
DESIGN PATTERNS

COURSE 5

PREVIOUS COURSE
q Creational Patterns

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects

efficiently
q Proxy

q provide a surrogate for another object to control access
q Composite

q compose objects into tree structures, treating all nodes uniformly
q Decorator

q attach additional responsibilities dynamically

CONTENT
q Structural patterns

q Adapter
q Bridge
q Façade
q Flyweight
q Proxy
q Composite
q Decorator

q Behavioral patterns

STRUCTURAL PATTERNS
qHelp identify and describe relationships between entities

q Address how classes and objects are composed to form large
structures

qClass-oriented patterns use inheritance to compose interfaces or
implementations

qObject-oriented patterns describe ways to compose objects to
realize new functionality, possibly by changing the composition at
run-time

qExample
qProxy in distributed programming
qBridge in JDBC drivers

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

PROXY
q Intent

q Provide a surrogate or placeholder for another object to control
access to it.

q Use an extra level of indirection to support distributed,
controlled, or intelligent access.

q Add a wrapper and delegation to protect the real component
from undue complexity.

q Problem
q You need to support resource-hungry objects, and you do not

want to instantiate such objects unless and until they are
actually requested by the client.

PROXY. STRUCTURE
q Subject

q Interface implemented by the RealSubject
and representing its services. The interface
must be implemented by the proxy as well so
that the proxy can be used in any location
where the RealSubject can be used.

q Proxy
q Maintains a reference that allows the Proxy

to access the RealSubject.
q Implements the same interface implemented

by the RealSubject so that the Proxy can be
substituted for the RealSubject.

q Controls access to the RealSubject and may
be responsible for its creation and deletion.

q Other responsibilities depend on the kind of
proxy.

q RealSubject
q The real object that the proxy represents

PROXY

Proxy is providing a barrier between the client and the real
implementation.

PROXY. EXAMPLE
q Image viewer program

that lists and displays
high resolution
photos.

q The program has to
show a list of all
photos however it
does not need to
display the actual
photo until the user
selects an image
item from a list.

PROXY. EXAMPLE
/**

* Subject Interface

*/

public interface Image {

public void showImage();

}

/*** Proxy */

public class ImageProxy

implements Image {

/** Private Proxy data */

private String imageFilePath;

/** Reference to RealSubject */

private Image proxifiedImage;

public ImageProxy(String imageFilePath) {

this.imageFilePath= imageFilePath;

}

@Override

public void showImage() {

// create the Image Object only when the

// image is required to be shown

proxifiedImage = new

HighResolutionImage(imageFilePath);

// now call showImage on realSubject

proxifiedImage.showImage();

}

}

PROXY. EXAMPLE
/**

RealSubject

*/

public class HighResolutionImage implements Image {

public HighResolutionImage(String imageFilePath) {

loadImage(imageFilePath);

}

private void loadImage(String imageFilePath) {

// load Image from disk into memory

// this is heavy and costly operation

}

@Override

public void showImage() {

// Actual Image rendering logic

}

}

PROXY. EXAMPLE

/** * Image Viewer program */

public class ImageViewer {

public static void main(String[] args) {

// assuming that the user selects a folder

// that has 3 images

//create the 3 images

Image highResolutionImage1 =

new ImageProxy(”img/veryHighResPhoto1.jpeg");

Image highResolutionImage2 =

new ImageProxy(”img/veryHighResPhoto2.jpeg");

Image highResolutionImage3 =

new ImageProxy(”img/veryHighResPhoto3.jpeg");

// assume that the user clicks on Image one item

//in a list

// this would cause the program to call showImage()

// for that image only

// note that in this case only image one

// was loaded into memory

highResolutionImage1.showImage();

// consider using the high resolution image object
directly

Image highResolutionImageNoProxy1 = new

HighResolutionImage(”img/veryHighResPhoto1.jpeg");

Image highResolutionImageNoProxy2 = new

HighResolutionImage(”img/veryHighResPhoto2.jpeg");

