
DESIGN PATTERNS

COURSE 8

PREVIOUS COURSE
qChain of responsibility

q A way of passing a request between
a chain of objects

qCommand
q Encapsulate a command request as

an object
qInterpreter

q A way to include language elements
in a program

qIterator
q Sequentially access the elements of

a collection
qMediator

q Defines simplified communication
between classes

qMemento
q Capture and restore an object's

internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

CURRENT COURSE
Other patterns

q Model – View - Controller
q Interactive applications with a

flexible human-computer
interface.

q Data Access Pattern
q encapsulate data access and

manipulation in a separate
layer

q Filter
q filter a set of objects

CURRENT COURSE
qChain of responsibility

q A way of passing a request between
a chain of objects

qCommand
q Encapsulate a command request as

an object
qInterpreter

q A way to include language elements
in a program

qIterator
q Sequentially access the elements of

a collection
qMediator

q Defines simplified communication
between classes

qMemento
q Capture and restore an object's

internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

TEMPLATE METHOD
q Intent

q Define the skeleton of an algorithm in an operation,
deferring some steps to client subclasses.Template Method
lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

q Base class declares algorithm 'placeholders', and derived
classes implement the placeholders.

q Problem
q Two different components have significant similarities, but

demonstrate no reuse of common interface or
implementation. If a change common to both components
becomes necessary, duplicate effort must be expended.

TEMPLATE METHOD.
EXAMPLE
q To implement the invariant parts of an algorithm once and

leave it up to subclasses to implement the behavior that
can vary.

q When refactoring is performed and common behavior is
identified among classes. A abstract base class containing
all the common code (in the template method) should be
created to avoid code duplication.

q TEMPLATE METHOD - respects
q Hollywood Principle: Don't call us we will call you.

TEMPLATE METHOD.
STRUCTURE

q AbstractClass
q defines abstract primitive operations that concrete

subclasses define to implement steps of an algorithm.

q ConcreteClass
q implements the primitive operations to carry out subclass-

specific steps of the algorithm.

TEMPLATE METHOD.
EXAMPLE
q Example

q Develop an application for a travel agency. The travel
agency is managing each trip. All the trips contain common
behavior but there are several packages. For example
each trip contains the basic steps:

q The tourists are transported to the holiday location by
plane/train/ships,...

q Each day they are visiting something

q They are returning back home.

TEMPLATE METHOD.
EXAMPLE

public class Trip {

public final void performTrip(){

doComingTransport();

doDayA();

doDayB();

doDayC();

doReturningTransport

}

public abstract void

doComingTransport();

public abstract void doDayA();

public abstract void doDayB();

public abstract void doDayC();

public abstract void

doReturningTransport();

}

TEMPLATE METHOD.
EXAMPLE

public class PackageA extends Trip {

public void doComingTransport() {

System.out.println("The turists are comming by air ..."); }

public void doDayA() { System.out.println("The turists are visiting

the aquarium..."); }

public void doDayB() { System.out.println("The turists are going to

the beach..."); }

public void doDayC() { System.out.println("The turistsare going to

mountains ..."); }

public void doReturningTransport(){

System.out.println("The turists are going home by air ..."); }

}

TEMPLATE METHOD.
EXAMPLE
public class PackageB extends Trip {

public void doComingTransport() {

System.out.println("The turists are comming by train ...");

}

public void doDayA() {

System.out.println("The turists are visiting the mountain ...");

}

public void doDayB() {

System.out.println("The turists are going to the beach ...");

}

public void doDayC() {

System.out.println("The turists are going to zoo ...");

}

public void doReturningTransport() {

System.out.println("The turists are going home by train ...");

}

}

TEMPLATE METHOD.
EXAMPLE
public class TemplatePatternDemo {

public static void main(String[] args) {

Trip trip= new PackageA();

trip.performTrip();

System.out.println();

trip= new PackageB();

trip.performTrip();

}

}

TEMPLATE METHOD.
EXAMPLE

TEMPLATE METHOD.
EXAMPLE

TEMPLATE METHOD
q Used in java API

q All non-abstract methods of java.io.InputStream,
java.io.OutputStream, java.io.Reader and java.io.Writer.

q All non-abstract methods of java.util.AbstractList,
java.util.AbstractSet and java.util.AbstractMap.

