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Evolutionary Programming and 
Genetic Programming 

Motto: 
 
"How can computers learn to solve problems without being 

explicitly programmed?  In other words, how can computers be 
made to do what is needed to be done, without being told 
exactly how to do it?"  

                                                Attributed to Arthur Samuel (1959) 
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Evolutionary Programming 
The origins: 
 
L. Fogel (1960) – development of methods, inspired by the natural 

evolution, which generate automatically systems with some 
intelligent behavior;  

D. Fogel (1990) – in the last years the evolutionary programming 
became more oriented toward solving problems (optimization 
and design) 

 
Particularities 
• Various encoding variants (e.g. real vectors, state diagrams, 

neural networks structures) 
• Based only on mutation, no recombination 
• Current variants: self-adaptive 
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Evolutionary Programming 
First (traditional) direction : 
 
- Evolve systems (e.g. finite state machine)  with prediction abilities 
- The fitness of such a structure is measured by analyzing the behavior 

of the system = prediction abilities 
- The fitness is a quality measure related to the behaviour of the system 
 
Finite State Machines (FSM):  
  
FSM = (S, I, O, T,s0) 
S – set of states 
I – input alphabet 
O – output alphabet 
T:SxI->SxO  - transition rules 
s0 – initial state 
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Evolutionary Programming 
A simple test problem:  
     design a FSM to check if a binary string has an even or an odd 

numbers of elements equal to 1 (parity problem) 
 
 
- S={even,odd} 
- I={0,1} 
- O={0,1} 

 
FSM output:   
    final state = 0  (the sequence has an even number of 1) 
 
    final state = 1 (the sequence has an odd number of 1) 
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Evolutionary Programming 
State diagram = labeled directed graph 

even   odd 

1/1 

1/0 0/0 

0/1 

EP Design: 
- choose: S, I, O 

 
Population initialization: generate random 

FSMs 
- Generate labels for nodes 
- Generate arcs 
- Generate labels 
Mutation: 
- Mutation of the output symbol 
- Redirect an arc (mutate the target 

node) 
- Add/eliminate nodes 
- Change the initial state 
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Evolutionary Programming 
Mutation example: change the target node of an arc 

even odd 

1/1 

1/0 0/0 

0/1 

even  odd 

1/1 

1/0 

0/0 

0/1 
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Evolutionary Programming 
Evaluation of a configuration:  
    - simulation for a test set   
    - the fitness is considered to be proportional with the success 

rate 
 
 
Current status in the field: this direction of EP is no more of 

actuality; it has been redirected to the evolutionary design of 
computational structures (e.g. neural networks) 
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Evolutionary Programming 
Second (current) direction:  it is related to optimization methods 

similar to evolution strategies 
 
 - there is only a mutation operator (no recombination) 
 - the mutation is based on random perturbation of the current 

configuration (x’=x+N(0,s)) 
     - s is inversely correlated with the fitness value (high fitness 

leads to small s, low fitness leads to large values for s) 
 
 - starting from a population with m elements, by mutation are 

constructed m children and the survivors are selected from the 
2m elements by tournament or by truncation.  

 
- There are self-adaptive variants, called MetaEP; these variants 

are similar to self-adaptive Evolution Strategies 
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Evolutionary Programming 
MetaEP 
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Remark:  currently the normal mutation used to self-adapt the control 
parameters has been replaced with a log-normal distribution (as in 
the case of SE) 
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Genetic Programming 
Principal contributor:  J. Koza (1990) 
 
Official web site:  www.genetic-programming.org 
 
• GP is an automated method for creating a working computer 

program from a high-level problem statement of a problem.  
 

