
PROGRAMMING III
JAVA LANGUAGE

COURSE 2. CLASSES & OBJECTS

COURSE CONTENT
qClasses

qClass modifiers
qFields modifiers
qMethod modifiers

qObjects

qDisplay objects
qtoString()
qStringBuffer
qStringBuilder

qOrganize classes
qPackages
qModules (>= Java 1.9)

CLASSES
q Classes

q Groups objects with similar characteristics

q Syntax
[classModifier] class ClassName [extends

BaseClassName] [implements Interface1 [, Interface2]
…[, InterfaceN]…]{
member fields and methods

}

Can appear only once in class declaration

Types: pub
lic

, a
bst

rac
t,

fin
al

Variable name that starts with upper case

(does not contain spaces)

CLASS MODIFIERS
qpublic

q Class is visible in all packages
q The name of the class has to be the same like the name of the file

qabstract

qUsed for classes that contain abstract methods
qUsed for classes that inherits abstract methods from a base class

q If the class does not implement all the methods exposed by an interface
qCan not be instantiated

qfinal

qThe class definition is complete
qThe class cannot be base class for other classes

q A class cannot be in the same time final and abstract

OBJECT CLASS
qAll Java classes are inherited from Object class

q package: java.lang
qEvery class is directly or indirectly derived from the Object class.
qIf a class does not extend any other class then it is direct child class

of Object and if extends other class then it is an indirectly derived.

qSome of most common used Object class methods
qprotect void equals(Object obj)

q Tests if the current object is equal with the one passed like parameter
qprotected void finalize()

q Method called by garbage collection when the is no reference to the current
object

qpublic class getClass()
q Method that returns the current class of the object

qpublic int hashCode()
q Homework: which is the role of hashCodeMethod()

qpublic String toString()
q Returns the string representation of the object

CLASSES
q Classes

q Groups objects with similar characteristics

q Syntax
[classModifier] class ClassName [extends

BaseClassName] [implements Interface1 [, Interface2]
…[, InterfaceN]…]{
member fields and methods

}

qClass member fields/variables/attributes

qDescribe the properties of a class

CLASS. MEMBER
ATTRIBUTES
qSyntax

q[fieldsModifier] variableType variableName [, variableName1 …[,
variableNameN]];

q[fieldsModifier] variableType variableName [=variable initialization];

q[fieldsModifier] variableType variableName [] [=variable initialization];

qAttributes modifiers
qAccess modifiers

q public, protected, private
q If no modifier is specified for a class attribute then the default specifier

package is used
qOthers

q final, static, transient, volatile

MEMBER ATTRIBUTES
MODIFIERS
qAccess modifiers

q public
qVisible all classes and packages

q protected
qVisible in derived classes

q implicit/default
qVisible in all classes in same package

q private
qVisible in current class

MEMBER FIELDS
MODIFIERS
qOthers

q final
q Constants - the value of the attribute is the same during the hole program

execution
q In many cases is used with static modifier
q Constants in Java are written with upper cases
q Must be initialized when they are declared

q static
q Allocates a single memory location that is shared by all class objects
q Accessible by class name

q transient
q Variables that does not persist (are not serializable)

q volatile
q The value of this variable will never be cached thread-locally: all reads and

writes will go straight to "main memory";
q Access to the variable acts as though it is enclosed in a synchronized block,

synchronized on itself.

CLASS MEMBERS TYPES
qLocal variables

qVariables defined inside methods, constructors or blocks are called local
variables.

qThe variable will be declared and initialized within the method and the
variable will be destroyed when the method has completed.

qInstance variables
qInstance variables are variables within a class but outside any method.
qThese variables are initialized when the class is instantiated.
qInstance variables can be accessed from inside any method, constructor

or blocks of that particular class.

qClass variables
q Class variables are variables declared within a class, outside any

method, with the static keyword.

