
DESIGN PATTERNS

COURSE 6

PREVIOUS COURSE
q Structural patterns

q Adapter
q Bridge
q Façade
q Flyweight
q Proxy
q Composite
q Decorator

q Behavioral patterns
q Chain of responsibility
q Commander

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

INTERPRETER
qIntent

qGiven a language, define a representation for its grammar
along with an interpreter that uses the representation to
interpret sentences in the language.

qMap a domain to a language, the language to a grammar,
and the grammar to a hierarchical object-oriented design

qProblem
qA class of problems occurs repeatedly in a well-defined and

well-understood domain. If the domain were characterized
with a "language", then problems could be easily solved with
an interpretation "engine"

INTERPRETER.
EXAMPLE
qLanguage translation

qSQL parsing

qSymbol processing engine

qMusic
qGrammar = musical notes
q Interprets = musicians, playing the music

INTERPRETER.
STRUCTURE

qClient.
q Client objects build the tree of expressions that represent the commands to be executed, often with the help of

a parser class.
q The Interpret method of the top item in the tree is then called, passing any context object, to execute all of the

commands in the tree.
qContext.

q The context class is used to store any information that needs to be available to all of the expression objects.
q If no global context is required this class is unnecessary.

qAbstarctExpression.
q This abstract class is the base class for all expressions.
q It defines the Interpret method, which must be implemented for each subclass.

qTerminalExpression.
q Terminal expressions are those that can be interpreted in a single object.
q These are created as concrete subclasses of the AbstarctExpression class.

qNonterminalExpression.
q Non-terminal expressions are represented using a concrete subclass of AbstractExpression.
q These expressions are aggregates containing one or more further expressions, each of which may be terminal

or non-terminal.
q When a non-terminal expression class's Interpret method is called, the process of interpretation includes calls

to the Interpret method of the expressions it holds.

http://www.blackwasp.co.uk/CSharpMethods.aspx
http://www.blackwasp.co.uk/AbstractClasses.aspx
http://www.blackwasp.co.uk/Inheritance.aspx

INTERPRETER.
EXAMPLE
qMusicians are examples of
Interpreters.

qThe pitch of a sound and its
duration can be represented in
musical notation on a staff.

qThis notation provides the
language of music.

qMusicians playing the music
from the score are able to
reproduce the original pitch
and duration of each sound
represented.

INTERPRETER.
EXAMPLE
qEvaluation of a post-fix (Reverse Polish Notation) of an
arithmetic expression

q7 3 – 2 1 + *
qThe result would be?

INTERPRETER.
EXAMPLE
qEvaluation of a post-fix (Reverse Polish Notation) of an
arithmetic expression

q7 3 – 2 1 + *
qThe result would be?

q12

INTERPRETER.
EXAMPLE
public interface Expression {

public int interpret();

}

public class Add implements Expression{

private final Expression leftExpression;

private final Expression rightExpression;

public Add(Expression leftExpression, Expression rightExpression){

this.leftExpression = leftExpression;

this.rightExpression = rightExpression;

}

@Override

public int interpret() {

return leftExpression.interpret() + rightExpression.interpret();

}

}

INTERPRETER.
EXAMPLE
public class Product implements Expression{

private final Expression leftExpression;

private final Expression rightExpression;

public Add(Expression leftExpression, Expression rightExpression){

this.leftExpression = leftExpression;

this.rightExpression = rightExpression;

}

@Override

public int interpret() {

return leftExpression.interpret() * rightExpression.interpret();

}

}

public class Substract implements Expression{

…

}

INTERPRETER.
EXAMPLE
public class Number implements Expression{

private final int n;

public Number(int n){

this.n = n;

}

@Override

public int interpret() {

return n;

}

}

INTERPRETER.
EXAMPLE
public class ExpressionUtils {

public static boolean isOperator(String s) {

if (s.equals("+") || s.equals("-") || s.equals("*"))

return true;

else return false;