Image highResolutionImageBoProxy3 = new

HighResolutionImage(”img/veryHighResPhoto3.jpeg");

// assume that the user selects image two item

// from images list

highResolutionImageNoProxy2.showImage();

// note that in this case all images have

// been loaded into memory

// and not all have been actually displayed

// this is a waste of memory resources

}

}

PROXY. EXAMPLE
q Java API Usage

q “Remote Method Invocation” (java.rmi library)
q Allows objects in separate virtual machines to be used as if

local (language specific)

q Security Proxies that controls access to objects can be
found in many object oriented languages including java,
C#, C++

PROXY. TYPES
qRemote Proxy

qProvides a reference to an object located in a different address space on the same or
different machine

qVirtual Proxy
qAllows the creation of a memory intensive object on demand. The object will not be

created until it is really needed.
q Copy-On-Write Proxy

qDefers copying (cloning) a target object until required by client actions. Really a form of
virtual proxy.

qProtection (Access) Proxy
q Provides different clients with different levels of access to a target object

qCache Proxy
q Provides temporary storage of the results of expensive target operations so that

multiple clients can share the results
q Firewall Proxy

q Protects targets from bad clients
q Synchronization Proxy

q Provides multiple accesses to a target object
q Smart Reference Proxy

q Provides additional actions whenever a target object is referenced such as counting
the number of references to the object

PROXY
q When to use

q The object being represented is external to the system.

q Objects need to be created on demand.

q Access control for the original object is required

q Added functionality is required when an object is accessed

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

COMPOSITE
qIntent

qCompose objects into tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

qRecursive composition
q"Directories contain entries, each of which could be a directory."
q1-to-many "has a" up the "is a" hierarchy

qProblem
qApplication needs to manipulate a hierarchical collection of

"primitive" and "composite" objects. Processing of a primitive
object is handled one way, and processing of a composite object
is handled differently. Having to query the "type" of each object
before attempting to process it is not desirable.

COMPOSITE.
STRUCTURE

qComponent
qdeclares the interface for objects in the composition.
qimplements default behavior for the interface common to all classes, as

appropriate.
qdeclares an interface for accessing and managing its child components.
q(optional) defines an interface for accessing a component's parent in the

recursive structure, and implements it if that's appropriate.
qLeaf

qrepresents leaf objects in the composition. A leaf has no children.
qdefines behavior for primitive objects in the composition.

qComposite
qdefines behavior for components having children.
qstores child components.
qimplements child-related operations in the Component interface.

qClient
qmanipulates objects in the composition through the Component interface.

COMPOSITE.
EXAMPLE
qFile System

qXML

qHtml tags

qHierarchy of an office
qstarting from the president to employees

COMPOSITE.
EXAMPLE
qFile System

qStating from the following abstraction how you would
refectory in order to follow the composite pattern?

class File {
public File(String name) {

m_name = name;
}
public void ls() {

System.out.println(Composite.g_indent + m_name);
}
private String m_name;

}

COMPOSITE.
EXAMPLE
class Directory {

public Directory(String name) { m_name = name; }

public void add(Object obj) { m_files.add(obj); }

public void ls() {

System.out.println(m_name);

for (int i = 0; i < m_files.size(); ++i) {

Object obj = m_files.get(i);

// Recover the type of this object

if (obj.getClass().getName()

.equals("Directory")) ((Directory)obj).ls();

else

((File)obj).ls();

}

}

private String m_name;

private ArrayList<Object> m_files = new ArrayList<>();

}

COMPOSITE.
EXAMPLE
class CompositeDemo {

public static void main(String[] args) {

Directory one = new Directory("dir111");

Directory two = new Directory("dir222");

Directory thr = new Directory("dir333");

File a = new File("a"), b = new File("b");

File c = new File("c"), d = new File("d"), e = new File("e");

one.add(a);

one.add(two);

one.add(b);

two.add(c);

two.add(d);

two.add(thr);

thr.add(e);

one.ls();

