DESIGN PATTERNS

N
w
")
5
=
o
o

CONTENT

0 Fundamental principles of OOP

g

a
a
a
a

Encapsulation
Inheritance
Abstractisation
Polymorphism
[Exception Handling]

J Fundamental Patterns

coooopon

Inheritance

Delegation

Interface

Abstract superclass

Inheritance and abstract superclass
Immutable objects

Marker interface

0 OOD key principles

g

U 0O O 00

SRP - Single Responsibility
Principle

OCP - Open Close Principle
LSP — Liskov Substitution
Principle

ISP — Interface Segmentation
Principle

DIP — Dependency Inversion
Principle

DRY — Don’t Repeat Yourself

FUNDAMENTALS
PRINCIPLES OF OOP

UObjects

(Describe characteristics (properties) and behavior (methods) of
real life objects

UObject Oriented language

LEncapsulation
dhide unnecessary details and provide a clear and simple interface for
working with them
UInheritance
improve code readability and enable the reuse of functionality

L Abstraction
(deal with objects considering their important characteristics and ignore
all other details
JPolymorphism
dhow to work in the same manner with different objects

U[Error handling]

the process of responding to the occurrence, during computation,
of exceptions — anomalous or exceptional conditions requiring special
processing — often changing the normal flow of program execution.

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computing)

FUNDAMENTALS PRINCIPLES
OF OOP. ABSTRACTION

JAbstraction

JProblem -> Model
dModel

(Dates
L Operations
O A simplification with a scope of a
problem
LSimple model => accessible code
LIModel Views

UA view for system major parts
interaction

LA view of system details
UA view from user point of view
Q...
L Common notation
UUnified Modeling Model (UML)

Example

U How does a person see a
computer?
d Child: a device for

gaming
O Electronics: an assembly
of circuits and transistors
O Programmers: an
environment for
developing tools

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION

O Hide unnecessary the properties and behavior of objects

0 Reduce the necessary knowledge about a class, in order
to user it

. In many cases the programmer does not need to know
implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrinformationHide

{
public static final int STATUS _ACTIVE = 0;

public static final int STATUS_HALTED = 1;
public int status = STATUS ACTIVE;

%

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION

O Hide unnecessary the properties and behavior of objects

0 Reduce the necessary knowledge about a class, in order
to user it

. In many cases the programmer does not need to know
implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrinformationHide

{ class EncapsulationWithoutInformationHide{
public static final int STATUS_AC pyplic static final int STATUS_ACTIVE = 0;
public static final int STATUS_HA 1, pjic static final int STATUS_HALTED = 1;
public int status = STATUS_ACT! private int status = STATUS_ACTIVE;

i public int getStatus() {
return status;

}
%

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION

O Hide unnecessary the properties and behavior of objects

0 Reduce the necessary knowledge about a class, in order
to user it

. In many cases the programmer does not need to know
3, if the class offers the

class EncapsulationAndInformationHide {
public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;

private int status = STATUS_ACTIVE; class EncapsulationWithoutinformationHide{
private int getStatus() { public static final int STATUS_ACTIVE = 0;

_ public static final int STATUS_HALTED = 1;
return status; orivate int status = STATUS_ACTIVE:

} oublic int getStatus() {

public boolean isActive() { return status;

return getStatus() == STATUS_ACTIVE; }}

FUNDAMENTALS PRINCIPLES OF OOP.
INHERITANCE

U Inheritance is a mechanism which allows a class A to inherit
members (data and functions) of a class B. We say “A inherits from
B”. Objects of class A thus have access to members of class B
without the need to redefine them.

Figure

UTerminology
(1Base class

OThe class that is inherited ,j L’
(JDerived class

Circle Rectangle Animal

LA specialization of base class

Kind-of relation
UClass level (Circle is a kind-of Shape)

UlIs-a relation o ,—9 %—‘

LObject level (The object circle1 is-a shape.) Fish Mamifer
Types of inheritance '
dSimple
0One base class — s
DMUIt'ple Dolphin

UMultiple base classes

FUNDAMENTALS PRINCIPLES OF OOP.
POLYMORPHISM

O Polymorphism the ability to use a thing in different ways

J Run-time
O Inheritance
A Virtual functions (C++)
O Generics (Java)
O Compile-time
d Templates (C++)
J Ad-hoc
 Operator overloading (in C++)
J Parametric
 Casting

FUNDAMENTALS PRINCIPLES OF
OOP. ERROR HANDELING

O An exception is an error that appears at run-time.
U Examples

- Out of memory
[File already opened
. Null pointer exception
U Variants to resolve such situations

 Custom mechanism
 Program stops -> unacceptable solution

O Return of an error code -> the state of the program has to
test the error code returned

] A function that is called each time an error occurs -> no
control over the caller

