
PROGRAMMING III
JAVA LANGUAGE

COURSE 3

PREVIOUS COURSE
CONTENT
q Classes

q Objects

q Object class

q Access control specifier
q fields
q methods
q classes

q Organizing classes

COUSE CONTENT
q Inheritance

q Abstract classes

q Interfaces

q instanceof operator

q Nested classes

q Enumerations

RELATION BETWEEN
CLASSES
q What relations between classes exists?

q Associations
q Dependency
q Association
q Aggregation
q Composition

q Inheritance

INHERITANCE
q Inheritance is a mechanism which allows a class A to inherit

members (data and functions) of a class B. We say “A inherits
from B”. Objects of class A thus have access to members of
class B without the need to redefine them.

q Terminology
q Base class

q The class that is inherited
q Derived class

q A specialization of base class
q Kind-of relation

q Class level (Circle is a kind-of Shape)
q Is-a relation

q Object level (The object circle1 is-a shape.)
q Types of inheritance

q Simple
q One base class

q Multiple - NOT SUPPORTED IN JAVA
q Multiple base classes

SIMPLE INHERITANCE
q Syntax

q [ClassSpecifier] class ClassName extends BaseClassName
{ ... }

q Example
public class Figure {

Color color;
public Figure() {

this.color = Color.RED;
}

}
public class Circle extends Figure {

int radius;
int centerX, centerY;
...

}
q A class inherits a single base class

SIMPLE INHERITANCE.
CONSTRUCTORS
q super keyword

q Reference to the base class

q Example
public class Figure {

Color color;

public Figure() {
this.color = Color.RED;

}

public Figure (Color c) {
this.color = c

}

public String toString(){
return “color: ” +

this.color;
}

}

public class Circle extends Figure {
int radius;
int centerX, centerY;

public Circle(){
super();

}

public Circle (int r, int x,
int y, Color c) {

super(c);
this. radius = r;
this.centerX = x;
this.centerY = y;

}

public String toString() {
return “[“+ this.radius + “,(“ +

this.centerX + “,” +
this.centerY + “), ” +
super.toString() + “]”;

}
}

ABSTRACT CLASSES
q Abstract classes is a class declared abstract

q It may or not include abstract methods

q Abstract method
q Method that is only declared without an implementation
q Example

q public static void fooMethod(int par1);

q Properties
q Abstract classes cannot be instantiated
q Can contain abstract and non abstract methods
q Can contain fields that are not static or final

INTERFACES
q Interfaces

q similar to class
q API - Application Programming Interfaces

q a "contract" that spells out software interactions
q Can contain only

q constants
q method signature
q default methods
q static methods
q nested types

q Syntax
[interfaceModiefier] interface InterfaceName [implements
Inteface1 [, ..InterfaceN]]{ ... }
q where

q interfaceModiefier: package, public

INTEFACES
q Inheritance

q a class can inherit multiple interfaces
q An instance method in a subclass with the same signature

(name, plus the number and the type of its parameters) and
return type as an instance method in the superclass overrides
the superclass's method

q An overriding method can also return a subtype of the type
returned by the overridden method. This subtype is called a
covariant return type

q Multiple inheritance
q Multiple inheritance is the ability to inherit method definitions

from multiple base (super) classes
q Java supports multiple inheritance of type, which is the ability

of a class to implement more than one interface

INTERFACES CAN BE
EXTENDED
q Creation (definition) of interfaces can be done using

inheritance
q one interface can extend another.

q Sometimes interfaces are used just as labeling
mechanisms
q Look in the Java API documentation for interfaces like

Cloneable or Serializable.
q Optional

q read about Marker design pattern and annotations

q All interface methods are by default public so they do not
need to be declared public