} }

COMPOSITE.
EXAMPLE. REFACTOR
interface AbstractFile { public void ls(); }

class File implements AbstractFile { … }

class Directory implements AbstractFile {

public void ls() {

for (int i = 0; i < m_files.size(); ++i) {

// Leverage the "lowest common denominator"

AbstractFile obj = m_files.get(i);

obj.ls();

}

private ArrayList< AbstractFile> m_files = new ArrayList<>();

…

}

COMPOSITE
qPropose a implementation of composite pattern for the
following examples

qHtml tags

qHierarchy of an office
qstarting from the president to employees

COMPOSITE
qWhen to use Composite Pattern?

qWhen you want to represent part-whole hierarchies of
objects.

qWhen you want clients to be able to ignore the difference
between compositions of objects and individual objects.
Clients will treat all objects in the composite structure
uniformly.

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

DECORATOR
qIntent

qAttach additional responsibilities to an object dynamically.
qDecorators provide a flexible alternative to subclassing for

extending functionality.

qProblem
qWant to add properties to an existing object
qAdd borders or scrollbars to a GUI component
qAdd headers and footers to an advertisement
qAdd stream functionality such as reading a line of input or

compressing a file before sending it over the wire

DECORATOR
qHow could we design the following example?

qAn automated machine that prepares drinks.
qFor a drink we have the following base drinks: coffee, tee,

espresso, decaf
qAnd the following ingredients: milk, mocha, rum

qBased on the base drink and ingredients that are chose in
order to prepare a drink the price of the drink varies

DECORATOR

<<abstract>>
DRINK

COFFEE TEE EXPRESO DEDACF

Drink classes hierarchy

DECORATOR
<<abstract>>

DRINK

getDescription()
getCost()

COFFEE TEE EXPRESO DEDACF

Drink classes hierarchy, adding methods to display the description and cost

How we add
ingredients?

DECORATOR
qHow to add ingredients?

qMember fields to Drink class
qPossible problems?

qOther variants?

DECORATOR
qHow to add ingredients?

qMember fields to Drink class
qPossible problems?

qCode changes in the superclass when a new ingredient is
added

qPrices can change => code change
qDouble the amount of milk

qOther variants?

RUM
cost()

MILK
cost()

DECORATOR
qHow to add ingredients?

qSolution using decorator
qstart from a base drink and add ingredients

TEE
cost()

TEE
cost()

MILK
cost()

TEE
cost()

DECORATOR.
STRUCTURE

qComponent

qdefines the interface for objects that can have
responsibilities added to them dynamically.

qConcreteComponent
qdefines an object to which additional

responsibilities can be attached.
qDecorator

qmaintains a reference to a Component object
and defines an interface that conforms to
Component's interface.

qConcreteDecorator
qadds responsibilities to the component.

DECORATOR.
EXAMPLE

<<abstract>>
DRINK

getDescription()

getCost()

COFFEE

TEE EXPRESO

DEDACF

<<interdace>>
IgradientDecorator

MILK RUM

MOCHA

DECORATOR.
EXAMPLE

DRINK
public abstract class Drink{

String description = "Unknown Drink";

public String getDescription () {

// already implemented

return description;

}

public abstract double cost();

// Need to implement cost()

}

INGREDIENT
public abstract

class IngredientDecorator

extends Drink{

Drink drink;

public Drink(Drink drink) {

this.drink = drink;

}

}

DECORATOR.
EXAMPLE

DRINK
public class Tee extends Drink{

public Tee() {

description = “Tee";

}

public double cost() {

return .89;

}

}

INGREDIENT
public class Mocha

extends IngredientDecorator{

public Mocha(Drink drink) {

super (drink);

}

public String getDescription () {

return drink.getDescription() +

", Mocha";

}

public double cost() {

return .20 + drink.cost ();

}

}

DECORATOR.
EXAMPLE
public class Client{

public static void main(String args []) {

// espresso order, no condiments

Drink drink= new Espresso();

