
DESIGN PATTERNS

COURSE 4

PREVIOUS COURSE
q Creational Patterns

q Factory Method defines an interface for creating objects,
but lets subclasses decide which classes to instantiate

q Abstract Factory provides an interface for creating families
of related objects, without specifying concrete classes

q Builder separates the construction of a complex object from
its representation, so that the same construction process
can create different representation

q Prototype specifies the kind of objects to create using a
prototypical instances

q Singleton ensures that a class has only one instance, and
provides a global point of access to that instance

CONTENT
q Structural patterns

q Adapter
q Bridge
q Façade
q Flyweight
q Proxy
q Composite
q Decorator

STRUCTURAL PATTERNS
qHelp identify and describe relationships between entities

q Address how classes and objects are composed to form large
structures

qClass-oriented patterns use inheritance to compose interfaces or
implementations

qObject-oriented patterns describe ways to compose objects to
realize new functionality, possibly by changing the composition at
run-time

qExample
qProxy in distributed programming
qBridge in JDBC drivers

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

ADAPTER
qIndent

qConvert the interface of a class into another interface clients expect.
qAdapter lets classes work together that couldn't otherwise because of

incompatible interfaces.
qWrap an existing class with a new interface.

qAlso Known As
qWrapper

qProblem
qSometimes a toolkit or class library can not be used because its

interface is incompatible with the interface required by an application
qWe can not change the library interface, since we may not have its

source code
qEven if we did have the source code, we probably should not change the

library for each domain-specific application

qTarget
qdefines the domain-specific interface that Client uses.

q Adapter
q adapts the interface Adaptee to the Target interface.

q Adaptee
q defines an existing interface that needs adapting.

q Client
qcollaborates with objects conforming to the Target interface

ADAPTER
STRUCTURE

ADAPTER.

qClient is concerned it's just calling the request method of the Target
interface, which the Adapter has implemented.

qIn the background however, the Adapter knows that to return the right
result, it needs to call a different method, specificAdapteeRequest, on the
Adaptee.

ADAPTER. EXAMPLE

q Eclipse plug-ins

qFor a particular object to contribute to the Properties view, adapters are
used display the objects data.

qThe view itself doesn't need to know anything about the object the it is
displaying properties for.

ADAPTER
q Applicability

qUse the Adapter pattern when
q You want to use an existing class, and its interface does not match the

one you need
q You want to create a reusable class that cooperates with unrelated

classes with incompatible interfaces

q2 types of implementations
qClass adapter (suitable for programming languages that allow multiple

inheritance)
q Concrete Adapter class
q Unknown Adaptee subclasses might cause problem
q Overloads Adaptee behavior
q Introduces only one object

qObject adapter
q Adapter can service many different Adaptees
q May require the creation of Adaptee subclasses and referencing those

objects

ADAPTER
qHow much adapting should be done?

qSimple interface conversion that just changes operation names
and order of arguments

qTotally different set of operations

qWhen to use adapter?
qYou want to use an existing class, and its interface does not

match the one you need
qYou want to create a reusable class that cooperates with

unrelated or unforeseen classes, that is, classes that don't
necessarily have compatible interfaces.

qYou have several subclasses and would like to adapt some of
their operations. Use Object Adapter to adapt their parent class
instead of adapting all subclasses

ADAPTER EXAMPLE 1
q Consider that we have a third party library that provides print

string functionality
q through PrintString class = adaptee

public class PrintString {
public void print(String s) {

System.out.println(s);
}

}
q Client deals with ArrayList<String> but not with string.

q provided a PrintableList interface that expects the client input =
target

public interface PrintableList {
void printList(ArrayList<String> list);

}
q Clients should see the printable list

ADAPTER EXAMPLE 1
q Adapter pattern

public class PrintableListAdapter

implements PrintableList {
public void printList(

ArrayList<String> list) {

//Converting ArrayList<String> to
String so that

// we can pass String to adaptee class
String listString = "";

for (String s : list) {
listString += s + "\t";

}

// instantiating adaptee class
PrintString printString=new

PrintString();
ps.print(listString);
}

}

q Client
public class AdapterDPMain {

public static void
main(String[] args)

