
Neural and Evolutionary Computing.  
 
Lab 6:  Evolution strategies. Genetic programming.  Evolutionary training of neural 
networks.  
 
______________________________________________________________________________ 
 
 
1. Implementation of Evolution Strategies  
 
In the case of evolution strategies the elements of the population are real vectors and the main 
components are:  
 

• Selection:   it is used only to select the survivors (all elements can be parents) and it is 
usually a deterministic selection based on taking the best M offspring from the set of L 
offspring (in the case of (mu,lambda) strategies) or the best M elements from the joined 
population of parents and offspring (in the case of (M+L) variants). M denotes the 
number of elements in the current population and L denotes the number of elements 
generated using recombination and mutation. 

• Recombination:  from rho parents is constructed one offspring by linear (convex) 
combination.  

• Mutation:  it is applied to all elements in the population and consists of adding a random 
value (generated according to a given distribution). 

 
Application 1. Function minimization. Test functions: sphere and Griewank.   
See for instance:   

http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm 
 
Hint:  an example is implemented in  SE.sci 
 
Exercises: 
 

1. Test SE.sci for Ackley, Rastrigin and Rosenbrock functions described in the web page 
http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm 

 
2. Genetic programming. 

 
Genetic programming aim is to design in an evolutionary manner computational structures 
(arithmetical/logical expressions, classification/decision rules or programs).  In traditional 
Genetic Programming applications (as symbolic regression) the population elements are 
hierarchical structures (e.g. syntactic trees). The genetic operators are adjusted to work with 
such structures. One of the main difficulties in GP is to avoid the proliferation of large structures 
(the so called bloat problem). A possible solution to this problem is to limit the depth of the trees 
generated during the evolutionary process. 
 
The most popular application of GP is symbolic regression aiming to evolve an expression which 
fits well to some data (unlike the numerical regression which aims to estimate the coefficients of 
a given model, symbolic regression estimates the model itself).  
 
Application 2a.  Evolve expression which fit some datesets using the Java applet available at  
http://www.geneticprogramming.org/symbolic/main.htm 

http://www.geneticprogramming.org/symbolic/main.htm


 
Main steps: 

• Choice of the test function (Function Settings):  specify the definition domain (Min X, 
Max X), the function to be approximated (Enter Function) and the number of elements in 
the dataset to be used to evaluate the quality of an evolved expression (Number of points)  

• Setting the parameters of the algorithm:  number of generations, population size, 
maximal depth of the trees in the initial population, croassover fraction, mutation 
fraction,  maximal depth of the trees constructed through crossover, maximal depth of the 
subtrees used in mutation 

• Choosing the population initialization style:  
o Full:  all branches in the tree have the maximal depth  
o Grow:  the extension of the branches is stopped (based on a random event) before 

reaching the maximal depth  
o Ramped half-half: half of the population elements are generated using the Full 

style,while the other half is generated using the  Grow style. 
• Choosing the selection method: 

o Proportional 
o Tournament 

• Choosing the set of nonterminals  (by marking the operators/functions available in the 
list: +,-,*,/, sin,cos,exp, abs, max, min, log) 

• Choosing the set of terminals (variable x and rand  - to generate random values) 
 
 

Application 2b.  Use the “rgp” R package to find an expression which fits a dataset. 
 
Main steps: 

• Launch R 
• Load package “rgp”:  Packages ->Load package …  or library(“rgp”)  (if the package is 

not installed then it should be installed by  Packages-> Install package(s)…  
• Define the set of nonterminals (operators and functions) using functionSet.  Example: 

setNonterminals <- functionSet("+", "*", "-","/") 
• Define the set of variables using inputVariableSet. Example: setVariables <- 

inputVariableSet("x")  
• Define the set of constants constantFactorySet. Example:  setConstants <- 

constantFactorySet(function() rnorm(1))  (random values generated using the standard 
normal distribution) 

• Define the test data: values which will be used to evaluate the approximation accuracy. 
Examplu: dateX <- seq(from = -pi, to = pi, by = 0.1) 

• Define the fitness function:  mean square error (measure of the difference between the 
values of the test function and the values corresponding to the evolved expressions). 
Example:  fitness <- function(f) rmse(f(dateX), sin(dateX)) 

• Call the function corresponding to the evolutionary process (geneticProgramming). 
Example: geneticProgramming(functionSet = setNonterminals,inputVariables = 
setVariables,constantSet = setConstants, fitnessFunction = fitness,stopCondition = 
makeStepsStopCondition(10000)) 

 
Particularities of the genetic programming implemented in “rgp”: 

• The population elements are R expressions (implemented as tree-like structures) 
• The population initialization is based on several construction strategies:  



o  “grow” (each branch in the tree will be extended until it reaches the maximal 
length or until a random event occurs)  

o „full” (all branches in the tree have the maximal length)  
o Combined variant (some elements are generated using the  “grow” strategy, 

others are constructed using the  „full” strategy) 
• The package implements the traditional crossover and mutation strategies adapted for 

trees (see slides of lecture 9) 
• There are implemented various selection variants using one or several criteria (as in 

multiobjective optimization). In the multicriterial variant the aim is to optimize the 
quality of the result, the simplicity of the elements and the population diversity.  
 

Exercise:  Follow the above steps and test the influence of nonterminals on the quality of the 
results. Hint: gp1.r  

 
 

3. Evolutionary training of neural  networks 
 
EAs can be used for neural networks design at least for two problems:  
 

• Estimation of the synaptic weights in the case of networks with non-differentiable 
activation/transfer functions  or in the case of recurrent networks (when traditional 
algorithms like Backpropagation cannot be applied) 

• Establishing the architecture of the network. 
 
Application 2. Let us consider the problem of training a neural network in order to represent the 
XOR function. 
We can use the following architecture: 

• 2 input units + 1 dummy unit (used to model the biases for the hidden units) 
• K hidden units (K is an input parameter) with a Heaviside activation function 
• An output unit with a Heaviside activation function 

 
Each element of the population will have 4*K+1 components corresponding to all weights and 
biases. The function to be minimized is the MSE (Mean Squared Error) computed for the training 
set containing all four examples: ((0,0),0), ((0,1),1),((1,0),1), ((1,1),0). Analyze the influence of 
the population sizes, mutation parameter, number of parents used for recombination, selection 
type (truncation or tournament) and value of K. 
 
Hint. Use SE_nn.m. The function used by the evolution strategy to evaluate a network is 
SE_XOR. 
 
Homework 
 

1. Change the evolution strategy implemented in SE.sci by including self-adaptation (see 
lecture 8) 

2. Extend the evolutionary training of a neural network (for XOR representation) for the 
case when the number of hidden units is variable (the population elements will contain a 
component corresponding to the number of hidden units before the components used for 
storing the weights. The length of each component will be 4Kmax+1 (Kmax is the 
maximal number of hidden units) and for a given value K<Kmax only the first 4K+1 
weights will be used.  



 