System.out.println(drink.getDescription() + " $" + drink.cost());

Drink drink2 = new Coffee(); //get a Coffee with milk

drink2 = new Milk(drink2);

drink2 = new Milk(drink2); // wrap it with Milk

System.out.println(drink2.getDescription() +" $" +drink2.cost());

Drink drink3 = new Tee(); // get a Tee

drink3 = new Milk(drink3); // wrap with Milk

drink3 = new Rum(drink3); // wrap with Rum

System.out.println(drink3.getDescription() + " $" + drink3.cost())

}

}

DECORATOR.
EXAMPLES
qJava I/O

qInputStreamReader decorates InputStream
q Bridge from byte streams to character streams: It reads bytes and

translates them into characters using the specified character encoding
qBufferReader decorates InputStreamReader

q Read text from a character - input stream, buffering characters so as to
provide for the efficient reading of characters, arrays, and lines.

q BufferedReader keyboard = new BufferedReader(new
InputStreamReader(System.in));

qJava Swing
qAny JComponent can have 1 or more borders

q Borders are useful objects that, while not themselves components, know
how to draw the edges of Swing components

q Borders are useful not only for drawing lines and fancy edges, but also for
providing titles and empty space around components

DECORATOR
qAdvantages

qIt is flexible than inheritance because inheritance adds
responsibility at compile time but decorator pattern adds at
run time.

qWe can have any number of decorators and also in any order.
qIt extends functionality of object without affecting any other

object

qDisadvantages
qThe main disadvantage of decorator design pattern is code

maintainability because this pattern creates lots of similar
decorators which are sometimes hard to maintain and
distinguish.

BEHAVIORAL
PATTERNS
qBehavioral design patterns are design patterns that identify
common communication patterns between objects and realize these
patterns

qChain of responsibility
qA way of passing a request between a chain of objects

qCommand
qEncapsulate a command request as an object

qInterpreter
qA way to include language elements in a program

qIterator
qSequentially access the elements of a collection

qMediator
qDefines simplified communication between classes

BEHAVIORAL
PATTERNS
qMemento

qCapture and restore an object's internal state
qNull Object

qDesigned to act as a default value of an object
qObserver

qA way of notifying change to a number of classes
qState

qAlter an object's behavior when its state changes
qStrategy

qEncapsulates an algorithm inside a class
qTemplate method

qDefer the exact steps of an algorithm to a subclass
qVisitor

qDefines a new operation to a class without change

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

CHAIN OF
RESPONSIBILITY
qIntent

qAvoid coupling the sender of a request to its receiver by giving
more than one object a chance to handle the request. Chain the
receiving objects and pass the request along the chain until an
object handles it.

qLaunch-and-leave requests with a single processing pipeline that
contains many possible handlers.

qAn object - oriented linked list with recursive traversal.

qProblem
qThere is a potentially variable number of "handler" or

"processing element" or "node" objects, and a stream of requests
that must be handled. Need to efficiently process the requests
without hard-wiring handler relationships and precedence, or
request-to-handler mappings

CHAIN OF
RESPONSIBILITY

CHAIN OF
RESPONSIBILITY
qOnly one receiver in the chain handles the Request

qOne or more Receivers in the chain handles the Request

CHAIN OF
RESPONSIBILITY

qHandler
qdefines an interface for handling the requests
q(optional) implements the successor link

qConcreteHandler
qhandles requests it is responsible for
qcan access its successor
qif the ConcreteHandler can handle the request, it does so; otherwise it forwards

the request to its successor
qClient

qinitiates the request to a ConcreteHandler object on the chain

CHAIN OF
RESPONSIBILITY
qExamples

qDesigning the software that uses a set of GUI classes where it is needed
to propagate GUI events from one object to another

q When an event, such as the pressing of a key or the click of the mouse,
the event is needed to be sent to the object that has generated it and also
to the object or objects that will handle it.

qDesigning the software for a system that approves the purchasing
requests.

q In this case, the values of purchase are divided into categories, each
having its own approval authority. The approval authority for a given value
could change at any time and the system should be flexible enough to
handle the situation.

qDesigning a shipping system for electronic orders
q The steps to complete and handle the order differs form one order to

another based on the customer, the size of the order, the way of shipment,
destination and more other reasons. The business logic changes also as
special cases appear, needing the system to be able to handle all cases.