• GP starts from a high-level statement of “what needs to be 
done” and automatically creates a computer program to solve 
the problem.  
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Genetic Programming 

The result is a program or an  
“executable” expression 



Neural and Evolutionary Computing - 
Lecture 9 

12 

Genetic Programming 
Numeric regression 
 
Input data: 
 - pairs of values: (arg, val) 
 - model which depends on 

some parameters(e.g.: linear 
model, quadratic model etc) 

 
Output: values of the model 

parameters 
 

Symbolic regression 
 
Input data: 
 - pairs of values : (arg, val) 
 - alphabets of terminals  

(variables, constants) and 
nonterminals (operators, 
functions) 

 
Output: expression which 

describes the dependence 
between output variable 
(predicted value) and the 
input variable (predictor) 
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Genetic Programming 
Numerical regression 
 
Input data: 
  (1,3),(2,5),(3,7),(4,9) 
 
Model:  f(x)=ax+b 
 
Result:  a=2   b=1 
 
Search in the parameter  
space 

Symbolic regression 
 
Input data: 
 (1,3),(2,5),(3,7),(4,9) 
 
Alphabet: +,*,-,/,constants,x 
 
Result:  2*x+1 
 
Search in the space of expressions 
 
http://alphard.ethz.ch/gerber/approx/default.html 
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Genetic Programming 
Encoding:  the individuals are usually tree-like structures 

Example 1: arithmetical expression 
a*b+sin(c) 
 
Components: 
 
Nonterminals:  operators and 

functions 
Terminals: variables, constants 

(fixed or randomly generated), 
0-arity functions 

+ 

* 

a b c 

sin 

Prefixed form:  +*a b sin c (preorder ) 
Postfixed form: a b * c sin + (postorder) 
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Genetic Programming 
Encoding:  the individuals are usually tree-like structures 

Example 2:  C code 
 
s=0; 
i=0; 
while (i<n)  
    { i=i+1; 
      s=s+i; 
     } 

; 

; 

= = 

s 0 i 0 

while 

< 

i n 

; 

= 

i i+1 

s=s+i 

Problem:  the tree representation can be complex even for simple 
programs 
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Genetic Programming  
 

Summary:  the terminals and nonterminals sets are chosen depending on the 
problem to be solved 
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Genetic Programming  
 

Overall structure of a GP 
algorithm [Koza, 2003] 
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Genetic Programming 
Implementation:  
 - classical variant:  LISP 
     - lists corresponding to 

prefixed description of 
expressions 

 
Difficulty: all elements 

should be syntactically 
correct  

 
Generation function - 

parameters  
 
T: terminals 
N: nonterminals 
A: tree depth 

Generate(T,N,A) 
IF A=0 THEN expr:=choose(T) 
ELSE 
  fct:=choose(N) 
  IF (unary(fct)) THEN           
  arg:=generate(T,N,A-1) 
             expr:=(fct,arg) 
  IF (binary(fct)) THEN 
        arg1:=generate(T,N,A-1) 
            arg2:=generate(T,N,A-1) 
            expr:=(fct,arg1,arg2) 
RETURN expr 
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Genetic Programming 
Other types of population elements: 
 
• Decision trees 

 
•  If-then rules 

 
• Neural networks 

 
• Logical expressions 

 
• Binary decision diagrams 

 
• Grammars 
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Genetic Programming 
 
Fitness computation:  
 
 - the expression (phenotype) corresponding to each chromosome 

(genotype) is evaluated for a test data set 
        
     - the fitness of a chromosome is higher if the value obtained by 

evaluating the expression is close to the desired value 
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Genetic Programming 
Evaluation: 
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Genetic Programming 
Crossover:  two parents (trees) generate two offspring (also trees) by 

swapping some subtrees 
 
  + 

* 

a b c 

sin 

* 

- 

a b 2 

  * 

exp 

c 

a*b+sin(c) (a-b)*2*exp(c) 
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Genetic Programming 
Crossover:  two parents (trees) generate two offspring (also trees) by 

swapping some subtrees 
  

+ 

exp 

c 

sin 

* 

- 

a b 2 

  * 

  * 

a 

exp(c)+sin(c) (a-b)*(2*(a*b)) 

c 

b 
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Genetic Programming 
Crossover: 
Prefixed forms of parents and children 
  
      + * a b sin c                                   * - a b * 2 exp c 
      + exp c sin c                                  * - a b * 2 * a b 
 
Remark. It is similar to the crossover used at GAs but the size for 

exchanged portions are usually different.  
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Genetic Programming 
Mutation: consists of randomly changing some elements 
 
