
Neural and Evolutionary Computing -
Lecture 9

1

Evolutionary Programming and
Genetic Programming

Motto:

"How can computers learn to solve problems without being

explicitly programmed? In other words, how can computers be
made to do what is needed to be done, without being told
exactly how to do it?"

 Attributed to Arthur Samuel (1959)

Neural and Evolutionary Computing -
Lecture 9

2

Evolutionary Programming
The origins:

L. Fogel (1960) – development of methods, inspired by the natural

evolution, which generate automatically systems with some
intelligent behavior;

D. Fogel (1990) – in the last years the evolutionary programming
became more oriented toward solving problems (optimization
and design)

Particularities
• Various encoding variants (e.g. real vectors, state diagrams,

neural networks structures)
• Based only on mutation, no recombination
• Current variants: self-adaptive

Neural and Evolutionary Computing -
Lecture 9

3

Evolutionary Programming
First (traditional) direction :

- Evolve systems (e.g. finite state machine) with prediction abilities
- The fitness of such a structure is measured by analyzing the behavior

of the system = prediction abilities
- The fitness is a quality measure related to the behaviour of the system

Finite State Machines (FSM):

FSM = (S, I, O, T,s0)
S – set of states
I – input alphabet
O – output alphabet
T:SxI->SxO - transition rules
s0 – initial state

Neural and Evolutionary Computing -
Lecture 9

4

Evolutionary Programming
A simple test problem:
 design a FSM to check if a binary string has an even or an odd

numbers of elements equal to 1 (parity problem)

- S={even,odd}
- I={0,1}
- O={0,1}

FSM output:
 final state = 0 (the sequence has an even number of 1)

 final state = 1 (the sequence has an odd number of 1)

Neural and Evolutionary Computing -
Lecture 9

5

Evolutionary Programming
State diagram = labeled directed graph

even odd

1/1

1/0 0/0

0/1

EP Design:
- choose: S, I, O

Population initialization: generate random

FSMs
- Generate labels for nodes
- Generate arcs
- Generate labels
Mutation:
- Mutation of the output symbol
- Redirect an arc (mutate the target

node)
- Add/eliminate nodes
- Change the initial state

Neural and Evolutionary Computing -
Lecture 9

6

Evolutionary Programming
Mutation example: change the target node of an arc

even odd

1/1

1/0 0/0

0/1

even odd

1/1

1/0

0/0

0/1

Neural and Evolutionary Computing -
Lecture 9

7

Evolutionary Programming
Evaluation of a configuration:
 - simulation for a test set
 - the fitness is considered to be proportional with the success

rate

Current status in the field: this direction of EP is no more of

actuality; it has been redirected to the evolutionary design of
computational structures (e.g. neural networks)

Neural and Evolutionary Computing -
Lecture 9

8

Evolutionary Programming
Second (current) direction: it is related to optimization methods

similar to evolution strategies

 - there is only a mutation operator (no recombination)
 - the mutation is based on random perturbation of the current

configuration (x’=x+N(0,s))
 - s is inversely correlated with the fitness value (high fitness

leads to small s, low fitness leads to large values for s)

 - starting from a population with m elements, by mutation are

constructed m children and the survivors are selected from the
2m elements by tournament or by truncation.

- There are self-adaptive variants, called MetaEP; these variants

are similar to self-adaptive Evolution Strategies

Neural and Evolutionary Computing -
Lecture 9

9

Evolutionary Programming
MetaEP

)1.0(''
2.0)),1.0(1('

)',...,',',...,'(),...,,,...,(1111

Nsxx
Nss

ssxxssxx

iii

ii

nnnn

+=
≅+=

→
αα

Remark: currently the normal mutation used to self-adapt the control
parameters has been replaced with a log-normal distribution (as in
the case of SE)

Neural and Evolutionary Computing -
Lecture 9

10

Genetic Programming
Principal contributor: J. Koza (1990)

Official web site: www.genetic-programming.org

• GP is an automated method for creating a working computer

program from a high-level problem statement of a problem.

• GP starts from a high-level statement of “what needs to be
done” and automatically creates a computer program to solve
the problem.