{
ArrayList<String> list=new

ArrayList<String>();
list.add("one");
list.add("two");
list.add("three");
PrintableList pl=new

PrintableListAdapter();
pl.printList(list);
}
}

ADAPTER EXAMPLE 2
q We have the following 3th party library = adaptee

public class CelciusReporter {

double temperatureInC;

public CelciusReporter() {
}

public double getTemperature() {
return temperatureInC;

}

public void setTemperature(double temperatureInC) {
this.temperatureInC = temperatureInC;

}

}

ADAPTER EXAMPLE 2

q Target interface
public interface TemperatureInfo {

public double getTemperatureInF();

public void setTemperatureInF(double temperatureInF);

public double getTemperatureInC();

public void setTemperatureInC(double temperatureInC);

}

ADAPTER EXAMPLE 2
q Propose a way to create an adapter using

q inheritance
q composition

q Hellper methos that allows transormation from celcius in
farenheit

private double fToC(double f) {
return ((f - 32) * 5 / 9);

}

private double cToF(double c) {
return ((c * 9 / 5) + 32);

}

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

BRIDGE
q Intent

q Separate a (logical) abstraction interface from its (physical)
implementation(s)

q Allows different implementations of an interface to be
decided upon dynamically.

q Applicability
q When interface & implementation should vary

independently
q Require a uniform interface to interchangeable class

hierarchies

BRIDGE

Can this hierarchy be simplified and easy to understand? How?

BRIDGE

BRIDGE. STRUCTURE
q Abstraction

q defines the abstraction's
interface

q maintains a reference to the
Implementor

q RefinedAbstraction
q extends abstraction interface

q Implementor
q defines interface for

implementations
q ConcreteImplementor

q implements Implementor
interface, ie defines an
implementation

BRIDGE. EXAMPLE
q Graphical User Interface Frameworks.

q Use the bridge pattern to separate abstractions from
platform specific implementation.

q GUI frameworks separate a Window abstraction from a
Window implementation for Linux or Mac OS using the
bridge pattern.

q Object Persistence API.
q Many implementations depending on the presence or

absence of a relational database, a file system, as well as
on the underlying operating system

BRIDGE. EXAMPLE
IMPLEMENTATION

public abstract class Car {

private CarManufator manufactor;

public Car (

CarManufator manufactor) {

this.manufactor = manufactor;

}

}

public interface CarManufactor{

public void getManufactor();

}

public class Ford

implements CarManufactor{

public void getManufactor(){

System.out.print(“Ford producer”);

}

}

public class Toyota

implements CarManufactor{

public void getManufactor(){

System.out.print(“Toyota “ +

“producer”);

}

}

BRIDGE. EXAMPLE
IMPLEMENTATION

public class Sporty extends Car {

public Sporty(CarManufator manufactor){

super(manufactor);

System.out.println(manufactor.

getManufactor()+“ for Sporty car”);

}

}

public class Truck extends Car {

public Truck(CarManufator manufactor) {

super(manufactor);

System.out.println(manufactor.

getManufactor() + “ for Truck car”);

}

}

public class Client {

public static void main(

String args[]){

CarManufator mFord = new Ford();

CarManufator mToyota=new Toyota();

Car sportyFord = new Sporty(mFord);

Car sportyToyota=new Sporty(mToyota);

Car truckFord = new Truck(mFord);

Car truckToyota = new Truck(mToyota);

}

}

BRIDGE

How you will refactor the following class hierarchy in order
to follow bridge pattern?

BRIDGE
q Decouples interface and implementation

q Decoupling Abstraction and Implementor also eliminates
compile-time dependencies on implementation. Changing
implementation class does not require recompile of
abstraction classes.

q Improves extensibility
q Both abstraction and implementations can be extended

independently

q Hides implementation details from clients

q More of a design-time pattern

BRIDGE
qDisadvantages

qAbstractions that have only one implementation
qCreating the right Implementor
qSharing implementors
qUse of multiple inheritance

qImplementation Issues
qHow, where, and when to decide which implementer to instantiate?

