
DESIGN PATTERNS

COURSE 2

CONTENT
q Fundamental principles of OOP

q Encapsulation
q Inheritance
q Abstractisation
q Polymorphism
q [Exception Handling]

q Fundamental Patterns
q Inheritance
q Delegation
q Interface
q Abstract superclass
q Inheritance and abstract superclass
q Immutable objects
q Marker interface

q OOD key principles
q SRP – Single Responsibility

Principle
q OCP - Open Close Principle
q LSP – Liskov Substitution

Principle
q ISP – Interface Segmentation

Principle
q DIP – Dependency Inversion

Principle
q DRY – Don’t Repeat Yourself

FUNDAMENTALS
PRINCIPLES OF OOP
qObjects

qDescribe characteristics (properties) and behavior (methods) of
real life objects

qObject Oriented language
qEncapsulation

qhide unnecessary details and provide a clear and simple interface for
working with them

qInheritance
qimprove code readability and enable the reuse of functionality

qAbstraction
qdeal with objects considering their important characteristics and ignore

all other details
qPolymorphism

qhow to work in the same manner with different objects
q[Error handling]

qthe process of responding to the occurrence, during computation,
of exceptions – anomalous or exceptional conditions requiring special
processing – often changing the normal flow of program execution.

https://en.wikipedia.org/wiki/Computation
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Execution_(computing)

FUNDAMENTALS PRINCIPLES
OF OOP. ABSTRACTION
qAbstraction

qProblem -> Model
qModel

qDates
qOperations
q A simplification with a scope of a

problem
qSimple model => accessible code

qModel Views
qA view for system major parts

interaction
qA view of system details
qA view from user point of view
q…

qCommon notation
qUnified Modeling Model (UML)

Example

q How does a person see a
computer?
q Child: a device for

gaming
q Electronics: an assembly

of circuits and transistors
q Programmers: an

environment for
developing tools

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION
q Hide unnecessary the properties and behavior of objects
q Reduce the necessary knowledge about a class, in order

to user it
q In many cases the programmer does not need to know

implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrInformationHide
{

public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;
public int status = STATUS_ACTIVE;

};

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION
q Hide unnecessary the properties and behavior of objects
q Reduce the necessary knowledge about a class, in order

to user it
q In many cases the programmer does not need to know

implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrInformationHide
{

public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;
public int status = STATUS_ACTIVE;

};

class EncapsulationWithoutInformationHide{
public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;
private int status = STATUS_ACTIVE;
public int getStatus() {
return status;
}
};

FUNDAMENTALS PRINCIPLES OF OOP.
ENCAPSULATION
q Hide unnecessary the properties and behavior of objects
q Reduce the necessary knowledge about a class, in order

to user it
q In many cases the programmer does not need to know

implementation details of a class, if the class offers the
desired behavior

class WithoutEncapsulationOrInformationHide
{

public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;
public int status = STATUS_ACTIVE;

};

class EncapsulationWithoutInformationHide{
public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;
private int status = STATUS_ACTIVE;
public int getStatus() {
return status;
}
};

class EncapsulationAndInformationHide {
public static final int STATUS_ACTIVE = 0;
public static final int STATUS_HALTED = 1;
private int status = STATUS_ACTIVE;
private int getStatus() {

return status;
}
public boolean isActive() {

return getStatus() == STATUS_ACTIVE;
}
};

FUNDAMENTALS PRINCIPLES OF OOP.
INHERITANCE
q Inheritance is a mechanism which allows a class A to inherit

members (data and functions) of a class B. We say “A inherits from
B”. Objects of class A thus have access to members of class B
without the need to redefine them.

qTerminology
qBase class

qThe class that is inherited
qDerived class

qA specialization of base class
qKind-of relation

qClass level (Circle is a kind-of Shape)
qIs-a relation

qObject level (The object circle1 is-a shape.)
qTypes of inheritance

qSimple
qOne base class

qMultiple
qMultiple base classes

FUNDAMENTALS PRINCIPLES OF OOP.
POLYMORPHISM
q Polymorphism the ability to use a thing in different ways

q Run-time
q Inheritance
q Virtual functions (C++)
q Generics (Java)

q Compile-time
q Templates (C++)

q Ad-hoc
q Operator overloading (in C++)

q Parametric
q Casting

FUNDAMENTALS PRINCIPLES OF
OOP. ERROR HANDELING
q An exception is an error that appears at run-time.
q Examples

q Out of memory
q File already opened
q Null pointer exception

q Variants to resolve such situations
q Custom mechanism

q Program stops -> unacceptable solution
q Return of an error code -> the state of the program has to

test the error code returned
q A function that is called each time an error occurs -> no

control over the caller
q Using language mechanism of handling exceptions

FUNDAMENTALS PRINCIPLES OF
OOP. ERROR HANDELING

FUNDAMENTAL PATTERNS
q Fundamentals patterns

q Patterns already found permanent in modern programming
languages

q Not classified in other categories

q Fundamentals patterns types
q Inheritance
q Delegation
q Interface
q Abstract superclass
q Inheritance and abstract superclass
q Immutable objects
q Marker interface

FUNDAMENTALS PATTERNS.
DELEGATE
q Name: delegation
q Intent

q Delegation allows objects to share behavior without using
inheritance and without duplicating code

q Solution
q Delegation is a way of reusing and extending the behavior of a

class. It works writing a new class that incorporates the
functionality of the original class by using an instance of the
original class and calling its methods.

