
DESIGN PATTERNS

COURSE 9

PREVIOUS COURSE
q Behavior patterns
q Other patterns

CURRENT COURSE
q Refactoring

q Way refactoring

q Some refactoring examples

SOFTWARE
EVOLUTION
q Problem: You need to modify existing code

q extend/adapt/correct/…

q (Bad) Solution:
q Just add new features

q Consequence:
q Design decays
q Duplicated code
q Long methods / classes , …

q (Good) Solution:
q First make code simpler => Refactor
q Add new features

q Consequence:
q Code stays simple

REFACTORING
CONSIDERED HARMFUL
q From the standpoint of a manager, refactoring can appear

to be dangerous!
q If my developers spend their time “cleaning up the code”

then that's less time implementing required functionality
q …and my schedule is slipping as it is!

q To address these concerns, refactoring needs to be
q systematic
q incremental
q safe

WHAT IS
REFACTORING?
q “The process of changing a software system in such a way that it

does not alter the external behaviour of the code, yet improves its
internal structure.”

Martin Fowler, “Refactoring: Improving the Design of Existing Code”,
Addison-Wesley,1999.

q “A behaviour-preserving source-to-source program
transformation.”

Don Roberts, “Practical analysis for Refactoring”, PhD Thesis,
University of Illinois, 1999.

q “A change to the system that leaves its behaviour unchanged,
but enhances some non-functional quality - simplicity, flexibility,
understandability, …”

Kent Beck, “eXtreme Programming Explain: Embrace Change”,
Addison-Wesley, 2000.

WAY TO REFACTOR?
q Refactoring improves the design of your system
q Refactoring makes your software easier to understand

q because structure is improved
q duplicated code is removed
q etc.

q Refactoring helps you find bugs
q because it promotes a deep understanding of the code

q Refactoring helps you program faster
q because a good design enables progress

q Prevent “design decay”
q Clean up messes in the code
q Simplify the code
q Reduce debugging time
q Redoing things is fundamental to every creative process

HOW TO MAKE A SAFE
REFACTORING
q First, make it systematic

q e.g. use refactoring patterns, like the ones discussed in
Fowler's book

q Follow a refactoring process

q Second, test constantly!
q Each time you finish a refactoring, you run your test suite

to confirm that your system's functionality has stayed the
same

q This assumes, you have test already!

PREREQUISITES FOR
REFACTORING
q Tests

q Coding standards

q Continuous integration

q Collective code ownership

q Pair programming

q Simple design

THE REFACTORING
PROCESS
q When you systematically apply refactoring, you wear two hats

q add functionality
q refactoring

q Don't try to clean the code when doing the former

q Don't try to add features when doing the latter

q Refactoring is not just arbitrary restructuring
q Code must still work
q Small steps only so the semantics are preserved (i.e. not a major re-

write)
q Unit tests to prove the code still works
q Code is

q More loosely coupled
q More cohesive modules
q More comprehensible

WHEN TO REFACTOR
q You should refactor

q Any time that you see a better way to do things
q “Better” means making the code easier to understand and to

modify in the future
q You can do so without breaking the code

q Unit tests are essential for this

q You should not refactor
q Stable code that won’t need to change
q Someone else’s code
q Unless the other person agrees to it or it belongs to you

q Not an issue in Agile Programming since code is common

WHEN TO REFACTOR
q When should you refactor?

q Any time you find that you can improve the design of
existing code

q You detect a “bad smell” (an indication that something is
wrong) in the code

q When can you refactor?
q You should be in a supportive environment (agile

programming team, or doing your own work)
q You are familiar with common refactoring
q Refactoring tools also help
q You should have an adequate set of unit tests

WHAT TO REFACTOR?
q Make sure your tests pass

q Find some code that “smells”

q Determine how to simplify this code

q Make the simplifications

q Run tests to ensure things still work correctly
q You eventually have to adapt your tests

q Repeat the simplify/test cycle until the smell is gone

REFACTORING STEPS
q Save / backup / checking the code before you mess with it.

q If you use a well-managed version control repo, this is done.

q Write unit tests that verify the code's external correctness.
q They should pass on the current poorly designed code.
q Having unit tests helps make sure any refactor doesn't break

existing behavior (regressions).

q Analyze the code to decide the risks and benefits of
refactoring.
q If it is too risky, not enough time remains, or the refactor will

not produce enough benefit to the project, don't do it.