[Using language mechanism of handling exceptions

FUNDAMENTALS PRINCIPLES OF
OOP. ERROR HANDELING

Exception is
thrown from
source

v

Exception is Exception gets

caught and No thrown up the
handled chain to the next

handler

1

Throw new
exception
(application or
system)

t

Optionally log
exception and
perform any
cleanup

! f

Provide information
of exception reason
along with current
exception
information

Yes

Is Exception No
Recoverable?

i

Yes

Keeping Running,
Do not re-throw

FUNDAMENTAL PATTERNS

U Fundamentals patterns

O Patterns already found permanent in modern programming
languages
L Not classified in other categories

U Fundamentals patterns types

U Inheritance

L Delegation

O Interface

[Abstract superclass

O Inheritance and abstract superclass
O Immutable objects

O Marker interface

FUNDAMENTALS PATTERNS.
DELEGATE

L Name: delegation
U Intent
[Delegation allows objects to share behavior without using
inheritance and without duplicating code
O Solution
 Delegation is a way of reusing and extending the behavior of a
class. It works writing a new class that incorporates the

functionality of the original class by using an instance of the
original class and calling its methods.

0 Consequences
[Behavior can be changed at run-time (comparing to inheritance
that is static)
[The ‘delegate’ is hidden to delegator’s clients
O More difficult to implement comparing to inheritance

Delegator | Delegatee

uses used by

FUNDAMENTAL PATTERNS.
INTERFACE

(J Name: Interface
O Intent

] Classes change messages between them
[The implementation must be switched at run time

] At design-time when the implementation used at compile
time is not known

1 Definition

] Decouples the service from its clients
0 Consequences

L Programming to abstraction ot Bo<usoso i | <citertaces>

] Easy change the service provider -

O Transparency for client

Servicelmplementation

FUNDAMENTALS PATTERNS.
ABSTRACT SUPERCLASS

O Abstract superclass — ensures consistent behavior for its
subclasses

0 Consequences

0 Common behavior is consistent over subclasses
1 Clients are using the abstract superclass

AbstractClass

Aftribute

commonMethod1(...)
commonMethod?2(...)

abstractMethod1(...)
abstractMethod2(...)

FAN

ConcreteClass1 Concre teClass2 ConcreteClassN

Attribute i Attribute | | Attribute

abstractMethod1(...) abstractMethod1(...) abstractMethod1(...)
abstractMethod2(...) abstractMethod2(...) abstractMethod2(...)

FUNDAMENTALS PATTERNS. INTERFAC
AND ABSTRACT SUPERCLASS

0 Combines Interface and Abstract
O Superclass patterns
0 Consequences

 Combines the advantages of both patterns

1 May provide a default behavior for the entire, or just a
subset, of the Service interface via AbstractService class

Client |-—— <<uses »> - <<interface>>

Abstract Class

T T

Concre teClass1 Concre teClass2 Concre teClassN

FUNDAMENTALS PATTERNS.
IMMUTABLE OBJECT

O Immutable object — the internal state of the object doesn’t
change after its creation

0 Consequences

[Only constructors can change object’s state
1 All member functions are constant functions (in C++)

 Any member function that need to change the state will
create a new instance

[Increase design’s robustness and maintainability
d Example

O String class in JDK

FUNDAMENTALS PATTERNS.
IMMUTABLE OBJECT

final class Position {
private int x;
private int y;
public Position(int x, int y) {
this.x = x;
this.y = y;
} Il Position(int, int)
public int getX() { return x; }
public int getY() { returny; }
public Position offset(int xOffset, int yOffset) {
return new Position(x+xOffset, y+yOffset);
} Il offset(int, int)
} I/l class Position

FUNDAMENTALS PATTERNS.
MARKER INTERFACE

O A class implements a marker interface in order to support
a semantic attribute of the system

J Motivation

[Unrelated concepts do have something in common
 However, how to use this information is context-dependent
0 Consequences

 Used by utility classes that need a specific behavior from
their elements, without requesting a common base class

d Example

 Cloneable, Serializable, Remote in JDK

FUNDAMENTALS PATTERNS.
MARKER INTERFACE

0 Empty interfaces

1 Are differences between marker interface in Java are
annotations? (homework for next course)

Utility
[—— <<yses=> => <<interface>>
Attribute Marker
operation(Object) | FAR
I
|

MaekedClass

OBJECT ORIENTED DESIGN
PRINCIPLES

0 OOD key principles

[collection of best practice, object-oriented design principles
which can be applied to design, allowing you to accomplish
various desirable goals such as loose-coupling, higher
maintainability, intuitive location of interesting code, e.t.c.

O Types
1 SRP — Single Responsibility Principle
1 OCP - Open Close Principle
J LSP — Liskov Substitution Principle
O ISP — Interface Segmentation Principle

J DIP — Dependency Inversion Principle
 DRY — Don’t Repeat Yourself

SINGLE RESPONSABILITY
PRINCIPLE

O SRP: Every object in your system should have a single
responsibility, and all the object’s services should be focused
in carrying out that single responsibility.

