NN\
KN L\ @
A\ U

DESIGN PATTERNS

&
I
%)
&
2
o
o

PREVIOUS COURSE

 Behavior patterns
 Other patterns

CURRENT COURSE

O Refactoring
 Way refactoring

 Some refactoring examples

SOFTWARE
EVOLUTION

O Problem: You need to modify existing code
 extend/adapt/correct/...

O (Bad) Solution:
 Just add new features

J Consequence:
U Design decays
U Duplicated code
O Long methods / classes, ...

0 (Good) Solution:

O First make code simpler => Refactor
J Add new features

J Consequence:
0 Code stays simple

REFACTORING
CONSIDERED HARMFUL

O From the standpoint of a manager, refactoring can appear
to be dangerous!

O If my developers spend their time “cleaning up the code”
then that's less time implementing required functionality

 ...and my schedule is slipping as it is!

0 To address these concerns, refactoring needs to be

[systematic
J incremental
J safe

WHAT IS
REFACTORING?

0 “The process of changing a software system in such a way that it
does not alter the external behaviour of the code, yet improves its
internal structure.”

Martin Fowler, “Refactoring: Improving the Design of Existing Code”,
Addison-Wesley,1999.

O “A behaviour-preserving source-to-source program
transformation.”

Don Roberts, “Practical analysis for Refactoring”, PhD Thesis,
University of lllinois, 1999.

U “A change to the system that leaves its behaviour unchanged,
but enhances some non-functional quality - simplicity, flexibility,
understandability, ...”

Kent Beck, “eXtreme Programming Explain: Embrace Change”,
Addison-Wesley, 2000.

WAY TO REFACTOR?

0 Refactoring improves the design of your system
0 Refactoring makes your software easier to understand

1 because structure is improved
 duplicated code is removed
 etc.

0 Refactoring helps you find bugs

 because it promotes a deep understanding of the code
Refactoring helps you program faster

U

] because a good design enables progress
Prevent “design decay”

Clean up messes in the code
Simplify the code
Reduce debugging time

OO0 00O

Redoing things is fundamental to every creative process

HOW TO MAKE A SAFE
REFACTORING

O First, make it systematic
O e.g. use refactoring patterns, like the ones discussed in
Fowler's book
O Follow a refactoring process

0 Second, test constantly!

1 Each time you finish a refactoring, you run your test suite
to confirm that your system's functionality has stayed the
same

L This assumes, you have test already!

PREREQUISITES FOR
REFACTORING

0 Tests

0 Coding standards

0 Continuous integration

O Collective code ownership
O Pair programming

O Simple design

THE REFACTORING
PROCESS

O When you systematically apply refactoring, you wear two hats

 add functionality
O refactoring

d Don't try to clean the code when doing the former
d Don't try to add features when doing the latter

O Refactoring is not just arbitrary restructuring

d Code must still work

0 Small steps only so the semantics are preserved (i.e. not a major re-
write)

O Unit tests to prove the code still works

 Codeis

U More loosely coupled

(1 More cohesive modules
U More comprehensible

WHEN TO REFACTOR

d You should refactor

 Any time that you see a better way to do things

] “Better” means making the code easier to understand and to
modify in the future

- You can do so without breaking the code
 Unit tests are essential for this

1 You should not refactor

] Stable code that won'’t need to change
0 Someone else’s code

 Unless the other person agrees to it or it belongs to you
(J Not an issue in Agile Programming since code is common

WHEN TO REFACTOR

O When should you refactor?
 Any time you find that you can improve the design of
existing code

[You detect a “bad smell” (an indication that something is
wrong) in the code

O When can you refactor?
 You should be in a supportive environment (agile
programming team, or doing your own work)
[You are familiar with common refactoring
[Refactoring tools also help
- You should have an adequate set of unit tests

WHAT TO REFACTOR?

d Make sure your tests pass

O Find some code that “smells”

1 Determine how to simplify this code
O Make the simplifications

 Run tests to ensure things still work correctly
 You eventually have to adapt your tests

0 Repeat the simplify/test cycle until the smell is gone

REFACTORING STEPS

 Save / backup / checking the code before you mess with it.

 If you use a well-managed version control repo, this is done.

O Write unit tests that verify the code's external correctness.

 They should pass on the current poorly designed code.

[Having unit tests helps make sure any refactor doesn't break
existing behavior (regressions).

 Analyze the code to decide the risks and benefits of
refactoring.