REFACTORING
PROCESS
q Make a small change

q a single refactoring
q Run all the tests to ensure everything still works
q If everything works, move on to the next refactoring
q If not, fix the problem, or undo the change, so you still

have a working system

PROBLEMS WITH
REFACTORING
q Taken too far, refactoring can lead to incessant tinkering

with the code, trying to make it perfect

q Refactoring code when the tests don’t work or tests when
the application doesn’t work leads to potentially
dangerous situations

q Databases can be difficult to refactor
q code is easy to change; databases are not

q Refactoring published interfaces can cause problems for
the code that uses those interfaces

WHY (SOME) DEVELOPERS
DON’T LIKE IT
qLack of understanding

qShort-term focus

qNot paid for overhead tasks like refactoring

qFear of breaking current program

CODE SMELLS EXAMPLES
qIf it stinks, change it

q Code that can make the design harder to change

qExamples:
q Duplicate code
q Long methods
q Big classes
q Big switch statements
q Long navigations (e.g., a.b().c().d())
q Lots of checking for null objects
q Data clumps (e.g., a Contact class that has fields for address,

phone, email etc.) – similar to non-normalized tables in relational
design

q Data classes (classes that have mainly fields/properties and little
or no methods)

q Un-encapsulated fields (public member variables)

SOME TYPES OF
REFACTORING
q refactoring to fit design patterns
q renaming (methods, variables)
q extracting code into a method or module
q splitting one method into several to improve cohesion and

readability
q changing method signatures
q performance optimization
q moving statements that semantically belong together near each

other
q naming (extracting) "magic" constants
q exchanging idioms that are risky with safer alternatives
q clarifying a statement that has evolved over time or is unclear

q See also http://www.refactoring.org/catalog/

HOW TO REFACTOR
qManualy

qRefactoring tool
q Eclipse (and some

other IDEs) provide
significant support for
refactoring

EXTRACT METHOD
q You have a code fragment that can be grouped together.
q Turn the fragment into a method whose name explains the

purpose of the method.
q Inverse of Inline Method

void printOwing() {
printBanner();
//print details
System.out.println ("name: " +_name);
System.out.println("amount " + getOutstanding());

}
void printOwing() {

printBanner();
printDetails(getOutstanding());

}
void printDetails (double outstanding) {

System.out.println ("name: " + _name);
System.out.println ("amount " + outstanding);

}

INLINE METHOD
q A method's body is just as clear as its name.
q Put the method's body into the body of its callers and

remove the method.
q Inverse of Exact Method

int getRating() {
return (moreThanFiveLateDeliveries()) ? 2 : 1;

}
boolean moreThanFiveLateDeliveries() {
return _numberOfLateDeliveries > 5;

}

int getRating() {
return (_numberOfLateDeliveries > 5) ? 2 : 1;

}

RENAME METHOD
q The name of a method does not reveal its purpose.
q Change the name of the method.

class Customer {
double getInvcdtlmt();
}

class Customer {
double getInvoiceableCreditLimit();
}

REMOVE PARAMETER
q A parameter is no longer used by the method body.
q Remove it.
q inverse of Add Parameter
q Naming: In IDEs this refactoring is usually done as part of

"Change Method Signature”

Customer getContact(Date)

Customer getContact()

ADD PARAMETER
q A method needs more information from its caller.
q Add a parameter for an object that can pass on this

information.
q Inverse of Remove Parameter
q Naming: In IDEs this refactoring is usually done as part of

"Change Method Signature"

Customer getContact()

Customer getContact(Date data)

EXTRACT CLASS
q You have one class doing work that should be done by

two.
q Create a new class and move the relevant fields and

methods from the old class into the new class.
q Inverse of Inline Class

INLINE CLASS
q A class isn't doing very much.
q Move all its features into another class and delete it.
q Inverse of Extract Class, Extract Interface

