize identifiers, numbers, quoted strings, and various 
comment styles.



IO 
STREAMTOKENIZER
q Example

q Read the content of a file and count how many lines, words and numbers are in the file

public class StreamTokenizerDemo {

public static void main(String[] args) {

try {

// create an ObjectInputStream for the file we created before

ObjectInputStream ois =  new ObjectInputStream(new FileInputStream("test.txt"));

// create a new tokenizer

Reader r = new BufferedReader(new InputStreamReader(ois));   

StreamTokenizer st = new StreamTokenizer(r);

int lineCount = 0, wordCount = 0, numberCount = 0;



IO 
STREAMTOKENIZER
// print the stream tokens

boolean eof = false;

do {

int token = st.nextToken();

switch (token) {

case StreamTokenizer.TT_EOF:  

System.out.println("End of File encountered."); eof = true;  break;

case StreamTokenizer.TT_EOL:   

System.out.println("End of Line encountered."); lineCount++; break;

case StreamTokenizer.TT_WORD: 

System.out.println("Word: " + st.sval); wordCount++; break;

case StreamTokenizer.TT_NUMBER:      

System.out.println("Number: " + st.nval); numberCount++; break;

default:  

System.out.println((char) token + " encountered.");    

if (token == '!') {   eof = true;  }

}

} while (!eof);

System.out.println(“Number of lines ” + lineCount + “ \nNumber of words ” 

+ wordcount + “\n Number of numbers ” + numberCount);

} catch (Exception ex) { ex.printStackTrace();} } }



IO. WRITING TO TEXT 
FILES
q Can Use

q PrintWriter
q void print()
q PrintWriter printf()
q void println()

q Example
public static void main(String[] args) throws IOException
{

…
PrintWriter outFile = new PrintWriter(“results.txt”);
outFile.println(“ANALYSIS for “ + infileName);
outFile.print(“Number of samples”);
…
outFile.close();

}



IO READING/WRITING 
BYTES
q To read and write 8-bit bytes, programs should use the byte streams, descendants of 

InputStream and OutputStream. 
q InputStream and OutputStream provide the API and partial implementation for input 

streams (streams that read 8-bit bytes) and output streams (streams that write 8-bit 
bytes). 

q These streams are typically used to read and write binary data such as images and 
sounds. 

q Example
private static void copyFileUsingFileStreams(File source, File dest)  
throws IOException {

InputStream input = null;
OutputStream output = null;
try {

input = new FileInputStream(source);
output = new FileOutputStream(dest);
byte[] buf = new byte[1024];
int bytesRead;
while ((bytesRead = input.read(buf)) > 0) 

output.write(buf, 0, bytesRead);
} finally {

input.close();
output.close();

}
}



IO RANDOM ACESS 
FILES
q Random access files are files in which records can be 

accessed in any order
q Also called direct access files
q More efficient than sequential access files



IO RANDOM ACESS 
FILES
q NOT compatible with the stream/reader/writer models

q With a random-access file, you can seek to the desired 
position and then read and write an amount of bytes

q Only support seeking relative to the beginning of the file
q Not relative to current position of file pointer

q However there are methods that report the current position



IO RANDOM ACESS 
FILES
q Methods

q long getFilePointer()
q Returns the current offset in this file.

q long length() 
q Returns the length of this file.

q void seek(long pos) 
q Sets the file-pointer offset, measured from the beginning 

of this file, at which the next read or write occurs.

file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html


IO RANDOM ACESS
FILES
q RandomAccessFile(File file, String mode) 

q Creates a random access file stream to read from, and optionally 
to write to, the file specified by the File argument.

q RandomAccessFile(String name, String mode) 
q Creates a random access file stream to read from, and optionally 

to write to, a file with the specified name.

q The mode should be either “r” , “rw”, “rws” or “rwd”
q rws

q flushes the contents of the file and the modification date of the file.

q rwd
q flushes the contents of the file, but the modification date might not 

change until the file is closed.

q rw
q only flushes when you tell it to and doesn't change the modification 

date until you close the file.

file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/File.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/lang/String.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/RandomAccessFile.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/lang/String.html
file:///C:/Documents%20and%20Settings/Object%20Oriented%20Prof/Local%20Settings/Temporary%20Internet%20Files/Content.IE5/jdk1.3.0_02/docs/api/java/io/FileReader.html


IO RANDOM ACESS 
FILES
q Constructors

q When a RandomAccessFile is created in read-only 
mode a FileNotFoundException is generated

q When a RandomAccessFile is created in read-write a 
zero length file will be created



IO RANDOM ACESS 
FILES
q File pointers

q RandomAccessFile supports file pointer which indicates 
the current location in the file. 

q When the file is first created, the file pointer is set to 0, 
indicating the beginning of the file. 

q Calls to the read and write methods adjust the file pointer 
by the number of bytes read or written. 