O Ifitis too risky, not enough time remains, or the refactor will
not produce enough benefit to the project, don't do it.

REFACTORING
PROCESS

O Make a small change

) a single refactoring
O Run all the tests to ensure everything still works

Q If everything works, move on to the next refactoring

Q If not, fix the problem, or undo the change, so you still
have a working system

Ensure all Find code that _Detgrmipe
tests pass smells simplifications

\] Make

simplifications

PROBLEMS WITH
REFACTORING

d

Taken too far, refactoring can lead to incessant tinkering
with the code, trying to make it perfect

Refactoring code when the tests don’t work or tests when
the application doesn’t work leads to potentially
dangerous situations

Databases can be difficult to refactor

] code is easy to change; databases are not

Refactoring published interfaces can cause problems for
the code that uses those interfaces

WHY (SOME) DEVELOPERS
DON’T LIKE IT

LLack of understanding
dShort-term focus
(Not paid for overhead tasks like refactoring

(Fear of breaking current program

CODE SMELLS EXAMPLES

QIf it stinks, change it
[Code that can make the design harder to change

UExamples:

J Duplicate code

 Long methods

[Big classes

[Big switch statements

 Long navigations (e.g., a.b().c().d())
) Lots of checking for null objects

) Data clumps (e.g., a Contact class that has fields for address,
phone, email etc.) — similar to non-normalized tables in relational
design

) Data classes (classes that have mainly fields/properties and little
or no methods)

 Un-encapsulated fields (public member variables)

SOME TYPES OF
REFACTORING

O refactoring to fit design patterns
O renaming (methods, variables)
U extracting code into a method or module

U splitting one method into several to improve cohesion and
readability

U changing method signatures
O performance optimization

U mﬁving statements that semantically belong together near each
other

O naming (extracting) "magic" constants

. . . . Reracrorive
0 exchanging idioms that are risky with safer alternatives IirmovIG T DEScy

oF Existing Cos

Q clarifying a statement that has evolved over time or is unclear

0 See also http://www.refactoring.org/catalog/

HOW TO REFACTOR
dManualy

dRefactoring tool

] Eclipse (and some
other IDEs) provide
significant support for
refactoring

Rename... \#R
Move... 8V
Change Method Signature... X#C
Extract Method... \#EM
Extract Local Variable... N#L
Extract Constant...

Inline... a8l

Convert Anonymous Class to Nested...
Convert Member Type to Top Level
Convert Local Variable to Field...

Extract Superclass...

Extract Interface...

Use Supertype Where Possible...
Push Down...

Pull Up...

Introduce Indirection...
Introduce Factory...
Introduce Parameter...
Encapsulate Field...

Generalize Declared Type...
Infer Generic Type Arguments...

Migrate JAR File...
Create Script...
Apply Script...
History...

EXTRACT METHOD

0 You have a code fragment that can be grouped together.

O Turn the fragment into a method whose name explains the
purpose of the method.

O Inverse of Inline Method

void printOwing() {
printBanner();
/lprint details
System.out.printin ("name: " + _name);
System.out.printin("amount " + getOutstanding());

void printOwing() {
printBanner();
printDetails(getOutstanding());

}

void printDetails (double outstanding) {
System.out.println ("name: " + _name);
System.out.printin ("amount " + outstanding);

}

INLINE METHOD

0 A method's body is just as clear as its name.

O Put the method's body into the body of its callers and
remove the method.

O Inverse of Exact Method

int getRating() {
return (moreThanFivelLateDeliveries()) ? 2 : 1;

}
boolean moreThanFivelLateDeliveries() {
return _numberOfLateDeliveries > 5;

}

int getRating() {
return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

RENAME METHOD

0 The name of a method does not reveal its purpose.

O Change the name of the method.

class Customer {
double getlnvcdtimt();

}

class Customer {
double getinvoiceableCreditLimit();

}

REMOVE PARAMETER

O A parameter is no longer used by the method body.
0 Remove it.
O inverse of Add Parameter

O Naming: In IDEs this refactoring is usually done as part of
"Change Method Signature”

Customer getContact(Date)

Customer getContact()

ADD PARAMETER

(J A method needs more information from its caller.

O Add a parameter for an object that can pass on this
information.

O Inverse of Remove Parameter

O Naming: In IDEs this refactoring is usually done as part of
"Change Method Signature”

Customer getContact()

Customer getContact(Date data)

EXTRACT CLASS

d

You have one class doing work that should be done by

two.