O

ONLY one reason to change something!

O

Code will be simpler and easier to maintain.

O

Example: Container and Iterator (Container manages objects;
Iterator traverses the container)

1 How to spot multiple responsibilities? Forming sentences
ending in itself.

Driver
Avutomobile
The Automobile start itself. X Drive(Automobile)
Start() The Automobile stop itself. Automobile
Stop() The Automobile changeTires itself.
ChangeTires() | The Automobile Drive itself. Stari() Mechanic
Drive() The Automobile CheckOil itself. Stop().
CheckOil() The Automobile GetOil itself. GetOll() ChangeTires(Automobile)
GetQil() CheckOil(Automobile)

OPEN CLOSE

PRINCIPLE

LOCP - Classes should be
open for extension and
closed for modification

O Allowing change, but
without modifying existing
code. It offers flexibility.

Use inheritance to
extend/change existing
working code and don’t
touch working code.

UOCP can also be
achieved using
composition.

class Shape { class Shape {
int type; public:
virtval void draw() = 0;
void drawPolygon () {/*...*/} %

void drawPoint () { /*...*/ }
class Polygon : public Shape {
public:

public:
void draw(); void draw();
¥
¥
void Shape::draw() { class Point : public Shape {
blic:
itch(t Py
switch(type) { void draw();
case POLYGON: %

drawPolygon (); break;
case POINT:

void Polygon::draw() { /* ...*/}
void Point::draw() { /*...*/ }

drawPoint (); break;

LISKOV SUBSTITUTION

PRINCIPLE

LLSP: Subtypes must
be substitutable for
their base types.

dWell-designed class
hierarchies

dSubtypes must be
substitutable for their
base class without
things going wrong.

Board

tiles: Title[](]

getTitle(int, int)
setTitle(Title, int,int)

3DBoard

tiles3D: Tile[](](]

getTitle(int, int, int)
setTitle(Title, int, int, int)

void f() {

Board* board = new 3DBoard; // ok!
// doesn’t make sense for a 3D board
board -> getTile (1,7); }

L |

Board

tiles: Title[][]

getTitle(int, int)
setTitle(Title, int,int)

@

3DBoard

boards: Board(]

getTitle(int, int, int)
setTitle(Title, int, int, int)

Tile 3DBoard::getTile (int x, int y, int z
return boards[x].getTile (y, z)
}

INTERFACE SEGMENTATION
PRINCIPLE

O ISP: Clients should not be forced to depend on methods
they do not use

0 Keep interfaces small, cohesive, and focused

O Whenever possible, let the client define the interface

Email Sender Database Reader File Reader

Service Service
SendEmail
GetMessageBody GetMessageBody

Email Sender

SendEmail
ReadFile
ReadFromDB

DEPENDENCY INVERSION
PRINCIPLE

O High-level modules should not depend on low-level
modules. Both should depend on abstractions

O Abstractions should not depend on details. Details should
depend upon abstractions

U Detail should be dependent on Policy. This means that you
should have the Policy define and own the abstraction that
the detail implements.

Foo Foo

@
Bar :> Bar Bar

DEPENDENCY

INVERSION PRINCIPLE

/l Bad example

class Worker {
public void work() {
Ilworking

}

}

class Manager {
Worker worker;

public void setWorker(Worker w) {
worker = w;
}

public void manage() {
worker.work();

}

class SuperWorker
public void work() {
/l.... working much more

}
}

Il Good example

interface IWorker {k
public void work();

class Worker implements IWorker{
public void work() {
Ilworking
}
}

class SuperWorker implements IWorker{
public void work() {
Il.... working much more

}

class Manager {
IWorker worker;

public void setWorker(IWorker w) {
worker = w;

}

public void manage
worker.work();g A

DON’T REPEAT
YOURSELF

O DRY: Avoid duplicate code by
abstracting out things that are Stine:Stringiconst char'peh) {

[I*private*/ void String::init(const char* pch) {

common and placing those Wpchi=NILL) { mp: =N:et’c;d(g=mn(m,),,,.
things in a single location. RS RS _ '
strepy(str, peh); strepy(str, pch);
) else { ’l (
else
Q No duplicate code => ONE o - = ML
requirement n ONE place! N 2 =0
void String::set{const char* pch) { }
ifistri=NULL) delete [] str; }
O This principle can and should pen=nuw ¢ String::String(const char” peh) {
be applied everywhere (e.g. in str = new charf{sz=stlen(pch)+1; ini(pch);
Analysis phase —don’t strepy(str, peh); y
duplicate requirements or yelse { ISE——— -
features!) atr = NULL; MerNULLY delete] =
2 =0 init{pch)

3

1 Code is easier and safer to
maintain because we have to
change only one place.