IO RANDOM ACESS 
FILES
q Manipulate file pointers

q RandomAccessFile contains three methods for explicitly 
manipulating the file pointer. 
q int skipBytes(int) — Moves the file pointer forward the 

specified number of bytes 
q void seek(long) — Positions the file pointer just before the 

specified byte 
q long getFilePointer() — Returns the current byte location of 

the file pointer 

q Usage
q To move the file pointer to a specific byte 

f.seek(n);
q To get  current position of the file pointer.

long n = f.getFilePointer();
q To find the number of bytes in a file

long filelength = f.length();



IO RANDOM ACESS 
FILES. EXAMPLE
public class RandomAccess {

public static void main(String args[]) throws IOException {
RandomAccessFile myfile = 

new RandomAccessFile("rand.dat", "rw");
myfile.writeInt(120);
myfile.writeDouble(375.50);
myfile.writeInt('A'+1);
myfile.writeBoolean(true);
myfile.writeChar('X');

// set pointer to the beginning of file and read next two items
myfile.seek(0);
System.out.println(myfile.readInt());
System.out.println (myfile.readDouble());

//set pointer to the 4th item and read it
myfile.seek(16);
System.out.println(myfile.readBoolean());



IO RANDOM ACESS 
FILES. EXAMPLE

// Go to the end and “append” an integer 2003
myfile.seek(myfile.length());
myfile.writeInt(2003);

// read 5th and 6th items

myfile.seek(17);
System.out.printl(myfile.readChar());
System.out.println(myfile.readInt());
System.out.println("File length: " +

myfile.length());
myfile.close();

}
}



IO EXCEPTIONS
q FileNotFoundException

q IOException



SERIALIZATION
q Persistence

q Saving information about an object to recreate at different 
time, or place or both.

q Object serialization 
q Implementing persistence: convert object’s state into byte 

stream to be used later to reconstruct (build-deserialized) a 
virtually identical copy of original object.

q Default serialization for an object writes
q The class of the object
q The class signature
q Values of all non-transient and non-static fields



SERALIAZTION
q Classes for serialization

q For serialization
q java.io.ObjectOutputStream via writeObject() which 

calls on defaultWriteObject(), 
q For deserialization

q java.io.ObjectInputStream via readObject() which calls 
on defaultReadObject(). 

q Any object instance that belongs to the graph of the object 
being serialized must be serializable as well.

q Superclass must be Serializable. 
q This interface is an empty interface and is used to mark the 

objects of such class as persistent. 



SERIALIZATION
q Serialization

q It writes the values of a class members

q Deserialization
q It reads values written during serialization
q Static fields in the class are left untouched.

q If class needs to be loaded, then normal initialization of the 
class takes place, giving static fields its initial values.

q Transient fields will be initialized to default values
q Recreation of the object graph will occur in reverse order 

from its serialization.



SERIALIZATION
q Conditions for serializability

q If an object is to be serialized

q The class must be declared as public

q The class must implement Serializable

q The class must have a no-argument constructor

q All fields of the class must be serializable
q primitive types 
q serializable objects



SERIALIZATION
q To Write into an ObjectOutputStream

FileOutputStream out= new FileOutputStream(“afile”);
ObjectOutputStream oos= new ObjectOutputStream(out);

oos.writeObject(“Today”) ;
oos.writeObject(new Date());

oos.flush() ;

q To Read from an ObjectInputStream
FileInputStream in = new FileInputStream(“afile”);
ObjectInputStream ois = new ObjectInputStream(in);

String today = (String) ois.readObject();
Date date = (Date) ois.readObject();



SERIALIZATION
q Custom Serialization

q Create own complete serialization by implementing the interface 
Externalizable

interface Externalizable{

public void writeExternal(ObjectOutput out) 
throws IOException;

public void readExternal(ObjectInput in) 
throws IOException;

}

q writeExternal() and readExternal() must save/load 
the state of the object. They must explicitly coordinate with its 
supertype to save its state.



SERIALIZABLE VS. NON-
SERIALIZABLE OBJECTS
q java.lang.Object does not implement serializable, so 

you must decide which of your classes need to implement 
it.

q AWT, Swing components, strings, arrays are defined 
serializable.

q Certain classes and subclasses are not serializable: 
Thread, OutputStream, Socket

q When a serializable class contains instance variables 
which are not or should not be serializable they should be 
marked as that with the keyword transient. 



SERIALIZATION. 
TRANSIENT FIELDS
q These fields will not be serialized.

q When deserialized, these fields will be initialized to default 
values
q Null for object references
q Zero for numeric primitives
q False for boolean fields

q If these values are unacceptable 
q Provide a readObject() that invokes 

defaultReadObject() and then restores transient fields to 
their acceptable values. 

q Or, the fields can be initialized when used for the first time 
(Lazy initialization)



SERIALIZATION. 
SERIAL VERSION UID
q You should explicitly declare a serial version UID in every 

serializable class.
q Eliminates serial version UID as a potential source of 

incompatibility.

q Small performance benefit, as Java does not have to come up with 
this unique number.

q private static final long serialVersionUID =rlv;
q rlv can be any number out thin air, but must be unique for each 

serializable class in your development.

q If you want to make a new version of the class incompatible with 
existing version, choose a different UID. Deserialization of previous 
version will fail with InvalidClassException.