EXTRACT INTERFACE
q Several clients use the same subset of a class's interface,

or two classes have part of their interfaces in common.
q Extract the subset into an interface.
q Inverse of Inline Class

REPLACE ERROR CODE
WITH AN EXCEPTION
qA method returns a special code to indicate an error.
qThrow an exception instead.

int withdraw(int amount) {
if (amount > _balance)

return -1;
else

_balance -= amount; return 0;
}

void withdraw(int amount) throws BalanceException {
if (amount > _balance)

throw new BalanceException();
_balance -= amount;

}

int withdraw(int amount) {
if (amount > _balance)

return -1;
else

_balance -= amount; return 0;
}

void withdraw(int amount) throws BalanceException {
if (amount > _balance)

throw new BalanceException();
_balance -= amount;

}

REPLACE EXCEPTION
WITH TEST
qYou are throwing an exception on a condition the caller
could have checked first.
qChange the caller to make the test first.

double getValueForPeriod (int periodNumber) {
try {

return _values[periodNumber];
} catch (ArrayIndexOutOfBoundsException e) {

return 0;
}

}

double getValueForPeriod (int periodNumber) {
if (periodNumber >= _values.length)

return 0;
return _values[periodNumber];

}

double getValueForPeriod (int periodNumber) {
try {

return _values[periodNumber];
} catch (ArrayIndexOutOfBoundsException e) {

return 0;
}

}
double getValueForPeriod (int periodNumber) {

if (periodNumber >= _values.length)
return 0;

return _values[periodNumber];
}

CONSOLIDATE CONDITIONAL
EXPRESSION
q You have a sequence of conditional tests with the same

result.
q Combine them into a single conditional expression and

extract it.

double disabilityAmount() {
if (_seniority < 2) return 0;
if (_monthsDisabled > 12) return 0;
if (_isPartTime) return 0;
// compute the disability amount

double disabilityAmount() {
if (isNotEligableForDisability()) return 0;
// compute the disability amount

double disabilityAmount() {
if (_seniority < 2) return 0;
if (_monthsDisabled > 12) return 0;
if (_isPartTime) return 0;
// compute the disability amount

double disabilityAmount() {
if (isNotEligableForDisability()) return 0;
// compute the disability amount

CONSOLIDATE DUPLICATE
CONDITIONAL FRAGMENTS
q The same fragment of code is in all branches of a

conditional expression.
q Move it outside of the expression.

if (isSpecialDeal()) {
total = price * 0.95;
send();

} else {
total = price * 0.98;
send();

}
if (isSpecialDeal())
total = price * 0.95;

else
total = price * 0.98;

send();

REPLACE ARRAY WITH OBJECT
qYou have an array in which certain elements mean different
things.

qReplace the array with an object that has a field for each
element.

String[] row = new String[3];
row [0] = "Liverpool";
row [1] = "15";

Performance row = new Performance();
row.setName("Liverpool");
row.setWins("15");

REPLACE TYPE CODE
WITH POLYMORPHISM
qYou have a type code that affects the
behavior of a class.

qReplace the type code with classes: one for
each type code variant

OBSTACLES TO
REFACTORING
qComplexity

q Changing design is hard
q Understanding code is hard

qPossibility to introduce errors
q Run tests if possible
q Build tests

qCultural Issues
q “We pay you to add new features, not to improve the code!”

qPerformance issue
q Refactoring may slow down the execution

qNormally only 10% of your system consumes 90% of the resources so just
focus on 10 %.

q Refactorings help to localize the part that need change
q Refactorings help to concentrate the optimizations

qDevelopment is always under time pressure
q Refactoring takes time
q Refactoring better after delivery

SUMMARY
q “The process of changing a software system in such a way

that it does not alter the external behavior of the code, yet
improves its internal structure” [Fowler]

q Refactor to
q Improve the software design
q Make the software easier to understand
q Help find bugs

q A catalog of refactoring exists: Extract Method, Move
Method, Replace Temp with Query, etc…

q Refactoring has some obstacles

NEXT COURSE
Anti-patterns