• Change the symbol of a leaf node with another terminal symbol (in 

the case of constants this mutation could be as in the case of 
evolution strategies) 
 

• Replace a leaf node with a tree (growing mutation) 
 

• Replace the symbol corresponding to an internal node with 
another nonterminal from the same class (function with the same 
arity) 
 

• Replace a subtree with a terminal node (pruning mutation) 
 

Remark: the mutation can be implemented by a crossover with a 
randomly generated element 
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Genetic Programming 

Mutation: consists of randomly changing some elements      

+ 

* 

a b c 

sin 

+ 

* 

2 b c 

sin 

+ 

* 

a b - 

sin 

c 1 
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Genetic Programming 
Bloat problem: the complex structures become dominant in the 

population 
 
Solutions:   
• Use a threshold for the structure complexity (e.g. tree depth) and 

reject all structures larger (deeper) than the threshold 
 

• Use a penalty term depending on the structure complexity in the 
fitness computation; this term will penalize the complex structures 
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Genetic Programming 
GP related approaches: 
 
• Linear Genetic Programming 

 
• Gene Expression Programming [http://www.gene-expression-

programming.com/] 
 

• Cartesian Genetic Programmming [http://www.cartesiangp.co.uk/] 
 

• Multi-expression Programming [http://www.mep.cs.ubbcluj.ro/] 
 

• Grammatical Evolution [http://www.grammatical-evolution.org/] 
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Genetic Programming 
Linear Genetic Programming  [Brameier, Banzhaf, 2003] 
 Particularities: 

- Used to generate programs as sequences of 
lines (e.g. like in assembling languages) 

- The operations involves registers  
- Instructions: if and goto 
- The commented lines correspond to 

processing steps which do not influence the 
final result (similar to noncoding portions of 
DNA – the so-called introns) 

- Crossover: uses a variant of single point 
crossover adapted for chromosomes with 
different lengths (the program is a 
chromosome, each line is a gene) 
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Genetic Programming 
GEP - Gene Expression Programming (C. Ferreira, 2001): 

+ 

* 

a b c 

sin 

Chromosome: 
- Consists of several genes of fixed length  
- Each gene has a head and a tail  
- The head contains h symbols (both terminals 

and nonterminals); the tail contains only 
terminals; the number of elements in the tail is 
h*(n-1)+1, n=the maximal arity of 
functions/operators which appears in the head 

Example: gene of length 13 = 6+(6*(2-1)+1)=h+(h*(n-1)+1) 
+ * sin a b c b a c c b a a  
- The first  6 elements correspond with the expression (breadth first 

search of the tree)  
- All other elements are terminal (unused in the genotype-phenotype 

conversion) 
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Genetic Programming 
GEP: allow to generate syntactically correct expressions by 

extending the head over the symbols in the tail 

+ 

* 

a b c 

sin 

+ 

* 

a b c 

 + 

b 

+ * sin a b c b a c c b a a + * + a b c b a c c b a a 
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Genetic Programming 
GEP: chromosome consisting of two genes: 
+ * sin a b c b a c c b a a * * / a b c b a c c b a a 
 
The phenotype corresponding to the chromosome is obtained by 

combining the genes corresponding to the two genes 

+ 

* 

a b c 

sin 

* 

* 

a b c 

 / 

b 

* 
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Genetic Programming 
Applications: 

 
• Extracting models from data (e.g. predictive models) 

 
• Extracting rules from data 

 
• Electrical circuits design 

 
• Robust systems synthesis 

 
• Evolvable hardware 
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Genetic Programming 
 
•       parallel applications design  

 
•       cellular automata design 

 
•       signal/image processing filters design 

 
•       generation of multi-agent strategies 

 
•       generation of game strategies 

 
•       generation of  quantum algorithms 
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Genetic Programming 
Genetic Programming Software: 
 
•  Java: ECJ, TinyGP, 
•   Matlab: GPLab, GPTips 
•   C/C++: MicroGP 
•   Python: DEAP, PyEvolve 
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