TEMPLATE METHOD
q Advantages

q No code duplication between the classes
q Inheritance and Not Composition
q By taking advantage of polymorphism the superclass

automatically calls the methods of the correct subclasses.

q Disadvantages
q Base classes tend to get cluttered up with a lot of

seemingly unrelated code.
q Program flow is a little more difficult to follow - without the

help of stepping throughthe code with a debugger.

TEMPLATE METHOD
VS. STATEGY
q Similarity

q Can appear quite similar in nature as both help us execute
an algorithm / code steps and define executions differently
under different circumstances.

q Differences
q Strategy pattern let you decide complete different strategy

i.e. set of algorithm(s) based on requirement at the run
time, for example which tax strategy to be applied Indian or
Chinese

q Template pattern puts in some predefined steps (of an
algorithm), out of which some are fixed and others can be
implemented differently for different usages

CURRENT COURSE
qChain of responsibility

q A way of passing a request between
a chain of objects

qCommand
q Encapsulate a command request as

an object
qInterpreter

q A way to include language elements
in a program

qIterator
q Sequentially access the elements of

a collection
qMediator

q Defines simplified communication
between classes

qMemento
q Capture and restore an object's

internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

VISITOR
qIntent

qRepresent an operation to be performed on the elements of an
object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

qThe classic technique for recovering lost type information.
qDo the right thing based on the type of two objects.
qDouble dispatch

qProblem
qMany distinct and unrelated operations need to be performed on

node objects in a heterogeneous aggregate structure. You want to
avoid "polluting" the node classes with these operations. And, you
don't want to have to query the type of each node and cast the
pointer to the correct type before performing the desired operation.

VISITOR. STRUCTURE
qVisitor

q Declares a Visit operation for each class of ConcreteElement in the object
structure.

q The operation's name and signature identifies the class that sends the Visit
request to the visitor.

q That lets the visitor determine the concrete class of the element being visited.
q Then the visitor can access the elements directly through its particular interface

q ConcreteVisitor

q Implements each operation declared by Visitor.
q Each operation implements a fragment of the algorithm defined for the

corresponding class or object in the structure.
q ConcreteVisitor provides the context for the algorithm and stores its local state.
q This state often accumulates results during the traversal of the structure.

q Element

q Defines an Accept operation that takes a visitor as an argument.
q ConcreteElement

q Implements an Accept operation that takes a visitor as an argument
q ObjectStructure

q can enumerate its elements
q may provide a high-level interface to allow the visitor to visit its elements
q may either be a Composite (pattern) or a collection such as a list or a set

VISITOR

VISITOR. EXAMPLE
qExample

qShopping cart where different type of items (Elements) an be
added

qWhen checkout button is clicked, it calculates the total
amount to be paid.

VISITOR. EXAMPLE
public interface ItemElement {

public int accept(ShoppingCartVisitor visitor);

}

public class Book implements ItemElement {

private int price;

private String isbnNumber;

public Book(int cost, String isbn){

this.price=cost;

this.isbnNumber=isbn;

}

public int getPrice() { return price; }

public String getIsbnNumber() { return isbnNumber; }

public int accept(ShoppingCartVisitor visitor) {

return visitor.visit(this);

}

}

public class Fruit implements ItemElement {

private int pricePerKg;

private int weight;

private String name;

public Fruit(int priceKg, int wt, String nm){

this.pricePerKg=priceKg;

this.weight=wt;

this.name = nm;

}

public int getPricePerKg() {

return pricePerKg;

}

public int getWeight() { return weight; }

public String getName(){ return this.name; }

public int accept(ShoppingCartVisitor visitor) {

return visitor.visit(this);

}

}

VISITOR. EXAMPLE
public interface ShoppingCartVisitor
{

int visit(Book book);

int visit(Fruit fruit);

}

public class ShoppingCartVisitorImpl

implements ShoppingCartVisitor {

@Override

public int visit(Book book) {

int cost=0;

//apply 5$ discount if book price is greater than 50

if(book.getPrice() > 50){

cost = book.getPrice()-5;

}else cost = book.getPrice();

System.out.println("Book ISBN::"+book.getIsbnNumber()

+ " cost ="+cost);

return cost;

}

@Override

public int visit(Fruit fruit) {

int cost = fruit.getPricePerKg()*fruit.getWeight();

System.out.println(fruit.getName() +

" cost = "+cost);

return cost;

