
DESIGN PATTERNS

COURSE 12



PREVIOUS COURSE
q Refactoring

q Way refactoring
q Some refactoring examples



CURRENT COURSE
q Anti – patterns

q The blob
q Poltergeist
q Golder Hamer
q Spagetty



ANTI-PATTERNS
q Pattern: good ideas

q Refactoring: better ideas

q Anti-Patterns: bad ideas
q A literary form that describes a commonly occurring solution to 

a problem that generates decidedly negative consequences.

q May be the result of a manager or developer not knowing any 
better, not having sufficient knowledge or experience in solving 
a particular type of problem, or having applied a perfectly good 
pattern in the wrong context.



ANTI-PATTERNS
q Anti-pattern is a pattern that may commonly used but is 

ineffective and/or counterproductive in practice

q Provide a method of efficiently mapping a general 
situation to a specific class of solutions

q Provide real world experience in recognizing recurring 
problems in the software industry

q Provide a common vocabulary for identifying problems 
and discussing solutions.



ANTI-PATTERNS
q Software Refactoring

q A form of code modification, used to improve the software 
structure in support of subsequent extension and long-term 
maintenance.

q AntiPatterns
q Define a migration (or refactoring) from negative solutions 

to positive solutions.

q Not only do they point out trouble, but they also tell you 
how to get out it.



ANTI-PATTERNS. 
TYPES
q Software development

q Technical problems and solutions encountered by 
programmers

q Architectural
q Identify and resolve common problems in how systems are 

structured.

q Software project management
q Address common problems in software processes and 

development organizations.



CAUSES. ANTI-
PATTRENS

q Haste
q Aggressive project deadlines and budget
q Lower acceptance levels for code quality
q Insufficient testing
q Patches
q Accumulating technical debt



CAUSES. ANTI-
PATTRENS

q Apathy
q Unwilling to find the proper solution
q General lack of concern or care about solving a problem



CAUSES. ANTI-
PATTRENS

q Narrow mindedness
q Refusal to practice solutions that are otherwise wildly 

known to be effective



CAUSES. ANTI-
PATTRENS

q Sloth
q Poor decisions based upon an “easy answer”



CAUSES. ANTI-
PATTRENS

q Avarice
q Modeling of excessive/insufficient abstraction adding 

accidental complexity



CAUSES. ANTI-
PATTRENS

q Ignorance
q Failure to seek a clear understanding of a problem or 

solution space (both intentional ad non-intentional)



CAUSES. ANTI-
PATTRENS

q Pride
q The sin of pride is the Not-Invented-Here syndrome



SYMPTOMS. ANTI-
PATTRENS
q Quick demonstration code integrated in the running system
q Obsolete or scanty documentation
q 50% time spent learning what the code does
q “Hesitant programmer syndrome”
q Perhaps easier to rewrite this code
q More likely to break it then extend it
q Cannot be reused

q Cannot change the used library/components
q Cannot optimize performance

q Duplication
q “I don’t know what that piece of code was doing, so I rewrote what 

I thought should happen, but I cannot remove the redundant code 
because it breaks the system.”



SYMPTOMS IN OO 
PROGRAMMING
q Many OO method with no parameters

q Suspicious class or global variable

q Strange relationships between classes

q Process-oriented methods
q Objects with process-oriented names
q OO advantage lost

q Inheritance cannot be used to extend
q Polymorphism cannot be used 



DESIGN PATTERNS 
AND ANTI-PATTERNS



ANTI-PATTERNS. 
TYPES
q Software development

q Technical problems and solutions encountered by 
programmers

q Architectural
q Identify and resolve common problems in how systems are 

structured.

q Software project management
q Address common problems in software processes and 

development organizations.



SOFTWARE BLOAT
q Successive versions of a system demand more and more 

resources
q Reason

q Increase proportion of unnecessary features
q Results

q Program use more system resources than necessary, 
while offering little or no benefit to its users

q Solution
q Use plug-ins, extensions or add-ons
q Use Unix philosophy: “write programs that do one thing 

and do it well



PATTERNS FETISH
q Unreasonable and excessive use of design patterns

q Designers looks for places to use patterns

q Solution
q Look at the design problem
q Favor simple solutions



THE BLOB
q Symptoms

q Single class with many 
attributes and operations

q Controller class with simple, 
data-object classes

q Lack of OO design
q A migrated legacy design

q Consequences
q Lost of OO advantages
q Too complex to reuse or test
q Expensive to load in memory

q Way?