CHAIN OF
RESPONSIBILITY
qSimple chain of responsibility example

qTransmitting a message to a planet

CHAIN OF
RESPONSIBILITY
public abstract class PlanetHandler {

PlanetHandler successor;

public void setSuccessor(PlanetHandler successor) {

this.successor = successor;

}

public abstract void handleRequest(PlanetEnum request);

}

public enum PlanetEnum {

MERCURY, VENUS, EARTH,

MARS, JUPITER, SATURN,

URANUS, NEPTUNE;

}

CHAIN OF
RESPONSIBILITY
public class MercuryHandler extends PlanetHandler {

public void handleRequest(PlanetEnum request) {

if (request == PlanetEnum.MERCURY) {

System.out.println("MercuryHandler handles " + request);

System.out.println("Mercury is hot.\n");

} else {

System.out.println("MercuryHandler doesn't handle " + request);

if (successor != null) {

successor.handleRequest(request);

}

}

}

}

CHAIN OF
RESPONSIBILITY
public class VenusHandler extends PlanetHandler {

public void handleRequest(PlanetEnum request) {

if (request == PlanetEnum.VENUS) {

System.out.println(“VenusHandler handles " + request);

System.out.println(“Venus is poisonous.\n");

} else {

System.out.println(“VenusHandler doesn't handle " + request);

if (successor != null) {

successor.handleRequest(request);

}

}

}

}

CHAIN OF
RESPONSIBILITY
public class EarthHandler extends PlanetHandler {

public void handleRequest(PlanetEnum request) {

if (request == PlanetEnum.EARTH) {

System.out.println(“EarthsHandler handles " + request);

System.out.println(“Earth is comfortable.\n");

} else {

System.out.println(“EarthHandler doesn't handle " + request);

if (successor != null) {

successor.handleRequest(request);

}

}

}

}

CHAIN OF
RESPONSIBILITY

CLIENT
public class Demo {

public static void main(String[] args) {

PlanetHandler chain = setUpChain();

chain.handleRequest(PlanetEnum.VENUS);

chain.handleRequest(PlanetEnum.MERCURY);

chain.handleRequest(PlanetEnum.EARTH);

chain.handleRequest(PlanetEnum.JUPITER);

}

public static PlanetHandler setUpChain() {

PlanetHandler mercuryHandler = new MercuryHandler();

PlanetHandler venusHandler = new VenusHandler();

PlanetHandler earthHandler = new EarthHandler();

mercuryHandler.setSuccessor(venusHandler);

venusHandler.setSuccessor(earthHandler);

return mercuryHandler;

}

OUTPUT
MercuryHandler doesn't handle VENUS

VenusHandler handles VENUS

Venus is poisonous.

MercuryHandler handles MERCURY

Mercury is hot.

MercuryHandler doesn't handle EARTH

VenusHandler doesn't handle EARTH

EarthHandler handles EARTH

Earth is comfortable.

MercuryHandler doesn't handle JUPITER

VenusHandler doesn't handle JUPITER

EarthHandler doesn't handle JUPITER

CHAIN OF
RESPONSIBILITY
qPropose a chain of responsibility pattern implementation
for ATM problem

CHAIN OF
RESPONSIBILITY
qBenefits

qDecoupling of senders and receivers
qAdded flexibility
qSender doesn’t need to know specifically who the handlers

are

qDisadvantages
qClient can’t explicitly specify who handles a request
qNo guarantee of request being handled (request falls off end

of chain)