}

}

VISITOR. EXAMPLE
public class ShoppingCartClient {

public static void main(String[] args)
{

ItemElement[] items =

new ItemElement[]{

new Book(20, "1234"),

new Book(100, "5678"),

new Fruit(10, 2, "Banana"),

new Fruit(5, 5, "Apple")

};

int total = calculatePrice(items);

System.out.println("Total Cost =”

+total);

}

private static int calculatePrice(

ItemElement[] items) {

ShoppingCartVisitor visitor =

new ShoppingCartVisitorImpl();

int sum=0;

for(ItemElement item : items){

sum = sum +

item.accept(visitor);

}

return sum;

}

}

VISITOR
qConsequences

qBenefits
qAdding new operations is easy
qRelated behavior isn't spread over the classes defining the object

structure; it's localized in a visitor. Unrelated sets of behavior are
partitioned in their own visitor subclasses.

qVisitors can accumulate state as they visit each element in the
object structure. Without a visitor, this state would have to be
passed as extra arguments to the operations that perform the
traversal.

qLiabilities
qAdding new ConcreteElement classes is hard. Each new
ConcreteElement gives rise to a new abstract operation on
Visitor and a corresponding implementation in every
ConcreteVisitor class.

qThe ConcreteElement interface must be powerful enough to
let visitors do their job. You may be forced to provide public
operations that access an element's internal state, which may
compromise its encapsulation

CURRENT COURSE
Other patterns

q Model – View - Controller
q Interactive applications with a

flexible human-computer
interface.

q Data Access Pattern
q encapsulate data access and

manipulation in a separate
layer

q Filter
q filter a set of objects

MODEL VIEW
CONTROLLER
qProblem

q The same information is presented differently in different
windows, for example, in a bar or pie chart.

qThe display and behavior of the application must reflect data
manipulations immediately.

qChanges to the user interface should be easy, and even possible
at run-time.

qSupporting different ‘look and feel’ standards or porting the user
interface should not affect code in the core of the application

qSolution
qMVC divides an interactive application into the three areas:

processing, output, and input.

MODEL VIEW
CONTROLLER
qModel

qThe data (ie state)
qMethods for accessing and modifying state

qView
qRenders contents of model for user
qWhen model changes, view must be updated

qController
qTranslates user actions (ie interactions with view) into

operations on the model
qExample user actions: button clicks, menu selections

MODEL VIEW
CONTROLLER

MODEL VIEW
CONTROLLER
qExample – SWING

qMapping of classes to MVC parts
qView is a Swing widget (like a JFrame & JButtons)
qController is an ActionListener
qModel is an ordinary Java class (or database)

qAlternative mapping
qView is a Swing widget and includes (inner) ActionListener(s)

as event handlers
qController is an ordinary Java class with “business logic”,

invoked by event handlers in view
qModel is an ordinary Java class (or database)

qDifference: Where is the ActionListener?
q Regardless, model and view are completely decoupled

(linked only by controller)

MODEL VIEW
CONTROLLER
qBenefits

qSeparation of concerns in the codebase
qDeveloper specialization and focus
qParallel development by separate teams

CREATING AND
ASSEMBLING GUI
qA typical main window would contain the following areas

qMain working area (e.g., a drawing pane)

q Navigation (or Selection) area (e.g., a tree-based browser)

q Menu bar

q Tool bar

q Status line A

CURRENT COURSE
Other patterns

q Model – View - Controller
q Interactive applications with a

flexible human-computer
interface.

q Data Access Pattern
q encapsulate data access and

manipulation in a separate layer

q Filter
q filter a set of objects

DATA ACCESS
PATTERN.
qProblem

qYou want to encapsulate data access and manipulation in a separate layer.

qForces
qYou want to implement data access mechanisms to access and manipulate

data in a persistent storage.
qYou want to decouple the persistent storage implementation from the rest of

your application.
qYou want to provide a uniform data access API for a persistent mechanism to

various types of data sources, such as RDBMS, LDAP, OODB, XML
repositories, flat files, and so on.

qYou want to organize data access logic and encapsulate proprietary features to
facilitate maintainability and portability.

qSolution
qUse a Data Access Object to abstract and encapsulate all access to the

persistent store. The Data Access Object manages the connection with
the data source to obtain and store data.