Neural and Evolutionary Computing -
Lecture 9

11

Genetic Programming

The result is a program or an
“executable” expression

Neural and Evolutionary Computing -
Lecture 9

12

Genetic Programming
Numeric regression

Input data:
 - pairs of values: (arg, val)
 - model which depends on

some parameters(e.g.: linear
model, quadratic model etc)

Output: values of the model

parameters

Symbolic regression

Input data:
 - pairs of values : (arg, val)
 - alphabets of terminals

(variables, constants) and
nonterminals (operators,
functions)

Output: expression which

describes the dependence
between output variable
(predicted value) and the
input variable (predictor)

Neural and Evolutionary Computing -
Lecture 9

13

Genetic Programming
Numerical regression

Input data:
 (1,3),(2,5),(3,7),(4,9)

Model: f(x)=ax+b

Result: a=2 b=1

Search in the parameter
space

Symbolic regression

Input data:
 (1,3),(2,5),(3,7),(4,9)

Alphabet: +,*,-,/,constants,x

Result: 2*x+1

Search in the space of expressions

http://alphard.ethz.ch/gerber/approx/default.html

Neural and Evolutionary Computing -
Lecture 9

14

Genetic Programming
Encoding: the individuals are usually tree-like structures

Example 1: arithmetical expression
a*b+sin(c)

Components:

Nonterminals: operators and

functions
Terminals: variables, constants

(fixed or randomly generated),
0-arity functions

+

*

a b c

sin

Prefixed form: +*a b sin c (preorder)
Postfixed form: a b * c sin + (postorder)

Neural and Evolutionary Computing -
Lecture 9

15

Genetic Programming
Encoding: the individuals are usually tree-like structures

Example 2: C code

s=0;
i=0;
while (i<n)
 { i=i+1;
 s=s+i;
 }

;

;

= =

s 0 i 0

while

<

i n

;

=

i i+1

s=s+i

Problem: the tree representation can be complex even for simple
programs

Neural and Evolutionary Computing -
Lecture 9

16

Genetic Programming

Summary: the terminals and nonterminals sets are chosen depending on the
problem to be solved

Neural and Evolutionary Computing -
Lecture 9

17

Genetic Programming

Overall structure of a GP
algorithm [Koza, 2003]

Neural and Evolutionary Computing -
Lecture 9

18

Genetic Programming
Implementation:
 - classical variant: LISP
 - lists corresponding to

prefixed description of
expressions

Difficulty: all elements

should be syntactically
correct

Generation function -

parameters

T: terminals
N: nonterminals
A: tree depth

Generate(T,N,A)
IF A=0 THEN expr:=choose(T)
ELSE
 fct:=choose(N)
 IF (unary(fct)) THEN
 arg:=generate(T,N,A-1)
 expr:=(fct,arg)
 IF (binary(fct)) THEN
 arg1:=generate(T,N,A-1)
 arg2:=generate(T,N,A-1)
 expr:=(fct,arg1,arg2)
RETURN expr

Neural and Evolutionary Computing -
Lecture 9

19

Genetic Programming
Other types of population elements:

• Decision trees

• If-then rules

• Neural networks

• Logical expressions

• Binary decision diagrams

• Grammars

Neural and Evolutionary Computing -
Lecture 9

20

Genetic Programming

Fitness computation:

 - the expression (phenotype) corresponding to each chromosome

(genotype) is evaluated for a test data set

 - the fitness of a chromosome is higher if the value obtained by

evaluating the expression is close to the desired value

Neural and Evolutionary Computing -
Lecture 9

21

Genetic Programming
Evaluation:

Neural and Evolutionary Computing -
Lecture 9

22

Genetic Programming
Crossover: two parents (trees) generate two offspring (also trees) by

swapping some subtrees

 +

*

a b c

sin

*

-

a b 2

 *

exp

c

a*b+sin(c) (a-b)*2*exp(c)

Neural and Evolutionary Computing -
Lecture 9

23

Genetic Programming
Crossover: two parents (trees) generate two offspring (also trees) by

swapping some subtrees

+

exp

c

sin

*

-

a b 2

 *

 *

a

exp(c)+sin(c) (a-b)*(2*(a*b))

c

b

Neural and Evolutionary Computing -
Lecture 9

24

Genetic Programming
Crossover:
Prefixed forms of parents and children

 + * a b sin c * - a b * 2 exp c
 + exp c sin c * - a b * 2 * a b

Remark. It is similar to the crossover used at GAs but the size for

exchanged portions are usually different.