qDepends:
q If Abstraction knows about all concrete implementer, then it can

instantiate in the constructor.
q It can start with a default and change it later
q Or it can delegate the decision to another object (to an abstract

factory for example)
qCan’t implement a true bridge using multiple inheritance

qA class can inherit publicly from an abstraction and privately from
an implementation, but since it is static inheritance it bind an
implementation permanently to its interface

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

FACADE
qIntent

qTo provide a unified interface to a set of interfaces in a subsystem
qTo simplify an existing interface
qDefines a higher-level interface that makes the subsystem easier

to use
qProblem

qSituation I: Wish to simplify a process for most clients
qSubsystems are built for multiple applications
qMost applications use only a small subset
qMost applications interact in a predefined manner

qSituation II: Wish to reduce the number of dependencies between
client and implementation classes

qRequires an interface that allows a level of isolation
qSituation III: Wish to build a layered software design with all inter-

layer communication between interfaces

FACADE. STRUCTURE

FACADE. EXAMPLE

FACADE. EXAMPLE

FACADE.
STRUCTURE

FACADE. EXAMPLE
q Travel agent site that allows you to book hotels and flights

q we have 2 agents
q HotelBooker
q FlightBroker

q HotelBooker
public class HotelBooker{
public ArrayList<Hotel> getHotelNamesFor(Date from,Date to){
//returns hotels available in the particular date range

}
}

q FlightBooker
public class FlightBooker{
public ArrayList<Flight> getFlightsFor(Date from, Date to){

//returns flights available in the particular date range
}

}

FACADE. EXAMPLE
q TravelFacade class allows the user to get their Hotel and Flight information in one call

public class TravelFacade{
private HotelBooker hotelBooker;
private FlightBooker flightBooker;

public void getFlightsAndHotels(Date from, Data to) {
ArrayList<Flight> flights =

flightBooker.getFlightsFor(from, to);
ArrayList<Hotel> hotels =

hotelBooker.getHotelsFor(from, to);
//process and return

}
}

q Client
public class Client{

public static void main(String[] args) {
TravelFacade facade = new TravelFacade();
facade.getFlightsAndHotels(from, to);

}
}

FACADE
q Consequences

q Shields clients from subsystem complexity

q Promotes weak coupling between clients and subsystems
q Easier to swap out alternatives

q Allows more advanced clients to by-pass and have direct
subsystem access

FACADE
q Implementation Issues

q Can involve nontrivial manipulation of subsystem
q May require several steps in sequence or composition
q May require temporary storage

q Can completely hide subsystem
q Place subsystem and façade in package
q Make façade only public class
q Can be difficult if subsystem objects returned to client

q Can implement Façade as abstract class
q Allows different concrete facades under same interface

STRUCTURAL PATTERNS

q Adapter
q interface converter

q Bridge
q decouple abstraction from its implementation

q Façade
q provide a unified interface to a subsystem

q Flyweight
q using sharing to support a large number of fine-grained objects efficiently

q Proxy
q provide a surrogate for another object to control access

q Composite
q compose objects into tree structures, treating all nodes uniformly

q Decorator
q attach additional responsibilities dynamically

FLYWEIGHT
q Intent

q “Use Sharing to support large numbers of fine-grained objects
efficiently.”

q Simply put, a method for storing a small number of complex
objects that are used repeatedly.

q Flyweight factors the common properties of multiple instances of a
class into a single object, saving space and maintenance of
duplicate instances.

q Problem
q Designing objects down to the lowest levels of system

"granularity" provides optimal flexibility, but can be unacceptably
expensive in terms of performance and memory usage.

FLYWEIGHT
qFlyweighted

strings
q Java Strings

are flyweighted
by the compiler
wherever
possible

qFlyweighting
works best on
immutable
objects

public class StringTest {

public static void main(String[] args) {

String fly = "fly", weight = "weight";

String fly2 = "fly", weight2 = "weight";

System.out.println(fly == fly2);

System.out.println(weight == weight2);

String distinctString = fly + weight;

System.out.println(distinctString ==

"flyweight");

String flyweight = (fly + weight).intern();

System.out.println(flyweight ==

"flyweight");

}

}

FLYWEIGHT
qFlyweighted

strings
q Java Strings

are flyweighted
by the compiler
wherever
possible

qFlyweighting
works best on
immutable
objects

public class StringTest {

public static void main(String[] args) {

String fly = "fly", weight = "weight";