DATA ACCESS PATTERN.
STRUCTURE
qDataAcessObject

qImplementation of the data
access oprerations

qDatasouce
qStorage source of data

qResultSet
qDatabase query result

qData
qResulting data after

performing an operation
qClient

qDataAcessObject cllient

DATA ACCESS
PATTERN

DATA ACCESS
PATTERN
qExample

qManage table Student from DB

DATA ACCESS
PATTERN. EXAMPLE

public class Student {

private String name;

private int rollNo;

Student(String name, int rollNo){

this.name = name;

this.rollNo = rollNo;

}

public String getName() { return name; }

public void setName(String name) {

this.name = name;

}

public int getRollNo() { return rollNo;}

public void setRollNo(int rollNo) {

this.rollNo = rollNo;

}

}

public interface StudentDao {

public List<Student> getAllStudents();

public Student getStudent(int rollNo);

public void updateStudent(Student
student);

public void deleteStudent(Student
student);

}

DATA ACCESS
PATTERN. EXAMPLE

public class StudentDaoImpl implements StudentDao {

//list is working as a database

List<Student> students;

public StudentDaoImpl(){

students = new ArrayList<Student>();

Student student1 = new Student("Robert",0);

Student student2 = new Student("John",1);

students.add(student1);

students.add(student2);

}

@Override

public void deleteStudent(Student student) {

students.remove(student.getRollNo());

System.out.println("Student: Roll No " +

student.getRollNo() + ", deleted from database");

}

//retreive list of students from the database

@Override

public List<Student> getAllStudents() {

return students;

}

@Override

public Student getStudent(int rollNo) {

return students.get(rollNo);

}

@Override

public void updateStudent(Student student) {

students.get(student.getRollNo())

.setName(student.getName());

System.out.println("Student: Roll No " +

student.getRollNo() +

", updated in the database");

}

}

DATA ACCESS
PATTERN. EXAMPLE
public class DaoPatternDemo {

public static void main(String[] args) {

StudentDao studentDao = new StudentDaoImpl();

//print all students

for (Student student : studentDao.getAllStudents()) {

System.out.println("Student: [RollNo : " + student.getRollNo()

+ ", Name : " + student.getName() + "]");

}

//update student

Student student =studentDao.getAllStudents().get(0);

student.setName("Michael");

studentDao.updateStudent(student);

//get the student

studentDao.getStudent(0);

System.out.println("Student: [RollNo : " + student.getRollNo() + ", Name : “

+ student.getName() + "]");

}

}

Output

Student: [RollNo : 0, Name : Robert]

Student: [RollNo : 1, Name : John]
Student: Roll No 0, updated in the database
Student: [RollNo : 0, Name : Michael]

DATA ACCESS
PATTERN
qConsequences

qCentralizes control with loosely coupled handlers
qEnables transparency
qProvides object-oriented view and encapsulates database

schemas
qEnables easier migration
qReduces code complexity in clients
qOrganizes all data access code into a separate layer
qAdds extra layer
qNeeds class hierarchy design (Factory Method Strategies)
qIntroduces complexity to enable object-oriented design

(RowSet Wrapper List Strategy)

CURRENT COURSE
Other patterns

q Model – View - Controller
q Interactive applications with

a flexible human-computer
interface

q Data Access Pattern
q encapsulate data access

and manipulation in a
separate layer

q Filter
q filter a set of objects

FILTER
qProblem

qUse filter or criteria pattern when you need to filter a set of
objects, using different criteria, changing them in a decoupled
way throw logical application

qPattern Type
qStrategy pattern

qUsage
qUse when the search results for a query are very numerous and

reviewing them would be very time consuming.
qUse when search results can be categorized into filters: the

search must be contextual.
qDo not use when your search is not easily categorized into

filters.

FILTER. EXAMPLE

FILTER. EXAMPLE
public class Person {

private String name;

private String gender;

private String maritalStatus;

public Person(String name, String gender, String maritalStatus){

this.name = name;

this.gender = gender;

this.maritalStatus = maritalStatus;

}

public String getName() { return name; }

public String getGender() { return gender; }

public String getMaritalStatus() { return maritalStatus; }

}

FILTER. EXAMPLE
public interface Criteria {

public List meetCriteria(List persons); }

public class CriteriaMale implements Criteria {

@Override

public List meetCriteria(List persons) {

List malePersons = new ArrayList();

for (Person person : persons) {

if(person.getGender().equalsIgnoreCase("MALE")){

malePersons.add(person);

}

}

return malePersons;

