
Neural and Evolutionary Computing.  
 
Lab 7: Multiobjective optimization. Ant Colony Optimization and Particle Swarm 
Optimization.   
______________________________________________________________________________ 
 

 
1. Multiobjective optimization 

 
Multiobjective optimization means to simultaneously optimize several objective functions 
(criteria). The function to be optimized is vectorial F:Rn->Rr, and its components can be denoted 
as follows F=(f1,f2,…,fr). 
The optimization criteria are usually conflicting, therefore the problem does not have a unique 
solution. In such a case we are looking for some compromise solutions (called Pareto optimal) 
characterized by the fact that they cannot be improved with respect to all their components (any 
improvement with respect to one criterion leads to a decrease of quality with respect to other 
criteria).  
There are different approaches of this problem. The main approaches are: 

• Aggregation methods: the multiobjective problem is transformed in a one-objective 
optimization problem by combining all optimization criteria in a single one. Thus the new 
objective function becomes: f(x)=w1f1(x)+w2f2(x)+…+wrfr(x) where w1,w2, …,wr are 
weights associated to objective functions. For each set of weights one can obtain a 
different solution. 

• Direct approximation of the Pareto optimal set: it uses a population of elements which 
will approximate the Pareto optimal set. The approximation process can be a evolutionary 
one. The main difference between multiobjective EAs and single objective EAs is related 
with the selection process. In the MOEAs the selection process is based on the 
dominance relationship between the elements (see Lecture 11). 

  
 
Examples of test functions used to evaluate the performance of multiobjective algorithms are 
available at: http://en.wikipedia.org/wiki/Test_functions_for_optimization  
 
Application 1.  Let us consider the function F:[0,4]->RxR, F(x)=((x-1)2,(x-2)2). Estimate the 
optimal Pareto set and the corresponding Pareto front. 
 
Variant 1. By using the aggregation technique 
 

a) Construct the aggregated objective function: 
function y=fw(x) 
    w=0.1; 
    y1=(x-1)*(x-1); 
    y2=(x-2)*(x-2); 
    y=w*y1+(1-w)*y2; 
endfunction 

 
b) Apply an evolution strategy (for instance, that described in SE.sci) to optimize the 

aggregated objective for the following values of w:  (0.1,0.2,0.3,…,0.9).  The 
corresponding results are collected in a list. 

http://en.wikipedia.org/wiki/Test_functions_for_optimization


c) Plot the points having as coordinates  the values of the objective functions computed at 
the previous step  (the plotted set of points will be illustrate an approximation of the 
Pareto front): 

function pareto(x) 
    f1=(x-1).^2; 
    f2=(x-2).^2; 
    plot(f1,f2,'*'); 
endfunction     

 
 
Variant 2. Use the algorithm NSGA-II and MOGA algorithms implemented in SciLab (functions 
optim_nsga2 and optim_moga). 
 
Hint:   exNSGA.sci 

 
2. Ant Colony Optimization (ACO) 

 
ACO is a metaheuristic inspired by the behavior of the ant colonies. It is especially used in 
solving combinatorial optimization problems (e.g. routing, scheduling, assignment)  It uses a 
population of artificial ants (agents) which is changed during an iterative process. At each 
iteration each ant constructs a potential solution. The values for the solution components are 
chosen randomly based on a probability distribution. The probability distribution is computed by 
using both local information (what the ant can collect from its neighbourhood) and global 
information (obtained by using the indirect communication process between ants based on 
pheromone trails). 
 
Solving TSP using ACO.  The input data consists of the graph describing the direct connections 
between towns and their costs.  A population of ants is initially placed on random nodes (or all of 
them in the first node). At each iteration, each ant visits n distinct nodes, constructing a tour. The 
ants have a local memory where the list of visited nodes is stored in order to avoid visiting twice 
the same node. The transition of an ant k from the node i into the node j at step t is based on the 
following probability: 
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The factors appearing in the computation of the probability are:  

• τij  models the pheromone concentration released by the ants on edge (i,j); the pheromone 
concentration is randomly initialized with small positive values. Each ant which visits an 
edge (i,j) can release some pheromone on it contributing to the update of the pheromone 
concentration: 
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              ρ is a constant less than 1 which controls the evaporation process, Qij(k) is 0 if   (i,j) does 
             not belong to the tour constructed by ant  k.   Cost(Tk)  denotes the cost of the tour  
             constructed by the ant k. 

• ηij models the local information concerning the quality of the edge; the simplest variant is 
when it is 1/cost(i,j).  



• α and β are parameters which control the relative importance of those two types of 
information: the global information provided by the pheromone concentration and the 
local one provided by the cost of the edge.  

 
Application 2. Implement an ACO algorithm for TSP.  
 
Hint. See function ACO_TSP.sci 
 
Exercise 1.  Change the previous implementation such that when the pheromone matrix elements 
are updated the tours visited by all ants are taken into account. 
 
Hint.  The updating terms are cumulated after each tour construction. 
  
 

3. Particle Swarm Optimization (PSO) 
 
PSO is a metaheuristic used for continuous function optimization inspired by the behavior of bird 
swarms. It uses a population of m “particles”, each particle i being characterized by its position  
(xi) and its velocity (vi). Moreover, each particle memorizes the best position it visited up to the 
current moment (xbesti). There is also another variable which contains the best position found up 
to the current iteration by the entire swarm (xbest).  The evolutionary process consists in the 
change, at each generation t, of the position of all particles in the population according to the 
following rules:  
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where:   

• gamma is a constriction factor (a typical value for gamma is 0.7) 
• r1 and r2 are two constant values (e.g. r1=r2=2.05) 

 
Besides this variant, where xbest is the global best element from the swarm, there is also another 
variant where for each particle i, xbest(i) is selected as the best element from the neighborhood of 
the particle i.  The neighborhood of a particle can be defined by various topologies, one of the 
most used is the ring topology (in this case the neighborhood of size K of particle i is represented 
by the particles having the indices {i-K,i-K+1,...,i-1,i,i+1,...,i+K-1,i+K}).   
 
Application 3. Implement a PSO algorithm (using the above eqs.) and test its behavior for a 
unimodal function (e.g. sphere) and for a multimodal function (e.g. Griewank).  
 
Hint. See function PSO.m 
 
Exercise 2.  Change PSO.m such that it implements the “local best” variant using a ring topology 
to define the neighbourhood. 
 
 