SERIALZATION. 
PERFORMANCE
q Serialization is a very expensive process. 

q You must clearly have reasons to serialize instead of you 
directly writing what you need to save about the state of an 
object.



SERIALZATION
q Default or Customized serialization?

q Allowing a class’s instances to be serializable can be as 
simple as adding the words “implements 
Serializable” to the class specification.

q This is a common misconception, the truth is far more 
complex.

q While efficiency it is one cost associated with it, there are 
other long-term costs that are much more substantial.

q Using default serialization is very easy but this a very 
specious



SERIALIZATION
q Costs

q A major cost is that it decreases flexibility  to change a class’s 
implementation once the class has been release

q Increases the likelihood of bugs and security holes.

q Increases the testing associated with releasing a new version of 
the class. 

q Classes design for inheritance should rarely implement 
serializable and interfaces should rarely extend it.
q You should provide parameterless constructor on non-serializable 

classes designed for inheritance, in case it is subclassed and the 
subclass wants to provide serialization.

q Inner classes should rarely if ever, implement Serializable.

q A static member class can be serializable.



NIO
q Four key new helper Types new in Java 7

q Class java.nio.file.Paths
q Exclusively static methods to return a Path by converting a string or 

Uniform Resource Identifier (URI)

q Interface java.nio.file.Path
q Used for objects that represent the location of a file in a file system, 

typically system dependent

q Class java.nio.file.Files
q Exclusively  static methods to operate on files, directories and other 

types of files

q Class java.nio.file.FileSystem

q Typical use case:
q Use Paths to get a Path.  Use Files to do stuff.



NIO
q Way NIO?

q Methods didn’t throw exceptions when failing
q Rename worked inconsistently 
q No symbolic link support
q Additional support for meta data
q Inefficient file meta data access
q File methods didn’t scale
q Walking a tree with symbolic links not possible



NIO
q File copy is really easy

q With fine grain control

q File move is supported
q Optional atomic move supported

Path src = Paths.get(“/home/fred/readme.txt”);
Path dst = Paths.get(“/home/fred/copy_readme.txt”);

Files.copy(src, dst,
StandardCopyOption.COPY_ATTRIBUTES,
StandardCopyOption.REPLACE_EXISTING);

Path src = Paths.get(“/home/fred/readme.txt”);
Path dst = Paths.get(“/home/fred/copy_readme.txt”);

Files.move(src, dst, 
StandardCopyOption.REPLACE_EXISTING);



NIO
q Files helper class is feature rich

q Copy
q Create Directories
q Create Files
q Create Links
q Use of system “temp” directory
q Delete
q Attributes – Modified/Owner/Permissions/Size, etc.
q Read/Write



NIO
q DirectoryStream iterate over entries

q Scales to large directories
q Uses less resources
q Smooth out response time for remote file systems
q Implements Iterable and Closeable for productivity

q Filtering support
q Build-in support for glob (“global command”), regex and 

custom filters
Path srcPath = Paths.get(“/home/fred/src”);

try (DirectoryStream<Path> dir = srcPath.newDirectoryStream(“*.java”)) {
for (Path file : dir)

System.out.println(file.getName());
}



NIO
q Path and Files are “link aware”
q createSymbolicLink(Path, Path, FileAttribute<?>)

Path newLink = Paths.get(. . .);
Path existingFile = Paths.get(. . .);

try {
Files.createSymbolicLink(newLink, existingFile);

} catch (IOException x) {
System.err.println(x);

} catch (UnsupportedOperationException x) {
//Some file systems or some configurations

//may not support links
System.err.println(x);

}



NIO
q A FileVisitor interface makes walking a file tree for 

search, or performing actions, trivial.
q SimpleFileVisitor implements

• preVisitDirectory(T dir, BasicFileAttributes
attrs);

• visitFile(T dir, BasicFileAttributes attrs);

• visitFileFailed(T dir, IOException exc);

• postVisitDirectory(T dir, IOException exc);

SAMPLE:
Path startingDir = ...;
PrintFiles pf = new PrintFiles(); 
Files.walkFileTree(startingDir, pf);

public static class PrintFiles
extends SimpleFileVisitor<Path> 

{ ... }



NIO
q Watching a Directory

q Create a WatchService“watcher” for the file system

q Register a directory with the watcher

q “Watcher” can be polled or waited on for events
q Events raised in the form of Keys
q Retrieve the Key from the Watcher
q Key has filename and events within it for create/delete/modify

q Ability to detect event overflows



NIO
q Custom FileSystems

q FileSystems class is factory to great FileSystem (interface)

q Java 7 allows for developing custom FileSystems, for 
example:
q Memory based or zip file based systems
q Fault tolerant distributed file systems
q Replacing or supplementing the default file system provider

q Two steps:
q Implement java.nio.file.spi.FileSystemProvider

q URI, Caching, File Handling, etc.
q Implement java.nio.file.FileSystem

q Roots, RW access, file store, etc.