}

}

FILTER. EXAMPLE
public class CriteriaFemale implements Criteria {

@Override

public List meetCriteria(List persons) {

List femalePersons = new ArrayList();

for (Person person : persons) {

if(person.getGender().equalsIgnoreCase(“FEMALE")){

femalePersons.add(person);

}

}

return malePersons;

}

}

FILTER. EXAMPLE
public class CriteriaSingle implements Criteria {

@Override

public List meetCriteria(List persons) {

List singlePersons = new ArrayList();

for (Person person : persons) {

if(person.getMaritalStatus()

.equalsIgnoreCase("SINGLE")){

singlePersons.add(person);

}

}

return singlePersons;

}

}

FILTER. EXAMPLE
public class AndCriteria implements Criteria {

private Criteria criteria;

private Criteria otherCriteria;

public AndCriteria(Criteria criteria,

Criteria otherCriteria) {

this.criteria = criteria;

this.otherCriteria = otherCriteria;

}

@Override

public List meetCriteria(List persons) {

List firstCriteriaPersons =

criteria.meetCriteria(persons);

return otherCriteria.meetCriteria(firstCriteriaPersons);

}

}

FILTER. EXAMPLE
public class OrCriteria implements Criteria {

private Criteria criteria;

private Criteria otherCriteria;

public OrCriteria(Criteria criteria, Criteria otherCriteria) {

this.criteria = criteria;

this.otherCriteria = otherCriteria;

}

@Override

public List meetCriteria(List persons) {

List firstCriteriaItems = criteria.meetCriteria(persons);

List otherCriteriaItems =

otherCriteria.meetCriteria(persons);

for (Person person : otherCriteriaItems) {

if(!firstCriteriaItems.contains(person)){

firstCriteriaItems.add(person);

} }

return firstCriteriaItems;

}}

FILTER. EXAMPLE
public class CriteriaPatternDemo {

public static void main(String[] args) {

List persons = new ArrayList();

persons.add(new

Person("Robert","Male", "Single"));

persons.add(new Person("John",

"Male", "Married"));

persons.add(new Person("Laura",

"Female", "Married"));

persons.add(new Person("Diana",

"Female", "Single"));

persons.add(new Person("Mike", "Male",

"Single"));

persons.add(new Person("Bobby",

"Male", "Single"));

Criteria male = new CriteriaMale();

Criteria female =

new CriteriaFemale();

Criteria single =

new CriteriaSingle();

Criteria singleMale =

new AndCriteria(single, male);

Criteria singleOrFemale = new

OrCriteria(single, female);

System.out.println("Males: ");

printPersons(

male.meetCriteria(persons));

FILTER. EXAMPLE
System.out.println("Males: ");

printPersons(male.meetCriteria(persons));

System.out.println("\nFemales: ");

printPersons(female.meetCriteria(persons));

System.out.println("\nSingle Males: ");

printPersons(singleMale.meetCriteria(persons));

System.out.println("\nSingle Or Females: ");

printPersons(singleOrFemale.meetCriteria(persons));

}

public static void printPersons(List persons){

for (Person person : persons) {

System.out.println("Person : [Name : " + person.getName()

+ ", Gender : " + person.getGender() +

", Marital Status : " + person.getMaritalStatus() + "]");

}

}

}

FILTER. EXAMPLE
Males:
Person : [Name : Robert, Gender : Male,
Marital Status : Single]
Person : [Name : John, Gender : Male, Marital
Status : Married]
Person : [Name : Mike, Gender : Male, Marital
Status : Single]
Person : [Name : Bobby, Gender : Male,
Marital Status : Single]

Females:
Person : [Name : Laura, Gender : Female,
Marital Status : Married]
Person : [Name : Diana, Gender : Female,
Marital Status : Single]

Single Males:
Person : [Name : Robert, Gender : Male, Marital
Status : Single]
Person : [Name : Mike, Gender : Male, Marital

Status : Single]
Person : [Name : Bobby, Gender : Male, Marital
Status : Single]

Single Or Females:
Person : [Name : Robert, Gender : Male, Marital

Status : Single]
Person : [Name : Diana, Gender : Female, Marital
Status : Single]
Person : [Name : Mike, Gender : Male, Marital
Status : Single]
Person : [Name : Bobby, Gender : Male, Marital
Status : Single]
Person : [Name : Laura, Gender : Female, Marital
Status : Married]

FILTER
qJDK example

q Stream API

q Criteria API JDBC

NEXT COURSE
REFACTORING