THE BLOB
q Solution

q Identify or categorize related things
q Attributes, Operations

q Where do these categories naturally belong?
q Apply move method, move field refactorings

q Remove redundant associations



THE BLOB



THE BLOB



THE BLOB



THE BLOB



POLTERGEISTS
q Also Known As: Gypsy, Proliferation of Classes, Big Dolt 

Controller Class

q Symptoms
q Small Classes with very limited responsibilities and short life 

cycles
q Redundant navigation paths.
q Classes with few responsibilities
q Classes with "control-like" operation names such as 

start_process_alpha

q Consequences
q Excessive complexity
q Unstable analysis and design models
q Divergent design and implementation
q Lack of system extensibility



POLTERGEISTS
Example: Teach students stack class
- Rewrites all functions already existing in list class
public class LabStack<T> {

private LinkedList<T> list;
public LabStack() { list = new LinkedList<T>(); }
public boolean empty() { return list.isEmpty(); }
public T peek() throws EmptyStackException {

if (list.isEmpty()) { throw new EmptyStackException(); }
return list.peek();

}
public T pop() throws EmptyStackException {

if (list.isEmpty()) { throw new EmptyStackException(); }
return list.pop();

}
public void push(T element) { list.push(element); }
public int size() { return list.size(); }
public void makeEmpty() { list.clear(); }
public String toString() { return list.toString(); }

}



POLTERGEISTS



ANTI-PATTERNS. 
TYPES
q Software development

q Technical problems and solutions encountered by 
programmers

q Architectural
q Identify and resolve common problems in how systems are 

structured.

q Software project management
q Address common problems in software processes and 

development organizations.



ARCHITECTURAL 
ANTI-PATTERNS
q Architectural AntiPatterns focus on some common 

problems and mistakes in the creation, implementation, 
and management of architecture.

q Types
qArchitecture by Implication
qAuto generated Stovepipe
qCover Your Assets
qDesign by Committee
qIntellectual Violence
qJumble
qReinvent the Wheel
qSpaghetti Code



ARCHITECTURAL 
ANTI-PATTERNS
q Reinvent the Wheel

q Synopsis
q Legacy systems with overlapping functionality. Every 

system built in isolation.

q Refactored solution
q Take advantage of existing, tested, and available systems



ARCHITECTURAL 
ANTI-PATTERNS
q Vendor Lock in

q Synopsis
q Proprietary, product-dependent architectures do not 

manage complexity and lead to a loss of control of the 
architecture and maintenance costs. 

q Refactored Solution
q Providing an isolation layer between product-dependent 

interfaces and the majority of application software enables 
management of complexity and architecture. 



ARCHITECTURAL 
ANTI-PATTERNS
q Cover Your Assets

q Synopsis
q Document driven software processes often employ 

authors who list alternatives instead of making decisions. 

q Refactored Solution
q Establish clear purposes and guidelines for documentation 

tasks; inspect the results for the value of documented 
decisions. 



ARCHITECTURAL 
ANTI-PATTERNS
q Stovepipe System

q Synopsis
q Ad hoc integration solutions and lack of abstraction lead to 

brittle, un-maintainable architectures 

q Refactored solution
q Proper use of abstraction, subsystem facades, and 

metadata leads to adaptable systems. 



ANTI-PATTERNS. 
TYPES
q Software development

q Technical problems and solutions encountered by 
programmers

q Architectural
q Identify and resolve common problems in how systems are 

structured.

q Software project management
q Address common problems in software processes and 

development organizations.



SOFTWARE PROJECT 
MANAGEMENT ANTIPATTERNS
q Areas where human communication can be destructive to 

the software process
q The purpose of management AntiPatterns is to develop 

awareness that enables you to increase your success. 
q Types
q Analysis Paralysis
q Blowhard Jamboree
q Corncob
q Death By Planning
q Email is dangerous
q Fear of Success
q Irrational management



SOFTWARE PROJECT 
MANAGEMENT ANTIPATTERNS
q Analysis Paralysis

q Synopsis
q Striving for perfection and completeness in the analysis 

phase leads to project gridlock. 

q Refactored Solution
q Use an Incremental, iterative development processes. 

Defer the detailed analysis until the knowledge is 
available. 



SOFTWARE PROJECT 
MANAGEMENT ANTIPATTERNS
q Corncob

q Synopsis
q Frequently, difficult people obstruct and divert the software 

development process. 

q Refactored Solution
q Address agendas of the individual through various tactical, 

operational, and strategic organizational actions. 



SOFTWARE PROJECT 
MANAGEMENT ANTIPATTERNS
q Fear of Success

q Synopsis
q People (software developers included) do crazy things 

when a project is near successful completion. 

q Refactored Solution
q When project completion is close-at-hand, a clear 

declaration of success is important for the project 
environment. 



SOFTWARE PROJECT 
MANAGEMENT ANTIPATTERNS
q Smoke and Mirrors

q Synopsis
q End-users mistakenly assume that a brittle demonstration 

is a capability that is ready for operational use. 

q Refactored Solution
q Practice of proper ethics is important to manage 

expectations, risk, liabilities, and consequences in 
computing sales and marketing situations.



NEXT COURSES
q PROJECTS PRESENTATIONS & EXAM