INTERFACES
q Java 1.8

q Methods with implementation

q Types
q default methods
q static methods

q Java 1.9
q Private methods
q Private Static methods

INTERFACES. DEFAULT
METHODS
q Enable the add of new functionalities to interfaces without

breaking the classes that implements that interface

q Example

interface InterfaceA {
public void saySomething();
default public void sayHi() {

System.out.println("Hi");
}

} public class MyClass implements InterfaceA {

@Override
public void saySomething() {

System.out.println("Hello World");
}

}

INTERFACES. DEFAULT
METHODS
q Conflicts with multiple interfaces

q Problem
q One or more interfaces has a default method with the same

signature

q Solution
q Provide implementation for the method in derived class

q New implementation
q Call one of the interfaces implementation

INTERFACES. STATIC
METHODS
q Similar to default method except that can’t be override in subclasses

implementation
q Contain the complete definition of the function
q To use a static method, Interface name should be instantiated with it
q Example

public interface MyData {
static boolean isNull(String str) {

System.out.println("Interface Null Check");
return str == null ? true : "".equals(str) ? true : false;

}
}
public class MyDataImpl implements MyData {

public boolean isNull(String str) {
System.out.println("Impl Null Check");
return str == null ? true : false;

}
public static void main(String args[]){
MyDataImpl obj = new MyDataImpl();
obj.isNull("abc");

}
}

What is the result of the
program?
a) Interface Null

Check
b) Impl Null Check
Answer
a)

INTERFACES. PRIVATE
METHODS
q No need to write duplicate code, hence more code reusability.
q Expose only intended methods implementations to clients.
q Example

public interface MyLogging{
default void infoLog(String msg){

log(“INFO”, msg);
}
default void infoErr(String msg){

log(“Error”, msg);
}
private void log(String prefix, String msg){

// write into a database or file
}
// other abstract methods

}

The class that uses

the logging interface

does not have to

create an instance of

the MyLogging object

FUNCTIONAL
INTERFACES
q An interface with exactly one abstract method is known as

Functional Interface

q annotation @FunctionalInterface mark an interface
as Functional Interface

q lambda expressions

CASTING OBJECTS
q A object of a derived class can be cast as an object of the

base class

q When a method is called, the selection of which version of
method is run is totally dynamic
q overridden methods are dynamic

POLYMORPHISM
q A reference can be polymorphic, which can be defined as

"having many forms"
q obj.doIt();

q This line of code might execute different methods at different
times if the object that obj points to changes

q Polymorphic references are resolved at run time; this is called
dynamic binding

q Careful use of polymorphic references can lead to elegant,
robust software designs

q Polymorphism can be accomplished using inheritance or using
interfaces

INSTANCEOF
q Knowing the type of an object during run time

q Usage
q object instanceof type

q It can be very useful when writing generalized routines that
operate on objects of a complex class hierarchy

q It will cause a compiler error if the comparison is done with
objects which are not in the same class hierarchy.

q Returns true if the type could be cast to the reference type
without causing a ClassCastException, otherwise it is false.

NESTED CLASSES
q Define a class within another class.
q Why use nested classes?

q It is a way of logically grouping classes that are only used
in one place

q It increases encapsulation
q It can lead to more readable and maintainable code

q Types
q Static member classes
q Member classes
q Local classes
q Anonymous classes

NESTED CLASSES
q Types

q Static member classes
q is a static member of a class
q a static member class has access to all static methods of the

parent, or top-level, class.
q Member classes

q is also defined as a member of a class
q is instance specific and has access to any and all methods

and members, even the parent's this reference
q Local classes

q are declared within a block of code and are visible only
within that block

q Anonymous classes
q is a local class that has no name

NESTED CLASSES
q Example

public class Outer{
private class Inner
{

// inner class instance variables
// inner class methods

} // end of inner class definition

// outer class instance variables
// outer class methods

}

PUBLIC INNER
CLASSES
q If an inner class is marked public, then it can be used outside of the

outer class

q In the case of a nonstatic inner class, it must be created using an
object of the outer class
BankAccount account = new BankAccount();
BankAccount.Money amount = account.new Money("41.99");

q Note that the prefix account. must come before new

q The new object amount can now invoke methods from the inner
class, but only from the inner class

PUBLIC INNER
CLASSES
q In the case of a static inner class, the procedure is similar

to, but simpler than, that for nonstatic inner classes
OuterClass.InnerClass innerObject =

new OuterClass.InnerClass();

q Note that all of the following are acceptable
innerObject.nonstaticMethod();
innerObject.staticMethod();