CLASS MEMBER
FIELDS
qExample

public class ExVariables {
public static final int MAXIMUM_CAPACITY = 100;
int age;
public String name;
transient double mean;
protected double marks[];
private int I, j, k=9;
private double b[] = new double [10];

public static void main(String []args){
ExVariables obj = new ExVariables()
obj.name = “Course Java”;
System.out.println(ExVariables.MAXIMUM_CAPACITY);
…

}
}

Static variable

Instance variable

CLASS MEMBERS
qthis keyword

qA reference to the current object
qCannot be accessed in a static context

qsuper keyword

qA reference to base class
qCannot be accessed in a static context

CLASSES
q Classes

q Groups objects with similar characteristics

q Syntax
[classModifier] class ClassName [extends

BaseClassName] [implements Interface1 [, Interface2]
…[, InterfaceN]…]{
member fields and methods

}

qClass member methods/functions

qDescribe the behavior of an object of the class

CLASS METHODS
qSyntax
[methodModifiers] returnType methosName
([parameter list]) [throws Exception1[, …,
ExceptionN]] { …}

pub
lic

, p
rot

ect
ed,

pri
vat

e,
default (package),

abs
tra

ct,
 fi

nal
, s

tat
ic,

syn
chr

oni
zed

, n
ati

ve

void, primitive or reference type

formal parameters list

CLASS METHODS
MODIFIERS
qAccess modifiers

q public
qVisible all classes and packages

q protected
qVisible in derived classes

qDefault/package
qVisible in all classes in same package

q private
qVisible in current class

CLASS METHODS
MODIFIERS
qOthers

q abstract
qOffers only the signature of the method
qThe method does not provide an implementation
qCannot be: private, static, final, native or
synchronized

q static
qClass method
qDoes not have access to this reference

q final
qCannot be overwritten

q synchronized
qOnly one thread can access the method when is executed

q native
qA native method in other programming language (like C, C++)

JAVA METHODS WITH
VARIABLE ARGUMENTS
LENGTH

qExample
class X {
void method1 (int a, String … words) {
for (String s: words) {
System.out.println(“argument: “ + s);

}
}
void method2 (double … numbers) { }

}

qProperties
qIt must be the last argument of the method
qThe argument is an array of objects of the type of

the argument

qCall
qmethod1(10)
qmethod1(10,
“s1”,”s2”)

qmethod1(10, “s1”,
“s2”,”s3”)

q…

qmethod2()
qmethod2(4.5)
qmethod2(5.7, 7.8)
q…

CONSTRUCTORS
qProperties

qFunction that an object calls when an object is instantiated
qHas the same name like the class
q It does not have a return value
q If no constructor is defined a default constructor is provided by the compiler

qRemark
qNo constructor is called when the object is declared, the constructor is called when the

object is instantiated using new operator

qExample
public class X {

int y;
public X() { }
public X(int v) {

this.v = x;
}

}
Constructor call:

X obj1 = new X();
X obj2 = new X(3);
X obj;

Default constructor

Constructor with parameters
Object declaration

and instantiation

Object declaration

CLONABLE AND COPY
CONSTRUCTOR
qObject copy

qCopy constructor
qX(X obj)

qClonable interface
qclone(Object x)
q If the class contains an array of

objects then the clone()
method has to be overwritten in
order to provide a deep copy of
the object

class X implements Cloneable {
public Object clone() throws
CloneNotSupportedException{

return super.clone();
}

}

X obj1 = new X();
X obj2 = obj2;
X obj3 = obj1.clone();

obj
1 and obj

2 reference

same memory location

obj
1 and obj

3 reference to

different memory locations

OBJECTS
qObjects have states and behaviors

qObjects creation steps

qDeclaration
qA variable declaration with a variable name with an object

type.

qInitialization
q The new keyword is followed by a call to a constructor.
q This call initializes the new object.

