
DESIGN PATTERNS

COURSE 1

OGANIZATION
q Course

q Each week 2 hours, Room 050A
q Laboratory

q Each odd/even school week, Room 050A
q Presence

q Course: minimum 50%
q Laboratory: minimum 50%

q Grade
q Written exam 50%
q Course activity 1%+ laboratory activity 24%
q Presentation of a pattern 10%
q Project 15%

ORGANIZATION
q Course & laboratories

q available at http://staff.fmi.uvt.ro/~flavia.micota/

q Contact
q e-mail: flavia.micota@e-uvt.ro
q cab. 046B

q Classroom
q 1rcgcs

COURSE CONTENT
q Design patterns

q Creational
q Structural
q Behavioral

q Refactoring

q Anti-patterns

q Students presentations of a pattern

WAY YOU CHOSE THIS
COURSE?

WAY YOU CHOSE THIS
COURSE?
q Some reasons from

http://www.ida.liu.se/~chrke55/courses/SWE/bunus/DP01_1sli
de.pdf
q I could get some easy points.

q Everybody is talking about so it must to be cool.

q If I master this I can added it to my CV.

q Increase my salary at the company.

q Applying patterns is easier than thinking

q A great place to pick up ideas to plagiarize.

http://www.ida.liu.se/~chrke55/courses/SWE/bunus/DP01_1slide.pdf

DESIGN CHALLENGES
q Designing software with good modularity is hard!

q Designs often emerge from a lot of trial and error

q Are there solutions to common recurring problems?

q A Design Pattern is a Tried and True Solution To a
Common Problem

q Basically, people, who have done this a lot, are making a
suggestion!

SOURCE CODE QUALITY
q What characteristics should be respected in order to

deliver a quality sorce code for a project?

SOURCE CODE QUALITY
q What characteristics should be respected in order to deliver a

quality sorce code for a project?

q Easy to read/understood – clear

q Easy to modify – structured

q Easy to reuse

q Simple (complexity)

q Easy to test

q Implements patterns for standard problems

SOURCE CODE QUALITY

q What influence source code quality?

q Development time

q Costs

q Programmer experience

q Programmer abilities

q Specifications clarity

q Solution complexity

q Requirements change rate, team, …

PATTERNS
q A pattern is a recurring solution to a standard problem, in a

context.

q A Design Pattern systematically names, explains, and
evaluates an important and recurring design.

q Christopher Alexander, a professor of architecture…
q Why would what a prof of architecture says be relevant to

software?
q “A pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice.”

PATTERNS
q Patterns solve software structural problems

q Abstraction
q Encapsulation
q Information hiding
q Separation of concerns
q Coupling and cohesion
q Separation of interface and implementation
q Single point of reference
q Divide and conquer

PATTERNS
q Patterns also solve non-functional problems

q Changeability
q The capability of the software product to enable a specified

modification to be implemented.
q Interoperability

q The ability of two or more systems or components to exchange
information and to use the information that has been exchanged.

q Efficiency
q Efficiency signifies a level of performance that describes using the

least amount of input to achieve the highest amount of output.
Efficiency requires reducing the number of unnecessary resources
used to produce a given output including personal time and energy.

q Reliability
q Probability of failure-free operation for a specified time in a specified

environment for a given purpose
q Testability

q The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met

q Reusability
q The degree to which a software module or other work product can be

used in more than one computing program or software system

PATTERNS
q Advantages

q Allow the standard solution reusability at source
code/architectural level

q Allow the source code/architecture documentation

q Facilitate architecture and code understanding

q Known solutions – common vocabulary

q Well documented solution

PATTERNS TYPES
q Architectural Patterns: MVC, Layers etc.
q Design Patterns: Singleton, Observer etc
q GUI Design Patterns: Window per task, Disabled irrelevant things,

Explorable interface etc
q Database Patterns: decoupling patterns, resource patterns, cache

patterns etc.
q Concurrency Patterns: Double buffering, Lock object, Producer-

consumer, Asynchronous processing etc.
q Enterprise (J2EE) Patterns: Data Access Object, Transfer Objects etc.
q GRASP(General Responsibility Assignment Patterns): Low

coupling/high cohesion, Controller, Law of Demeter (don’t talk to
strangers), Expert, Creator etc.

q Anti-patterns= bad solutions largely observed: God class, Singletonitis,
Basebean etc

DESIGN PATTERNS
HISTORY
q 1979: Christopher Alexander, architect, “The Timeless Way of

Building”,Oxford Press
q 253 patterns that collectively formed what the authors called a

pattern language

q 1987: OOPSLA (Object Oriented Programming System),
Orlando, presentation of design pattern to the community OO
by Ward Cunningham and Kent Beck

q 1995:Group of Four alias E. Gamma, R. Helm, R. Johnson and
J. Vlissides : “Design Pattern: Elements of Reusable OO
software”
q 23 design patterns in three categories