Neural and Evolutionary Computing -
Lecture 9

25

Genetic Programming
Mutation: consists of randomly changing some elements

• Change the symbol of a leaf node with another terminal symbol (in

the case of constants this mutation could be as in the case of
evolution strategies)

• Replace a leaf node with a tree (growing mutation)

• Replace the symbol corresponding to an internal node with
another nonterminal from the same class (function with the same
arity)

• Replace a subtree with a terminal node (pruning mutation)

Remark: the mutation can be implemented by a crossover with a
randomly generated element

Neural and Evolutionary Computing -
Lecture 9

26

Genetic Programming

Mutation: consists of randomly changing some elements

+

*

a b c

sin

+

*

2 b c

sin

+

*

a b -

sin

c 1

Neural and Evolutionary Computing -
Lecture 9

27

Genetic Programming
Bloat problem: the complex structures become dominant in the

population

Solutions:
• Use a threshold for the structure complexity (e.g. tree depth) and

reject all structures larger (deeper) than the threshold

• Use a penalty term depending on the structure complexity in the
fitness computation; this term will penalize the complex structures

Neural and Evolutionary Computing -
Lecture 9

28

Genetic Programming
GP related approaches:

• Linear Genetic Programming

• Gene Expression Programming [http://www.gene-expression-

programming.com/]

• Cartesian Genetic Programmming [http://www.cartesiangp.co.uk/]

• Multi-expression Programming [http://www.mep.cs.ubbcluj.ro/]

• Grammatical Evolution [http://www.grammatical-evolution.org/]

Neural and Evolutionary Computing -
Lecture 9

29

Genetic Programming
Linear Genetic Programming [Brameier, Banzhaf, 2003]
 Particularities:

- Used to generate programs as sequences of
lines (e.g. like in assembling languages)

- The operations involves registers
- Instructions: if and goto
- The commented lines correspond to

processing steps which do not influence the
final result (similar to noncoding portions of
DNA – the so-called introns)

- Crossover: uses a variant of single point
crossover adapted for chromosomes with
different lengths (the program is a
chromosome, each line is a gene)

Neural and Evolutionary Computing -
Lecture 9

30

Genetic Programming
GEP - Gene Expression Programming (C. Ferreira, 2001):

+

*

a b c

sin

Chromosome:
- Consists of several genes of fixed length
- Each gene has a head and a tail
- The head contains h symbols (both terminals

and nonterminals); the tail contains only
terminals; the number of elements in the tail is
h*(n-1)+1, n=the maximal arity of
functions/operators which appears in the head

Example: gene of length 13 = 6+(6*(2-1)+1)=h+(h*(n-1)+1)
+ * sin a b c b a c c b a a
- The first 6 elements correspond with the expression (breadth first

search of the tree)
- All other elements are terminal (unused in the genotype-phenotype

conversion)

Neural and Evolutionary Computing -
Lecture 9

31

Genetic Programming
GEP: allow to generate syntactically correct expressions by

extending the head over the symbols in the tail

+

*

a b c

sin

+

*

a b c

 +

b

+ * sin a b c b a c c b a a + * + a b c b a c c b a a

Neural and Evolutionary Computing -
Lecture 9

32

Genetic Programming
GEP: chromosome consisting of two genes:
+ * sin a b c b a c c b a a * * / a b c b a c c b a a

The phenotype corresponding to the chromosome is obtained by

combining the genes corresponding to the two genes

+

*

a b c

sin

*

*

a b c

 /

b

*

Neural and Evolutionary Computing -
Lecture 9

33

Genetic Programming
Applications:

• Extracting models from data (e.g. predictive models)

• Extracting rules from data

• Electrical circuits design

• Robust systems synthesis

• Evolvable hardware

Neural and Evolutionary Computing -
Lecture 9

34

Genetic Programming

• parallel applications design

• cellular automata design

• signal/image processing filters design

• generation of multi-agent strategies

• generation of game strategies

• generation of quantum algorithms

Neural and Evolutionary Computing -
Lecture 9

35

Genetic Programming
Genetic Programming Software:

• Java: ECJ, TinyGP,
• Matlab: GPLab, GPTips
• C/C++: MicroGP
• Python: DEAP, PyEvolve

	Evolutionary Programming and Genetic Programming
	Evolutionary Programming
	Evolutionary Programming
	Evolutionary Programming
	Evolutionary Programming
	Evolutionary Programming
	Evolutionary Programming
	Evolutionary Programming
	Evolutionary Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming �
	Genetic Programming �
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming
	Genetic Programming

