PROGRAMMING Il
JAVA LANGUAGE

%
COURSE 2. CLASSES & OBJECTS

COURSE CONTENT

LClasses

Class modifiers
JFields modifiers
Method modifiers

LObjects

UDisplay objects

toString()
AStringBuffer
StringBuilder

Organize classes

(Packages
Modules (>= Java 1.9)

CLASSES

1 Classes

 Groups objects with similar characteristics

O Syntax

|] class [extends
BaseClassName] [implements Interface1 [, Interface2]

...[, InterfaceN]...|{

member fields and methods o N
0 W\
} eV oS we
RCCa e \\(\a\\s
(\QG cr ‘ \o ace®
. (®)
200" | 20T @oee‘ ¢
=\ oo

CLASS MODIFIERS

Upublic

[Class is visible in all packages
 The name of the class has to be the same like the name of the file

Uabstract

Used for classes that contain abstract methods

Used for classes that inherits abstract methods from a base class
O If the class does not implement all the methods exposed by an interface

(dCan not be instantiated

Qfinal

The class definition is complete

(1The class cannot be base class for other classes
1 A class cannot be in the same time final and abstract

OBJECT CLASS

QAIl Java classes are inherited from Object class

) package: java.lang
Every class is directly or indirectly derived from the Object class.

If a class does not extend any other class then it is direct child class
of Object and if extends other class then it is an indirectly derived.

dSome of most common used Object class methods

Uprotect void equals (Object obj)
[Tests if the current object is equal with the one passed like parameter
Uprotected void finalize ()

U Mbe_th?d called by garbage collection when the is no reference to the current
objec

Upublic class getClass()

O Method that returns the current class of the object
Upublic int hashCode ()

a
Upublic String toString/()

1 Returns the string representation of the object

CLASSES

1 Classes

 Groups objects with similar characteristics

O Syntax

|] class [extends
BaseClassName] [implements Interface1 [, Interface2]

...[, InterfaceN]...|{
and methods

CLASS. MEMBER
ATTRIBUTES

Syntax

[fieldsModifier] variable Type variableName [, variableName1 ...[,
variableNameN]];

L[fieldsModifier] variable Type variableName [=variable initialization];
L[fieldsModifier] variable Type variableName [| [=variable initialization];

QAttributes modifiers

(JAccess modifiers
U public, protected, private

O If no modifier is specified for a class attribute then the default specifier
package is used

Others

U final, static, transient, volatile

MEMBER ATTRIBUTES
MODIFIERS

(JAccess modifiers

d public
U Visible all classes and packages

J protected
U Visible in derived classes

d implicit/default
L Visible in all classes in same package

d private
L Visible in current class

MEMBER FIELDS
MODIFIERS

LOthers

U final

0 Constants - the value of the attribute is the same during the hole program
execution

U In many cases is used with static modifier
O Constants in Java are written with upper cases
U Must be initialized when they are declared

O static
U Allocates a single memory location that is shared by all class objects
U Accessible by class name

O transient
O Variables that does not persist (are not serializable)

U volatile

L The value of this variable will never be cached thread-locally: all reads and
writes will go straight to "main memory";

U Access to the variable acts as though it is enclosed in a synchronized block,
synchronized on itself.

CLASS MEMBERS TYPES

Local variables
(JVariables defined inside methods, constructors or blocks are called local
variables.

The variable will be declared and initialized within the method and the
variable will be destroyed when the method has completed.

Uinstance variables

LInstance variables are variables within a class but outside any method.
These variables are initialized when the class is instantiated.

UInstance variables can be accessed from inside any method, constructor
or blocks of that particular class.

(1Class variables

[Class variables are variables declared within a class, outside any
method, with the static keyword.

CLASS MEMBER
FIELDS

UExample

public class ExVariables {
public static final int MAXIMUM CAPACITY = 100;
int age;)
public String name; q@“dd@
transient double mean;
protected double marks|[];
private int I, j, k=9;
private double b[] = new double }10];

public static void main(String []args) {
ExVariables obj = new ExVariables|()
obj.name = “Course Java”;
System.out.println (ExVariables.MAXIMUM CAPACITY) ;

CLASS MEMBERS

Udthis keyword

LA reference to the current object
JCannot be accessed in a static context

Usuper keyword

JA reference to base class
JCannot be accessed in a static context

CLASSES

1 Classes

 Groups objects with similar characteristics

O Syntax

|] class [extends
BaseClassName] [implements Interface1 [, Interface2]

