X@ ?y ?&(ﬁ“ (

DESIGN PATTst

1
B8
70
o
=
o
(&

OGANIZATION

d Course

J Each week 2 hours, Room 050A
O Laboratory

1 Each odd/even school week, Room 050A
O Presence

J Course: minimum 50%
 Laboratory: minimum 50%
O Grade

O Written exam 50%
[Course activity 1%+ laboratory activity 24%

 Presentation of a pattern 10%
O Project 15%

ORGANIZATION

1 Course & laboratories

] available at http://staff.fmi.uvt.ro/~flavia.micota/

1 Contact

O e-mail: flavia.micota@e-uvt.ro
J cab. 046B

(d Classroom

. 1rcgcs

COURSE CONTENT

1 Design patterns

] Creational
J Structural
] Behavioral

O Refactoring
O Anti-patterns

1 Students presentations of a pattern

WAY YOU CHOSE THIS
COURSE?

WAY YOU CHOSE THIS
COURSE?

(J Some reasons from
http://lwww.ida.liu.se/~chrke55/courses/SWE/bunus/DP01 1sli

de.pdf
- 1 could get some easy points.

 Everybody is talking about so it must to be cool.
O If I master this | can added it to my CV.
 Increase my salary at the company.
 Applying patterns is easier than thinking

J A great place to pick up ideas to plagiarize.

http://www.ida.liu.se/~chrke55/courses/SWE/bunus/DP01_1slide.pdf

DESIGN CHALLENGES

O Designing software with good modularity is hard!
O Designs often emerge from a lot of trial and error

O Are there solutions to common recurring problems?

A Design Pattern is a Tried and True Solution To a
Common Problem

1 Basically, people, who have done this a lot, are making a
suggestion!

SOURCE CODE QUALITY

1 What characteristics should be respected in order to
deliver a quality sorce code for a project?

SOURCE CODE QUALITY

L What characteristics should be respected in order to deliver a
quality sorce code for a project?

] Easy to read/understood — clear
 Easy to modify — structured

] Easy to reuse

 Simple (complexity)

] Easy to test

 Implements patterns for standard problems

SOURCE CODE QUALITY

O What influence source code quality?

Development time
Costs

Programmer experience

Specifications clarity

A

A

A

[Programmer abilities
A

 Solution complexity
A

Requirements change rate, team, ...

PATTERNS

O Apatternis a solution to a standard problem, in a

O A Design Pattern systematically names, explains, and
evaluates an important and recurring design.

O Christopher Alexander, a professor of architecture...

d Why would what a prof of architecture says be relevant to
software?

 “A pattern describes a problem which occurs over and over
again in our environment, and then describes the core of the
solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same
way twice.”

PATTERNS

(] Patterns solve software structural problems

d

COO0O0D0D0D O

Abstraction

Encapsulation

Information hiding

Separation of concerns

Coupling and cohesion

Separation of interface and implementation
Single point of reference

Divide and conquer

PATTERNS

0 Patterns also solve non-functional problems

[Changeability
O The capability of the software product to enable a specified
modification to be implemented.
[Interoperability
L The ability of two or more systems or components to exchange
information and to use the information that has been exchanged.
O Efficiency

O Efficiency signifies a level of performance that describes using the
least amount of input to achieve the highest amount of output.
Efficiency requires reducing the number of unnecessary resources
used to produce a given output including personal time and energy.

d Reliability

O Probability of failure-free operation for a specified time in a specified
environment for a given purpose

O Testability

L The degree to which a system or component facilitates the
establishment of test criteria and the performance of tests to
determine whether those criteria have been met

[Reusability

L The degree to which a software module or other work product can be
used in more than one computing program or software system

PATTERNS

O Advantages

 Allow the standard solution reusability at source
code/architectural level

1 Allow the source code/architecture documentation
 Facilitate architecture and code understanding
J Known solutions — common vocabulary

J Well documented solution

PATTERNS TYPES

O Architectural Patterns: MVC, Layers etc.
O Design Patterns: Singleton, Observer etc

0 GUI Design Patterns: Window per task, Disabled irrelevant things,
Explorable interface etc

U Database Patterns: decoupling patterns, resource patterns, cache
patterns etc.

0 Concurrency Patterns: Double buffering, Lock object, Producer-
consumer, Asynchronous processing etc.

O Enterprise (J2EE) Patterns: Data Access Object, Transfer Objects etc.

0 GRASP(General Responsibility Assignment Patterns): Low
coupling/high cohesion, Controller, Law of Demeter (don’t talk to
strangers), Expert, Creator etc.

O Anti-patterns= bad solutions largely observed: God class, Singletonitis,
Basebean etc

DESIGN PATTERNS
HISTORY

0 1979: Christopher Alexander, architect, “The Timeless Way of
Building”,Oxford Press

1 253 patterns that collectively formed what the authors called a
pattern language

 1987: OOPSLA (Object Oriented Programming System),
Orlando, presentation of design pattern to the community OO
by Ward Cunningham and Kent Beck

0 1995:Group of Four alias E. Gamma, R. Helm, R. Johnson and
J. Vlissides : “Design Pattern: Elements of Reusable OO

software”
J 23 design patterns in three categories

DESIGN PATTERNS

TYPES

3 types of patterns ...

1 Creational

(] address problems of creating an
object in a flexible way. Separate
creation, from operation/use.