}

public static Expression getOperator(String s, Expression left, Expression right) {

switch (s) {

case "+": return new Add(left, right);

case "-": return new Substract(left, right);

case "*": return new Product(left, right);

}

return null;

}

}

INTERPRETER.
EXAMPLE

public class TestInterpreterPattern {

public static void main(String[] args) {

String tokenString = "7 3 - 2 1 + *";

Stack<Expression> stack = new Stack<>();

String[] tokenArray = tokenString.split(" ");

for (String s : tokenArray) {

if (ExpressionUtils.isOperator(s)) {

Expression rightExpression = stack.pop(), leftExpression = stack.pop();

Expression operator = ExpressionUtils.getOperator(s, leftExpression, rightExpression);

int result = operator.interpret();

stack.push(new Number(result));

} else {

Expression i = new Number(Integer.parseInt(s));

stack.push(i);

}

}

System.out.println("("+tokenString+"): "+stack.pop().interpret());

} }

INTERPRETER
q Interpreter pattern can be used when we can create a

syntax tree for a grammar.

q Interpreter pattern requires a lot of error checking and a
lot of expressions and code to evaluate them, it gets
complicated when the grammar becomes more
complicated and hence hard to maintain and provide
efficiency.

q java.util.Pattern and subclasses of
java.text.Format are some of the examples of
interpreter pattern used in JDK.

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

ITERATOR
qIntent

qProvide a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

qThe C++ and Java standard library abstraction that makes it
possible to decouple collection classes and algorithms.

qProblem
qAn object that provides a standard way to examine all elements of

any collection
qUniform interface for traversing many different data structures

without exposing their implementations
qSupports concurrent iteration and element removal
qRemoves need to know about internal structure of collection or

different methods to access data from different collections

ITERATOR. SUCTURE
q Aggregate

q defines an interface for the
creation of the Iterator
object.

q ConcreteAggregate
q implements this interface,

and returns an instance of
the ConcreteIterator.

q Iterator
q defines the interface for

access and traversal of the
elements

q ConcreteIterator
q implements this interface

while keeping track of the
current position in the
traversal of the Aggregate.

ITERATOR. JDK
EXAMPLE
public interface java.util.Iterator {

public boolean hasNext();

public Object next();

public void remove();

}

public interface java.util.Collection {

... // List, Set extend Collection

public Iterator iterator();

}

public interface java.util.Map {

...

public Set keySet(); // keys,values are Collections

public Collection values(); // (can call iterator() on them)

}

ITERATOR. JDK
EXAMPLE
q All Java collections have a method iterator that returns an iterator

for the elements of the collection

q Can be used to look through the elements of any kind of collection
(an alternative to for loop)

List list = new ArrayList();
... add some elements ...
for (Iterator itr = list.iterator(); itr.hasNext();)
{

BankAccount ba = (BankAccount)itr.next();
System.out.println(ba);

}

ITERATOR. EXAMPLE
q Iterate through a list of database query records

interface IIterator{

public boolean hasNext();

public Object next();

}

interface IContainer{

public IIterator createIterator();

}

ITERATOR. EXAMPLE
class RecordCollection implements IContainer{

private String recordArray[] = {"first","second","third","fourth","fifth"};

public IIterator createIterator(){

RecordIterator iterator = new RecordIterator();

return iterator;

}

private class RecordIterator implements IIterator{

private int index=0;

public boolean hasNext(){

if (index < recordArray.length) return true;

else return false;

}

public Object next(){

if (this.hasNext()) return recordArray[index++];

else return null;

}

}

}

ITERATOR. EXAMPLE
q Client class

public class TestIterator {

public static void main(String[] args) {

RecordCollection recordCollection =
new RecordCollection();

IIterator iter = recordCollection.createIterator();

while(iter.hasNext()){

System.out.println(iter.next());

}

}
}

ITERATOR
q Consequences

q It supports variations in the traversal of an aggregate. Complex
aggregates may be traversed in many ways.

q For example, code generation and semantic checking involve
traversing parse trees. Code generation may traverse the parse
tree inorder or preorder. Iterators make it easy to change the
traversal algorithm: Just replace the iterator instance with a
different one. You can also define Iterator subclasses to support
new traversals.

q Iterators simplify the Aggregate interface.
q Iterator's traversal interface obviates the need for a similar

interface in Aggregate, thereby simplifying the aggregate's
interface.

q More than one traversal can be pending on an aggregate. An
iterator keeps track of its own traversal state. Therefore you can
have more than one traversal in progress at once.