...[, InterfaceN]...|{

and
} S
A\

’{.\0(\6 ot e
\hods\w;\g 09
o0t m:a\f\O‘ o
1\ v
S5 o e
OG\Z%G‘“)G

CLASS METHODS oo

@ ©
. QNw&
dSyntax qo'\0
[methodModifiers] returnType methosName
([parameter list]) [throws Exceptionl|[, ..,
ExceptionN]] { ..}
oY \v =)
e e S
T AT oot
e \Y |2 oo
o Pagtet Y ee? \ 02"
M e e AN
L S
@ﬂg {/ﬁac "ﬁed'
abs C\OﬁOOl

CLASS METHODS
MODIFIERS

(JAccess modifiers

d public

L Visible all classes and packages
J protected

L Visible in derived classes
Default/package

L Visible in all classes in same package
d private

L Visible in current class

CLASS METHODS
MODIFIERS

JOthers

J abstract
[Offers only the signature of the method
[The method does not provide an implementation

 Cannot be: private, static, final, native or
synchronized

d static
[Class method
(Does not have access to this reference
J final
O Cannot be overwritten
O synchronized
1 Only one thread can access the method when is executed
J native
1 A native method in other programming language (like C, C++)

JAVA METHODS WITH

VARIABLE ARGUMENTS

LENGTH

UExample

class X {
void methodl (int a, String ..
for (String s: words) {

words) {

System.out.println (Yargument: “ + s);

}
}
volid method?2 (double ..

}

numbers) { }

UProperties

LIt must be the last argument of the method

The argument is an array of objects of the type of
the argument

dCall

Umethodl (10)
Umethodl (10,
\\Sl//, ,,82,,)
Umethodl (10, “sl1”,
\\82//, ,,83,,)

a...

Umethod?2 ()
Umethod2 (4.5)
Umethod2 (5.7, 7.8)
Q...

CONSTRUCTORS

UProperties

U Function that an object calls when an object is instantiated

U Has the same name like the class

U It does not have a return value

U If no constructor is defined a default constructor is provided by the compiler

URemark

U No constructor is called when the object is declared, the constructor is called when the
object is instantiated using new operator

UExample

‘O(\
public class X { \)G\O(G\a(a\\
- . s\ § 0CY oo
int y; \ cO O\O‘\eo a(\\\a
public X() {) iV Tk
public X (int v) { O «\e\e‘s Q“d
this.v = x; _“Qa‘a
) ot wit Constructor call:
} S
S
GO X objl = new X();
X obj2 = new X(3); .
y i 6\\00

X obj; deo\a(

CLONABLE AND COPY

CONSTRUCTOR

Object copy

L Copy constructor
X (X obj)

JClonable interface

dclone (Object x)

 If the class contains an array of
objects then the clone ()
method has to be overwritten in
order to provide a deep copy of
the object

class X implements Cloneable {
public Object clone () throws

CloneNotSupportedException{
return super.clone();

) %
‘fz(eﬁeﬁe(\
Yop! {\0
'a(\d © \oC°
o> ° o
e ™
1Y%
X objl = new X()s
X obj2 = obj2;
X obj3 = objl.clone();
O
S
‘IB(QﬁGK‘Qi;va
Yoy col
@) \O
A 200 o0
Yo}
O‘ (GQK“A

OBJECTS

L Objects have states and behaviors

L Objects creation steps

(Declaration

A variable declaration with a variable name with an object
type.

dinitialization
[The new keyword is followed by a call to a constructor.

 This call initializes the new object.

OBJECTS & ARRAYS

 Declare an array
J String [] s;

O Declare and allocate space
J String s[] = new String[3];

(J Declare and initialize

d String s[] = {“Java”, “Course”, “27}

 Looping through an array

J for (String ss : s) System.out.println(ss):;

J for (int i=0; 1 < s.length; i++)
System.out.println(s[1]);

TRANSFORMING
OBJECTS TO STRING

dOverwrite toString () method inherited from Object class
QtoString () is automatically called when an object is transformed to string

Variants

dsString class
U Pro: Easy to implement
0 Cons: String immutable -> a lot of temporary objects created

dStringBuilder

U mutable objects in java and provide append (), insert (), delete() and
substring () methods for String manipulation.