OuterClass.InnerClass.staticMethod();

INNER CLASS AND
INHERITANCE
q Given an OuterClass that has an InnerClass

q Any DerivedClass of OuterClass will automatically have
InnerClass as an inner class

q In this case, the DerivedClass cannot override the
InnerClass

q An outer class can be a derived class

q An inner class can be a derived class

ANONYMOUS
CLASSES
q If an object is to be created, but there is no need to name the

object's class, then an anonymous class definition can be
used
q The class definition is embedded inside the expression with

the new operator
q An anonymous class is an abbreviated notation for creating a

simple local object "in-line" within any expression, simply by
wrapping the desired code in a "new" expression.

q Anonymous classes are sometimes used when they are to be
assigned to a variable of another type
q The other type must be such that an object of the anonymous

class is also an object of the other type
q The other type is usually a Java interface

ANONYMOUS
CLASSES
q Example

interface Foo {
void doSomething();

}
public class Test {

public static void main (String args[]) {
Foo obj = new Foo(){

void doSomething(){
System.out.println(“test”);

}
};
obj.doSomething();

}
}

Anonymous Class

ENUMERATIONS
q Enumerated values are used to represent a set of named

values

q These were often stored as constants.

q For example
public static final int SUIT_CLUBS = 0;
public static final int SUIT_DIAMONDS = 1;
public static final int SUIT_HEARTS = 2;
public static final int SUIT_SPADES = 3;

ENUMERATIONS
q Issues with previous approach

q Acceptable values are not obvious
q Since the values are just integers, it’s hard at a glance to tell what

the possible values are.
q No type safety

q Since the values are just integers, the compiler will let you substitute
any valid integer

q No name-spacing
q With our card example, we prefixed each of the suits with “SUIT_” .
q We chose to prefix all of those constants with this prefix to

potentially disambiguate from other numerated values of the same
class.

q Not printable
q Since they are just integers, if we were to print out the values, they’d

simply display their numerical value.

ENUMERATIONS
q Java 5 added an enum type to the language

q Declared using the enum keyword instead of class

q Simplest form, contains a comma separated list of names
representing each of the possible options.
public enum Suit { CLUBS, DIAMONDS, HEARTS,
SPADES }

ENUMERATIONS
q Acceptable values are now obvious — must choose one of

the Suit enumerated values…

Type safety — possible values are enforced by the compiler

ENUMERATIONS
q Every value is name-spaced off of the enum type itself.

q Printing the enum value is actually readable.

System.out.print("Card is a Queen of " + Suit.HEARTS);

ENUMERATIONS
q Additional Benefits

q Storage of additional information

q Retrieval of all enumerated values of a type

q Comparison of enumerated values

ENUMERATIONS.
ADDITIONAL BENEFITS
qEnums are

objects
q So they can have…

q Member variables
q Methods

qFor example…
q Embed the color of

the suit within the
Suit.

q Read the value
using a getter, etc.

public enum Suit {

CLUBS(Color.BLACK),

DIAMONDS(Color.RED),

HEARTS(Color.RED),

SPADES(Color.BLACK);

private Color color;

Suit(Color c) {

this.color = c;

}

public Color getColor() {

return this.color;

}

}

Constructor, add

supplementary

information

Method to access

supplementary

information

How to use?
public static void main(String[] args) {

Suit s = Suit.CLUBS;
System.out.println("Card color: " + s.getColor());

}

ENUMERATIONS.
ADDITIONAL BENEFITS
RETRIEVAL OF ALL
ENUMERATED VALUES
q All enum types will

automatically have a
values() method that
returns an array of all
enumerated values for that
type.

Suit[] suits =
Suit.values();
for(Suit s : suits) {

System.out.println(s
);
}

COMPARISON OF
ENUMERATED VALUES
q It is possible to compare enums using the ==

operator.
if(suit == Suit.CLUBS) {
// do something
}

q can also be used with the switch control
structure
Suit suit = /* ... */;
switch (suit) {

case CLUBS:
case SPADES:

// do something
break;

case HEARTS:
case DIAMONDS:

// do something else
break;

default:
// yet another thing
break;

}