DESIGN PATTERNS
TYPES

3 types of patterns …

q Creational
q address problems of creating an

object in a flexible way. Separate
creation, from operation/use.

q Structural
q address problems of using OO

constructs like inheritance to
organize classes and objects

q Behavioral
q address problems of assigning

responsibilities to classes. Suggest
both static relationships and
patterns of communication (use
cases)

DESIGN PATERNS
STRUCTURAL
qStructural patterns

q Class Structural patterns
concern the aggregation of
classes to form largest
structures

q Object Structural patterns
concern the aggregation of
objects to form largest
structures

§ Adapter Pattern
§ Bridge Pattern
§ Composite Pattern
§ Decorator Pattern
§ Facade Pattern
§ Flyweight Pattern
§ Proxy pattern

DESIGN PATTERNS
BEHAVIORAL
q Behavioral patterns

q Concern with algorithms and
assignment of responsibilities
between objects

q Describe the patterns of
communication between classes or
objects

q Behavioral class pattern use
inheritance to distribute behavior
between classes

q Behavioral object pattern use object
composition to distribute behavior
between classes

§ Chain of Responsibility
Pattern

§ Command Pattern
§ Interpreter Pattern
§ Iterator Pattern
§ Mediator Pattern
§ Memento Pattern
§ Observer Pattern
§ State Pattern
§ Strategy Pattern
§ Template Pattern
§ Visitor Pattern
§ Null Object

DESIGN PATTERNS
CREATIONAL
qCreational patterns

q Abstract the instantiation
process

q Make a system independent
to its realization

q Class creational use
inheritance to vary the
instantiated classes

q Object Creational delegate
instantiation to an another
object

§ Factory Method Pattern
§ Abstract Factory Pattern
§ Singleton Pattern
§ Prototype Pattern
§ Builder Pattern
§ Object Pool Pattern

DESIGN PATTERNS -
EXAMPLES
q Observer in Java AWT and Swing for components actions

callbacks

q Observer in Java watches file for changes (Java 7 NIO)

q Iterator in C++ STL and Java Collection

q Façade in many Open-Source library to hide the complexity of
the internal runtime

q Bridge and proxy in frameworks for distributed applications

q Singleton in Hibernate and NHybernate

PATTERNS TEMPLATES
qDesign patterns are described by 4 main characteristics

qPattern name
qMeaningful text that reflects the problem e.g. Brige, Mediator

qProblem
q intent of the pattern, context, when to apply

qSolution
qUML-like structure, abstract code
qStatic and dynamic relationships among the components

qConsequences
qResults and tradeoff

PATTERNS TEMPLATES.
COMPLETE
q Intent

q short description of the pattern & its purpose
q Also Known As

q any aliases this pattern is known by
q Motivation

q motivating scenario demonstrating pattern’s use
q Applicability

q circumstances in which pattern applies
q Structure

q graphical representation of the pattern using modified UML
notation

q Participants
q participating classes and/or objects & their responsibilities

PATTERNS TEMPLATES.
COMPLETE
q Collaborations

q how participants cooperate to carry out their responsibilities
q Consequences

q the results of application, benefits, liabilities
q Implementation

q pitfalls, hints, techniques, plus language-dependent issues
q Sample Code

q sample implementations in C++, Java, C#, Smalltalk, C, etc.
q Known Uses

q examples drawn from existing systems
q Related Patterns

q discussion of other patterns that relate to this one

PATTERNS, ARHITECTURE
AND FRAMEWORK
q Architectures model software structure at the highest

possible level, and give the overall system view. An
architecture can use many different patterns in different
components

q Patterns are more like small-scale or local architectures
for architectural components or sub-components

q Frameworks are partially completed software systems that
may be targeted at a particular type of application. These
are tailored by completing the unfinished components.

HOW TO USE DESIGN
PATTERNS?
q Part “Craft”

q Know the patterns
q Know the problem they can solve

q Part “Art”
q Recognize when a problem is solvable by a pattern
q Part “Science”

q Look up the pattern
q Correctly integrate it into your code

DESIGN PATTERNS PROVIDE A
SHARED VOCABULARY
qDev 1: “I made a Broadcast class. It keeps

track of all of its listeners and anytime it has
new data it sends a message to each
listener. The listeners can join the Broadcast
at any time or remove themselves from the
Broadcast. It’s really dynamic and loosely-
coupled!”

qDev 2: “Why didn’t you just say you were
using the Observer pattern?

BIBLIOGRAPY
http://www.oodesign.com/