O Structural

(] address problems of using OO
constructs like inheritance to

organize classes and objects

U Behavioral
(] address problems of assigning

responsibilities to classes. Suggest

both static relationships and

patterns of communication (use
cases)

e Memento Proxy ‘
saving state Adapter

. of iteratior p

Builder '"'\] \

\ Iterator aiidy Brid
craating hysteresis ge
composites \

enumerating
children
adding camposed .
/cspnnsiw‘irms*\ / using Command
to objects —
/-— Composite
Decorator sharing \) TN
compasites e defining defining
ng lravarsals i
operations | ' e chain
i defining _ L
Flyweight arsmmer Visitor
changing skin
versus guts
adding
sharing Interpreter f—— oPoralions Chain of Responsibility
strategies
(shanng j
temmina!
Strategy shaing ~ Symbols o
slales ediator
R comgiex —_—
dependency
management Observer
defining State
algonithm's
::wm'\%
Template Method |————— oftén uses
Prototype
M , _———*| Factory Method
configure factery
dynarnically mplemant using
\
/ Abstract Factory
single

instance

e Facade
single

'/ instance
Singleton /

DESIGN PATERNS
STRUCTURAL

d Structural patterns

 Class Structural patterns
concern the aggregation of
classes to form largest
structures

 Object Structural patterns
concern the aggregation of
objects to form largest
structures

Adapter Pattern
Bridge Pattern
Composite Pattern
Decorator Pattern
Facade Pattern
Flyweight Pattern

Proxy pattern

DESIGN PATTERNS
BEHAVIORAL

U Behavioral patterns = Chain of Responsibility

d Concern with algorithms and Pattern

assignment of responsibilities = Command Pattern
between objects

» Interpreter Pattern

[Describe the patterns of .
communication between classes or Iterator Pattern

objects = Mediator Pattern

O Behavioral class pattern use " Memento Pattern
inheritance to distribute behavior = Observer Pattern

between classes
= State Pattern
1 Behavioral object pattern use object
composition to distribute behavior = Strategy Pattern

between classes = Template Pattern

Visitor Pattern
Null Object

DESIGN PATTERNS
CREATIONAL

 Creational patterns "

1 Abstract the instantiation

process .

1 Make a system independent .

to its realization

J Class creational use
inheritance to vary the
instantiated classes

] Object Creational delegate
instantiation to an another

object

Factory Method Pattern
Abstract Factory Pattern
Singleton Pattern
Prototype Pattern
Builder Pattern

Object Pool Pattern

DESIGN PATTERNS -
EXAMPLES

g

Observer in Java AWT and Swing for components actions
callbacks

Observer in Java watches file for changes (Java 7 NIO)

Iterator in C++ STL and Java Collection

Facade in many Open-Source library to hide the complexity of
the internal runtime

Bridge and proxy in frameworks for distributed applications

Singleton in Hibernate and NHybernate

PATTERNS TEMPLATES

UDesign patterns are described by 4 main characteristics

JPattern name
d Meaningful text that reflects the problem e.g. Brige, Mediator

Problem
 intent of the pattern, context, when to apply

Solution
J UML-like structure, abstract code
1 Static and dynamic relationships among the components

JConsequences
J Results and tradeoff

PATTERNS TEMPLATES.
COMPLETE

O Intent

[short description of the pattern & its purpose
d Also Known As

[any aliases this pattern is known by
O Motivation

[motivating scenario demonstrating pattern’s use
O Applicability

[circumstances in which pattern applies
O Structure

) graphical representation of the pattern using modified UML
notation

4 Participants
] participating classes and/or objects & their responsibilities

PATTERNS TEMPLATES.
COMPLETE

1 Collaborations

- how participants cooperate to carry out their responsibilities
O Consequences

[the results of application, benéefits, liabilities
O Implementation

[pitfalls, hints, techniques, plus language-dependent issues
O Sample Code

[sample implementations in C++, Java, C#, Smalltalk, C, etc.
1 Known Uses

] examples drawn from existing systems
] Related Patterns

[discussion of other patterns that relate to this one

PATTERNS, ARHITECTURE
AND FRAMEWORK

O Architectures model software structure at the highest
possible level, and give the overall system view. An
architecture can use many different patterns in different
components

1 Patterns are more like small-scale or local architectures
for architectural components or sub-components

O Frameworks are partially completed software systems that
may be targeted at a particular type of application. These
are tailored by completing the unfinished components.

HOW TO USE DESIGN
PATTERNS?

O Part “Craft”

- Know the patterns
J Know the problem they can solve

4 Part “Art”

(J Recognize when a problem is solvable by a pattern
 Part “Science”

4 Look up the pattern

O Correctly integrate it into your code

DESIGN PATTERNS PROVIDE A
SHARED VOCABULARY

dDev 1: “| made a Broadcast class. It keeps
track of all of its listeners and anytime it has
new data it sends a message to each
listener. The listeners can join the Broadcast
at any time or remove themselves from the
Broadcast. It's really dynamic and loosely-
coupled!”

dDev 2: "Why didn’t you just say you were
using the Observer pattern?

BIBLIOGRAPY

http://www.oodesign.com/

A Brain-Friendly Guide

‘Head First
Design Patterns

P -
b e “
'
-

i Y W I
v " * Suhe

Design Patterns

Elements of Reusable
Object-Oriented Software

Erich Gamma
Richard Helm
Ralph Johnson
John Vlissides

>
9,
Rl
=
o
Z
=
=
s
)
el
2
2,
Z
=

1dWOD)

SIS ONILJ

Coner At D IS AL C Escher / Corton At - Basers - Holland All ngh d

Foreword by Grady Booch