U Is not thread safe and synchronized
L) Recomanded for non-multi threaded environment

dStringBuffer

U mutable objects in java and provide append (), insert (), delete() and
substring () methods for String

O is thread safe and synchronized

TRANSFORMING
OBJECTS TO STRING

STRING STRINGBUILDER

class Person{ class Person{

String name; String name;

int age; int age;

Person (int age, String name) { Person (int age, String name) {
this.name = name; this.name = name;

this.age = age;

}
public String toString() {

this.age = age;

}
public String toString() {

return “Name:” + name + “age: ” + age; . .
StringBuilder sb = new StringBuilder();
}
} sb.appned (“Name:”) .append (name) ;
sb.appned (YAge:”) .append (age) ;
Wo° -
cﬁ return sb.toString()
‘ers dﬂ
0OV 5e0*)
o ed
W 0 o © }
WO . o

ORGANIZE JAVA
CLASSES

O Packages

 Organize closely related java classes

J Modules

[Organize closely related packages and resources

PACKAGES

O Groups a collection of related classes that form a library

J Avoid name-clashes.

 Physical organization

1 .java and .class files in a directory tree that mimics package
structure

O E.g. for the class called A.B.SomeClass, the files will be:

 <sourceroot>/A/B/SomeClass.java
» <classroot>/A/B/SomeClass.class

O Only public classes from a package are visible outside the
package

PACKAGES

0 Package names

 Package names are separated by periods
(J Packages can contain classes or packages

 The fully qualified name of a class includes its package name:

U A.B.SomeClass indicates a class called " SomeClass" within the " A.B
" package.

U To put a class into a package, one uses the "package" statement

 The package statement must be the first line of code within the file.
[It can be proceeded by comments.

O If no package statement is supplied, the class is placed in the
"default” package

 The default package is a package with no name

IMPORTS

o To avoid having to use the fully qualified class name for all
classes

eQ
a Can import N “56 PR
: S \\\z
o Some of the classes from a given package G\asﬁ Sy v
o import java.util.Random; pat \)\\‘(\e
a All classes from a package WO o et A
0 import java.util.*; of 0\3556\-\06’{\0(\
A\ P
@s O e
Static i t WO eed
= atic impor S

o Static import allows you to refer to the members of another
class without writing that class's name
o import static java.lang.Math.*;

o double angle = sin(PI / 2) + 1n(E * E);

JAR FILES

O JAR: Java ARchive.

O A group of Java classes and supporting files combined into
a single file compressed with ZIP format, and given .JAR
extension.

0 Advantages of JAR files:

O compressed; quicker download
O just one file; less mess
 can be executable

JAR FILES

O Creating a JAR archive

(J Comnand line
O jar -cvf filename.jar files

O Example
U jar -cvf MyProgram.jar *.class *.gif
*.Jpg
O Using IDEs (e.g. Eclipse) can create JARs automatically
O File — Export... — JAR file

0 Running a Jar from command line

d java -jar filename. jar

JAR FILES

 Making a runnable JAR

 manifest file: Used to create a JAR runnable as a program.

J Contents of MANIFEST file
1 Main-Class: MainClassName

Eclipse will automatically generate and insert a proper
manifest file into your JAR if you specify the main-class to
use.

JAVA APPLICATION

MODULES

- e
/" N,
r; / \ Java Application 'y

——

Class

))

fields methods lass

R)

methods lass

Class
fields methods
——

methods

lass
) | methoss | [lass
Class

~ methods
JA R D E E N D E N c E s fec memor) Ylass
P ~———

Package methods | flass
k_‘ methods
ackage)
@ ckage
A
\

JAVA APPLICATION
DEPENDENCES

. . \\
Java Application '\

Building tools
O Automaticaly resolve dependences
O Ant, Maven, Gradle, ... \

MODULES

O “package of Java Packages” abstraction that allows to make code even
more reusable.

O Modle file descriptors

a

a

a

Name
L the name of the module
Dependencies
O a list of other modules that this module depends on
Public Packages
O alist of all packages we want accessible from outside the module
Services Offered

L can provide service implementations that can be consumed by other
modules

Services Consumed
1 allows the current module to be a consumer of a service

Reflection Permissions

O explicitly allows other classes to use reflection to access the private
members of a package

MODULES

0 Example

module Provider {
requires Servicelnterface;
provides javax0O.serviceinterface.Servicelnterface
with javax(0.serviceprovider.Provider;
}
module Consumer {
requires Servicelnterface;
uses javax0O.serviceinterface.Servicelnterface;
}
module Servicelnterface {

exports javax0O.serviceinterface;