CHAIN OF
RESPONSIBILITY
qJDK Example

qtry catch block

qjavax.servlet.Filter#doFilter()

qjava.util.logging.Logger#log

BEHAVIORAL
PATTERNS

qChain of responsibility
q A way of passing a request between

a chain of objects
qCommand

q Encapsulate a command request as
an object

qInterpreter
q A way to include language elements

in a program
qIterator

q Sequentially access the elements of
a collection

qMediator
q Defines simplified communication

between classes
qMemento

q Capture and restore an object's
internal state

qNull Object
q Designed to act as a default value

of an object
qObserver

q A way of notifying change to a
number of classes

qState
q Alter an object's behavior when its

state changes
qStrategy

q Encapsulates an algorithm inside a
class

qTemplate method
q Defer the exact steps of an

algorithm to a subclass
qVisitor

q Defines a new operation to a class
without change

COMMAND
qIntent

qencapsulate a request in an object
qallows the parameterization of clients with different requests
qallows saving the requests in a queue

qProblem
qNeed to issue requests to objects without knowing anything

about the operation being requested or the receiver of the
request

COMMAND
qCommand

qdeclares an interface for executing an
operation

qConcreteCommand
qdefines a binding between a Receiver

object and an action
qimplements execute() by invoking the

corresponding operation(s) on Receiver
qClient

qcreates a ConcreteCommand object and
sets its receiver

qInvoker
qasks the command to carry out the request

qReceiver
qknows how to perform the operations

associated with carrying out the request.

COMMAND

qThe client (main program) creates a concrete Command object and sets its Receiver.
qThe Invoker issues a request by calling execute on the Command object. The
concrete Command object invokes operations on its Receiver to carry out the request.
qThe key idea here is that the concrete command registers itself with the Invoker and
the Invoker calls it back, executing the command on the Receiver.

COMMAND
qExample

qAdding actions to menus in java
q Create a class that Extends ActionListerner interface and overwrite actionPerformed ()

method

puclic class MyActionHandler extends ActionListener {
public void actionPerformed(ActionEvent e) {

Object o = e.getSource();
if (o = fileNewMenuItem) doFileNewAction();
else if (o = fileOpenMenuItem) doFileOpenAction();
else if (o = fileOpenRecentMenuItem) doFileOpenRecentAction();
else if (o = fileSaveMenuItem) doFileSaveAction();
// and more ... }

}

FileOpenMenuItem fomi = new FileOpenMenuItem(“OpenFile”)
fomi.addActionListener(new MyActionHandler());

COMMAND
qExample

qAdding actions to menus in java

q If we follow the command pattern first we create a command and after that each menu
entry will implement the command

public interface Command { public void execute(); }

public class FileOpenMenuItem extends JMenuItem implements
Command {

public void execute() { // your business logic goes here }
}

FileOpenMenuItem fomi = new FileOpenMenuItem(“OpenFile”)
fomi.addActionListener(e->{

Command command = (Command)e.getSource();
command.execute();

});

COMMAND
qJava API examples

qActionListener

qComparator

qRunnable / Thread

COMMAND
qApplicability

qParameterizes objects depending on the action they must
perform

qSpecifies or adds in a queue and executes requests at different
moments in time

qOffers support for undoable actions (the Execute method can
memorize the state and allow going back to that state)

qStructures the system in high level operations that based on
primitive operations

qDecouples the object that invokes the action from the object that
performs the action. Due to this usage it is also known as
Producer - Consumer design pattern.

COMMANDER.
EXERCISE
qImplement

qUndo/redo operation for a TV remote stating from the
following class diagram

COMMAND
qAdvantages

qCommand decouples the object that invokes the operation
from the one that knows how to perform it.

qCommands are first-class objects. They can be manipulated
and extended like any other object.

qYou can assemble commands into a composite command. In
general, composite commands are an instance of the
Composite pattern.

qIt's easy to add new Commands, because you don't have to
change existing classes.

qDisadvantages
qProliferation of little classes, that are more readable