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

MEDIATOR
q Intent

q Define an object that encapsulates how a set of objects interact.
Mediator promotes loose coupling by keeping objects from
referring to each other explicitly, and it lets you vary their
interaction independently.

q Design an intermediary to decouple many peers.
q Promote the many-to-many relationships between interacting

peers to "full object status".

q Problem
q We want to design reusable components, but dependencies

between the potentially reusable pieces demonstrates the
"spaghetti code" phenomenon (trying to scoop a single serving
results in an "all or nothing clump").

MEDIATOR. EXAMPLES
q GUI components

q Dialog window is a collection of graphic and non-graphic controls
q Dialog class provides the mechanism to facilitate the interaction between

controls

q JMS (JAVA MESSAGE SERVICE)
q Allows applications to subscribe and publish data to other applications

q Chat application
q In a chat application we can have several participants
q Not a good idea to connect each participant to all the other
q Solution is to have a hub where all participants will connect

q Airport control tower
q The tower looks after who can take off and land - all communications are

done from the airplane to control tower, rather than having plane-to-plane
communication.

MEDIATOR.
STRUCTURE

qMediator
qdefines an interface for communicating with Colleague objects

qConcreteMediator
qknows and maintains its colleagues
q implements cooperative behavior by coordinating Colleagues

qColleague classes
qeach Colleague class knows its Mediator object
qeach colleague communicates with its mediator whenever it would have otherwise

communicated with another colleague

MEDIATOR. EXAMPLE
q GUI interface mediator

MEDIATOR. EXAMPLE
q Chatroom application

//Mediator interface
public interface Mediator {

public void send(String message, Colleague colleague);
}

//Colleage interface
public abstract Colleague{

private Mediator mediator;
public Colleague(Mediator m) { mediator = m; }

//send a message via the mediator
public void send(String message) {

mediator.send(message, this); }

//get access to the mediator
public Mediator getMediator() {return mediator;}
public abstract void receive(String message);

}

MEDIATOR. EXAMPLE
public class ApplicationMediator implements Mediator {

private ArrayList<Colleague> colleagues;

public ApplicationMediator() { colleagues = new ArrayList<Colleague>(); }

public void addColleague(Colleague colleague) { colleagues.add(colleague);}

public void send(String message, Colleague originator) {

//let all other screens know that this screen has changed

for(Colleague colleague: colleagues) {

//don't tell ourselves

if(colleague != originator) {

colleage.receive(message);

}

} } }

MEDIATOR. EXAMPLE
// concrete colleague

public class ConcreteColleague extends Colleague {

public void receive(String message) {

System.out.println("Colleague Received: " + message);

}

}

// concrete colleague

public class MobileColleague extends Colleague {

public void receive(String message) {

System.out.println("Mobile Received: " + message);

}

}

MEDIATOR. EXAMPLE
// client class

public class Client {

public static void main(String[] args) {

ApplicationMediator mediator = new ApplicationMediator();

ConcreteColleague desktop = new ConcreteColleague(mediator);

ConcreteColleague mobile = new MobileColleague(mediator);

mediator.addColleague(desktop);

mediator.addColleague(mobile);

desktop.send("Hello World");

mobile.send("Hello");

}

}

MEDIATOR
q When to use mediator pattern?

q When one or more objects must interact with several
different objects.

q When centralized control is desired

q When simple object need to communicate in complex
ways.