q Consequences
q Behavior can be changed at run-time (comparing to inheritance

that is static)
q The ‘delegate’ is hidden to delegator’s clients
q More difficult to implement comparing to inheritance

FUNDAMENTAL PATTERNS.
INTERFACE
q Name: Interface
q Intent

q Classes change messages between them
q The implementation must be switched at run time
q At design-time when the implementation used at compile

time is not known
q Definition

q Decouples the service from its clients
q Consequences

q Programming to abstraction
q Easy change the service provider
q Transparency for client

FUNDAMENTALS PATTERNS.
ABSTRACT SUPERCLASS
q Abstract superclass – ensures consistent behavior for its

subclasses
q Consequences

q Common behavior is consistent over subclasses
q Clients are using the abstract superclass

FUNDAMENTALS PATTERNS. INTERFACE
AND ABSTRACT SUPERCLASS

q Combines Interface and Abstract
q Superclass patterns
q Consequences

q Combines the advantages of both patterns
q May provide a default behavior for the entire, or just a

subset, of the Service interface via AbstractService class

FUNDAMENTALS PATTERNS.
IMMUTABLE OBJECT
q Immutable object – the internal state of the object doesn’t

change after its creation
q Consequences

q Only constructors can change object’s state
q All member functions are constant functions (in C++)
q Any member function that need to change the state will

create a new instance
q Increase design’s robustness and maintainability

q Example
q String class in JDK

FUNDAMENTALS PATTERNS.
IMMUTABLE OBJECT
final class Position {

private int x;
private int y;
public Position(int x, int y) {

this.x = x;
this.y = y;
} // Position(int, int)
public int getX() { return x; }
public int getY() { return y; }
public Position offset(int xOffset, int yOffset) {

return new Position(x+xOffset, y+yOffset);
} // offset(int, int)

} // class Position

FUNDAMENTALS PATTERNS.
MARKER INTERFACE
q A class implements a marker interface in order to support

a semantic attribute of the system
q Motivation

q Unrelated concepts do have something in common
q However, how to use this information is context-dependent

q Consequences
q Used by utility classes that need a specific behavior from

their elements, without requesting a common base class
q Example

q Cloneable, Serializable, Remote in JDK

FUNDAMENTALS PATTERNS.
MARKER INTERFACE
q Empty interfaces
q Are differences between marker interface in Java are

annotations? (homework for next course)

OBJECT ORIENTED DESIGN
PRINCIPLES
q OOD key principles

q collection of best practice, object-oriented design principles
which can be applied to design, allowing you to accomplish
various desirable goals such as loose-coupling, higher
maintainability, intuitive location of interesting code, e.t.c.

q Types
q SRP – Single Responsibility Principle
q OCP - Open Close Principle
q LSP – Liskov Substitution Principle
q ISP – Interface Segmentation Principle
q DIP – Dependency Inversion Principle
q DRY – Don’t Repeat Yourself

SINGLE RESPONSABILITY
PRINCIPLE
q SRP: Every object in your system should have a single

responsibility, and all the object’s services should be focused
in carrying out that single responsibility.

q ONLY one reason to change something!
q Code will be simpler and easier to maintain.
q Example: Container and Iterator (Container manages objects;

Iterator traverses the container)
q How to spot multiple responsibilities? Forming sentences

ending in itself.

OPEN CLOSE
PRINCIPLE

qOCP – Classes should be
open for extension and
closed for modification

q Allowing change, but
without modifying existing
code. It offers flexibility.

qUse inheritance to
extend/change existing
working code and don’t
touch working code.

qOCP can also be
achieved using
composition.

LISKOV SUBSTITUTION
PRINCIPLE

qLSP: Subtypes must
be substitutable for
their base types.

qWell-designed class
hierarchies

qSubtypes must be
substitutable for their
base class without
things going wrong.

INTERFACE SEGMENTATION
PRINCIPLE
q ISP: Clients should not be forced to depend on methods

they do not use
q Keep interfaces small, cohesive, and focused
q Whenever possible, let the client define the interface

DEPENDENCY INVERSION
PRINCIPLE
q High-level modules should not depend on low-level

modules. Both should depend on abstractions
q Abstractions should not depend on details. Details should

depend upon abstractions
q Detail should be dependent on Policy. This means that you

should have the Policy define and own the abstraction that
the detail implements.

DEPENDENCY
INVERSION PRINCIPLE

// Bad example

class Worker {
public void work() {

//working
}

}

class Manager {
Worker worker;

public void setWorker(Worker w) {
worker = w;

}

public void manage() {
worker.work();

}
}

class SuperWorker {
public void work() {

//.... working much more
}

}

// Good example

interface IWorker {
public void work();

}

class Worker implements IWorker{
public void work() {

//working
}

}

class SuperWorker implements IWorker{
public void work() {

//.... working much more
}

}

class Manager {
IWorker worker;

public void setWorker(IWorker w) {
worker = w;

}

public void manage() {
worker.work();

}
}

DON’T REPEAT
YOURSELF

q DRY: Avoid duplicate code by
abstracting out things that are
common and placing those
things in a single location.

q No duplicate code => ONE
requirement n ONE place!

q This principle can and should
be applied everywhere (e.g. in
Analysis phase –don’t
duplicate requirements or
features!)

q Code is easier and safer to
maintain because we have to
change only one place.