String fly2 = "fly", weight2 = "weight";

System.out.println(fly == fly2); //true

System.out.println(weight == weight2); //true

String distinctString = fly + weight;

System.out.println(distinctString ==

"flyweight"); //false

String flyweight = (fly + weight).intern();

System.out.println(flyweight ==

"flyweight"); //true
}

}

FLYWEIGH.
APPLICABILITY
q Application has a large number of objects.

q Storage costs are high because of the large quantity of
objects.

q Most object state can be made extrinsic.

q Many groups of objects may be replaced by relatively few
once you remove their extrinsic state.

q The application doesn’t depend on object identity

FLYWEIGHT.
DESIGN

qFlyweight

qDeclares an interface through which flyweights can receive and act on extrinsic state.
q ConcreteFlyweight

qStores intrinsic state of the object.
qMust be sharable.
qMust maintain state that it is intrinsic to it, and must be able to manipulate state that is extrinsic.

qFlyweightFactory

qThe factory that creates and manages flyweight objects.
qThe factory ensures sharing of the flyweight objects.
qThe factory maintains a pool of different flyweight objects and returns an object from the pool if it

is already created, adds one to the pool and returns it in case it is new.
qClient

qA client maintains references to flyweights in addition to computing and maintaining extrinsic
state

FLYWEIGHT

q Clients don't directly instantiate
flyweights; instead they get them
from a factory.

q The factory first checks to see if it
has a flyweight that fits specific
criteria (e.g., a blue or white line); if
so, the factory returns a reference
to the flyweight.

q If the factory can't locate a flyweight
for the specified criteria, it
instantiates one, adds it to the pool,
and returns it to the client

FLYWEIGHT. EXAMPLE
q Draw 20 circles of different locations but using only 5

objects.
q Only 5 objects because we have only 5 colors to draw

FLYWEIGHT. EXAMPLE
public interface Shape {

void draw();

}

public class Circle

implements Shape {

private String color;

private int x;

private int y;

private int radius;

public Circle(String color){

this.color = color;

}

public void setX(int x) {

this.x = x;

}

public void setY(int y) {

this.y = y;

}

public void setRadius(int radius) {

this.radius = radius;

}

@Override

public void draw() {

System.out.println("Circle: Draw() [Color : "

+ color + ", x : " + x + ", y :" + y

+ ", radius :" + radius);

}

}

FLYWEIGHT. EXAMPLE
public class ShapeFactory {

private static final HashMap<String, Shape> circleMap = new HashMap<>();

public static Shape getCircle(String color) {

Circle circle = (Circle)circleMap.get(color);

if(circle == null) {

circle = new Circle(color);

circleMap.put(color, circle);

System.out.println("Creating circle of color : "+ color);

}

return circle;

}

}

FLYWEIGHT. EXAMPLE
public class FlyweightPatternDemo {

private static String getRandomColor(){

return colors[(int)(Math.random()*colors.length)];

}

private static final String colors[] = { "Red", "Green", "Blue", "White", "Black" };

public static void main(String[] args) {

for(int i=0; i < 20; ++i) {

Circle circle = (Circle) ShapeFactory.getCircle(getRandomColor());

circle.setX(getRandomX());

circle.setY(getRandomY());

circle.setRadius(100);

circle.draw();

}

}

private static int getRandomY() { return (int)(Math.random()*100); }

private static int getRandomX() { return (int)(Math.random()*100); }

}

FLYWEIGHT
qBenefits

qIf the size of the set of objects used repeatedly is substantially smaller
than the number of times the object is logically used, there may be an
opportunity for a considerable cost benefit

qWhen To Use Flyweight:
qThere is a need for many objects to exist that share some intrinsic,

unchanging information
qObjects can be used in multiple contexts simultaneously
qAcceptable that flyweight acts as an independent object in each instance

qConsequences
qOverhead to track state

qTransfer
qSearch
qComputation

qWhen Not To Use Flyweight:
qIf the extrinsic properties have a large amount of state information that

would need passed to the flyweight (overhead)
qNeed to be able to be distinguished shared from non-shared objects