OBJECTS & ARRAYS
q Declare an array

q String [] s;

q Declare and allocate space
q String s[] = new String[3];

q Declare and initialize
q String s[] = {“Java”, “Course”, “2”}

q Looping through an array
q for (String ss : s) System.out.println(ss);
q for (int i=0; i < s.length; i++)

System.out.println(s[i]);

TRANSFORMING
OBJECTS TO STRING
qOverwrite toString()method inherited from Object class
qtoString() is automatically called when an object is transformed to string

qVariants
qString class

q Pro: Easy to implement
q Cons: String immutable -> a lot of temporary objects created

qStringBuilder
q mutable objects in java and provide append(), insert(), delete() and

substring() methods for String manipulation.
q Is not thread safe and synchronized
q Recomanded for non-multi threaded environment

qStringBuffer
q mutable objects in java and provide append(), insert(), delete() and

substring() methods for String
q is thread safe and synchronized

TRANSFORMING
OBJECTS TO STRING

STRING
class Person{

String name;

int age;

Person (int age, String name){

this.name = name;

this.age = age;

}

public String toString(){

return “Name:” + name + “age: ” + age;

}

}

STRINGBUILDER
class Person{

String name;

int age;

Person (int age, String name){

this.name = name;

this.age = age;

}

public String toString(){

StringBuilder sb = new StringBuilder();

sb.appned(“Name:”).append(name);

sb.appned(“Age:”).append(age);

return sb.toString()

}

}How many objects of type

Str
ing

 are created?

ORGANIZE JAVA
CLASSES
q Packages

q Organize closely related java classes

q Modules
q Organize closely related packages and resources

PACKAGES
q Groups a collection of related classes that form a library

q Avoid name-clashes.

q Physical organization
q .java and .class files in a directory tree that mimics package

structure

q E.g. for the class called A.B.SomeClass, the files will be:
• <sourceroot>/A/B/SomeClass.java
• <classroot>/A/B/SomeClass.class

q Only public classes from a package are visible outside the
package

PACKAGES
q Package names

q Package names are separated by periods
q Packages can contain classes or packages
q The fully qualified name of a class includes its package name:

q A.B.SomeClass indicates a class called " SomeClass" within the " A.B
" package.

q To put a class into a package, one uses the "package" statement
q The package statement must be the first line of code within the file.
q It can be proceeded by comments.

q If no package statement is supplied, the class is placed in the
"default" package
q The default package is a package with no name

IMPORTS
q To avoid having to use the fully qualified class name for all

classes

q Can import
q Some of the classes from a given package

q import java.util.Random;
q All classes from a package

q import java.util.*;

q Static import
q Static import allows you to refer to the members of another

class without writing that class's name
q import static java.lang.Math.*;
q double angle = sin(PI / 2) + ln(E * E);

Ran
dom

class can be used

without the fully qualified name

Imports other classes that are

not used in the application

JAR FILES
q JAR: Java ARchive.

q A group of Java classes and supporting files combined into
a single file compressed with ZIP format, and given .JAR
extension.

q Advantages of JAR files:
q compressed; quicker download
q just one file; less mess
q can be executable

JAR FILES
q Creating a JAR archive

q Comnand line
q jar -cvf filename.jar files
q Example

q jar -cvf MyProgram.jar *.class *.gif
*.jpg

q Using IDEs (e.g. Eclipse) can create JARs automatically
q File → Export... → JAR file

q Running a Jar from command line
q java -jar filename.jar

JAR FILES
q Making a runnable JAR

q manifest file: Used to create a JAR runnable as a program.

q Contents of MANIFEST file
qMain-Class: MainClassName

qEclipse will automatically generate and insert a proper
manifest file into your JAR if you specify the main-class to
use.

MODULES
JAVA APPLICATION

JAVA APPLICATION
DEPENDENCES

JAR DEPENDENCES

Building tools
q Automaticaly resolve dependences
q Ant, Maven, Gradle, ...

MODULES
q “package of Java Packages” abstraction that allows to make code even

more reusable.
q Modle file descriptors

q Name
q the name of the module

q Dependencies
q a list of other modules that this module depends on

q Public Packages
q a list of all packages we want accessible from outside the module

q Services Offered
q can provide service implementations that can be consumed by other

modules
q Services Consumed

q allows the current module to be a consumer of a service
q Reflection Permissions

q explicitly allows other classes to use reflection to access the private
members of a package

MODULES
q Example

module Provider {
requires ServiceInterface;
provides javax0.serviceinterface.ServiceInterface

with javax0.serviceprovider.Provider;
}
module Consumer {

requires ServiceInterface;
uses javax0.serviceinterface.ServiceInterface;

}
module ServiceInterface {

exports javax0.serviceinterface;
}