Create a new class and move the relevant fields and

methods from the old class into the new class.

Inverse of Inline Class

Person

name
officeAreaCode
officeNumber

getTelephoneNumber

4

Person

name

getTelephoneNumber

—

o

Telephone Number

—

officeAreaCode
officeNumber

getTelephoneNumber

INLINE CLASS

O Aclass isn't doing very much.
1 Move all its features into another class and delete it.

O Inverse of Extract Class, Extract Interface

Person
Person Telephone Number
N 1 ' name
name) officeAreaCode officeAreaCode
officeNumber officeNumber
getTelephoneNumber —tT_l honeNumber
PRITRFOREoe getTelephoneNumber

EXTRACT INTERFACE

[Several clients use the same subset of a class's interface,
or two classes have part of their interfaces in common.

1 Extract the subset into an interface.

O Inverse of Inline Class

«<interface»

Billable

getRate
hasSpecialSkill

Employee A
getRate ‘
hasSpecialSkill
getName ‘
getDepartment Employee

getRate
hasSpedialSkill
getName
getDepartment

REPLACE ERROR CODE
WITH AN EXCEPTION

A method returns a special code to indicate an error.

dThrow an exception instead.

int withdraw(int amount) {

if (amount > _balance)
return -1;

else

_balance -= amount; return 0;

}

void withdraw(int amount) throws BalanceException {
if (amount > _balance)
throw new BalanceException();
_balance -= amount;

}

REPLACE EXCEPTION
WITH TEST

dYou are throwing an exception on a condition the caller
could have checked first.

LChange the caller to make the test first.

double getValueForPeriod (int periodNumber) {
try {
return _values[periodNumber];
} catch (ArraylndexOutOfBoundsException €) {
return O;
}
}

double getValueForPeriod (int periodNumber) {
if (periodNumber >= _values.length)
return O;

return _values[periodNumber];

}

CONSOLIDATE CONDITIONAL
EXPRESSION

O You have a sequence of conditional tests with the same
result.

0 Combine them into a single conditional expression and
extract it.

double disabilityAmount() {

if (_seniority < 2) return O;

if (_monthsDisabled > 12) return O;
if (_isPartTime) return O;

/I compute the disability amount

double disabilityAmount() {
if (isNotEligableForDisability()) return O;
/l compute the disability amount

CONSOLIDATE DUPLICATE
CONDITIONAL FRAGMENTS

O The same fragment of code is in all branches of a
conditional expression.

O Move it outside of the expression.

if (isSpecialDeal()) {
total = price * 0.95;
send();

} else {

total = price * 0.98;
send();

}

if (isSpecialDeal())
total = price * 0.95;
else

total = price * 0.98;
send();

REPLACE ARRAY WITH OBJECT

You have an array in which certain elements mean different
things.

Replace the array with an object that has a field for each
element.

String[] row = new String[3];
row [0] = "Liverpool";
row [1] = "15"

Performance row = new Performance();
row.setName("Liverpool");
row.setWins("15");

REPLACE TYPE CODE
WITH POLYMORPHISM

dYou have a type code that affects the

behavior of a class. off_road_ability
price

Rigid Mountain Bike

OReplace the type code with classes: one for
each type code variant

Front Suspension
Mountain Bike

Mountain Bike off_road_ability

type_code |:> price

off_road_ability
price

Full Suspension
Mountain Bike

off_road_ability
price

OBSTACLES TO
REFACTORING

QO Complexity

[Changing design is hard
[Understanding code is hard
Possibility to introduce errors

O Run tests if possible
1 Build tests
LCultural Issues

O “We pay you to add new features, not to improve the code!”
OPerformance issue

[Refactoring may slow down the execution
ONormally only 10% of your system consumes 90% of the resources so just

focus on 10 %.
[Refactorings help to localize the part that need change
[Refactorings help to concentrate the optimizations
UDevelopment is always under time pressure

] Refactoring takes time
1 Refactoring better after delivery

SUMMARY

O “The process of changing a software system in such a way
that it does not alter the external behavior of the code, yet
improves its internal structure” [Fowler]

(J Refactor to

 Improve the software design

J Make the software easier to understand
. Help find bugs

O A catalog of refactoring exists: Extract Method, Move
Method, Replace Temp with Query, etc...

0 Refactoring has some obstacles

NEXT COURSE

Anti-patterns