q When you want to reuse an object that frequently interacts
with other objects

MEDIATOR
qBenefits

qIncreases the reusability of the objects supported by the Mediator
by decoupling them from the system.

q Simplfies maintenance of the system by centralizing control logic.
q Simplifies and reduces the variety of messages sent between

objects in the system.
q Partition a system into pieces or small objects.
q Centralize control to manipulate participating objects.
q Most of the complexity involved in managing dependencies is

shifted from other objects to the Mediator object.This makes other
objects easier to implement and maintain.

qDisadvantages:
qWithout proper design, the Mediator object itself can become

overly complex.

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

MEMENTO
q Intent

q Without violating encapsulation, capture and externalize an
object's internal state so that the object can be returned to
this state later.

q Problem
q Need to restore an object back to its previous state

MEMENTO. EXAMPLES
q Undo and restore operations in most software.

q Database transactions
q A transaction can contain multiple operations on the database
q Each operation can succeed or fail
q A transaction guarantees that if all operations succeed, the

transaction would commit and would be final
q Rolling back mechanism uses the memento design pattern

q Browser history

q Persistency
q save / load state between executions of program

MEMENTO.
STRUCTURE

q Originator - the object that knows how to save itself
qThe state variable contains information that represents the state of the Originator

object. This is the variable that will be saved and restored.
qThe CreateMemento method is used to save the state of the Originator.
qThe SetMemento method restores the Originator by accepting a Memento object,

unpackage it, and sets its state variable using the state variable from the
Memento

q Caretaker - the object that knows why and when the Originator
needs to save and restore itself.

q Memento stores the historical information of the Originator. The
information is stored in its state variable.

MEMENTO

qOrganizer
q creates a memento containg a snapshot of its current

state and uses the memento to restore its internal state
qMemento

q hods internal state of organizer
qCaretaker

q responsable for kipping the memento

MEMENTO
class Originator {

private String state;

public void set(String state) {

System.out.println("Originator: Setting state to" +
state);

this.state = state;

}

public Object saveToMemento() {

System.out.println("Originator: Saving to memento");

return new Memento(state);

}

//continue on next page

MEMENTO
public void restoreFromMemento(Object o) {

if (o instanceof Memento) {

Memento m = (Memento) o;

state = m.getSavedState();

System.out.println("Originator: State after restoring
from Memento:" + state);

}

}

private static class Memento {

private String state;

public Memento(String stateToSave) { state = stateToSave; }

public String getSavedState() { return state; }

}

}

MEMENTO
class CareTaker {

private List<Object> savedStates = new ArrayList<>();

public void addMemento(Object m) {

savedStates.add(m);

}

public Object getMemento(int index) {

return savedStates.get(index);

}

}

MEMENTO
public class MementoPatternExample {

public static void main(String[] args) {

CareTaker careTaker = new CareTaker();

Originator originator = new Originator();

originator.set("State1");

originator.set("State2");

careTaker.addMemento(originator.saveToMemento());

originator.set("State 3");

careTaker.addMemento(originator.saveToMemento());

originator.set("State 4");

originator.restoreFromMemento(careTaker.getMemento(0));

}

}

MEMENTO
qBenefits

qSince object oriented programming dictates that objects should
encapsulate their state it would violate this law if objects’ internal variables
were accessible to external objects. The memento pattern provides a way
of recording the internal state of an object in a separate object without
violating this law

qThe memento eliminates the need for multiple creation of the same object
for the sole purpose of saving its state.

qThe memento simplifies the Originator since the responsibility of managing
Memento storage is no longer centralized at the Originator but rather
distributed among the Caretakers

qDrawbacks
qThe Memento object must provide two types of interfaces: a narrow

interface to the Caretaker and a wide interface to the Originator. That is, it
must acts like a black box to everything except for the class that created it.

q Using Mementos might be expensive if the Originator must store a large
portion of its state information in the Memento or if the Caretakers
constantly request and return the Mementos to the Originator.

