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Motivation 
Global optimization:   
• Identify the global optimum of a function :  f(x*)>=f(x), for all  x 
• If the objective function has also local optima then the local 

search methods (e.g. gradient-like methods as hill climbing) can 
be trapped in such local optima 
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Example: 
• Neural network training  
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Motivation 
A taxonomy  of global optimization methods 
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Random search algorithms 
The local optima problem can be avoided by using random 

perturbations in the search process.  
 
Example:  
The simplest idea is to replace the search direction corresponding to the 

gradient with a random direction.  
 
Advantages:  the random search algorithms are very easy to be 

implemented; the objective function does not have to be smooth; it is 
enough if the function can be evaluated (even by simulations) 

 
Disadvantages:  the random search algorithms are not necessarily 

convergent in the usual sense; in most cases they are only 
convergent in a probabilistic sense.  
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Random search algorithms 
Idea: 
  -  the current approximation of the solution is randomly perturbed 
  -  if the perturbed configuration is better than the current approximation 

then the perturbation is accepted 

 
Problem:   find x* which minimizes the function f 
 
General structure: 
 
Initialize x 
Repeat 
    If f(x+z)<f(x) then x:=x+z 
Until  “ a stopping condition is satisfied ” 
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Ex: Matyas algorithm (1960) 
Init x(0) 
k:=0  
e:=0 
REPEAT 
    generate a perturbation vector 

(z1,…zn) 
    IF  f(x(k)+z)<f(x(k))  
    THEN  x(k+1):=x(k)+z 
                e:=0 
     ELSE x(k+1):=x(k) 
               e:=e+1 
    k:=k+1 
UNTIL (k=kmax) OR (e=emax) 

Obs.  The components of the 
random vector have the 
normal distribution 

 
Problem:  how to choose the 

parameters of the 
perturbation ? 

 
Example: N(0,s) 
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Random values simulating 
A variant to generate random values distributed according to the 

standard normal distribution is based on the Box-Muller algorithm 
 
u:=random(0,1)   // value uniformly distributed in (0,1) 
v:=random(0,1) 
r:=sqrt(-2*ln(u)); 
z1:=r*cos(2*PI*v) 
z2:=r*sin(2*PI*v) 
RETURN z1,z2 
Remark:  
1. each call of this algorithm will produce two independent values 
2. to obtain a value distributed according to N(m,s) use the property: 

N(m,s)=m+s*N(0,1) 
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Solis-Wets Algorithm (1981) 
Init x(0) 
k:=0; e:=0; m(0):=0 
REPEAT 
    generate a random vector (z1,…zn) having components with the 

distribution N(m(k),1) 
    IF  f(x(k)+z)<f(x(k)) THEN x(k+1):=x(k)+z;   m(k+1):=0.4*z+0.2*m(k) 
    ELSE 
    IF f(x(k)-z)<f(x(k)) THEN x(k+1):=x(k)-z; m(k+1):=m(k)-0.4*z 
    ELSE 
    IF f(x(k)-z)>f(x(k)) AND f(x(k)+z)>f(x(k)) THEN 
                                                                         x(k+1):=x(k) 
                                                                         m(k+1):=0.5*m(k) 
    k:=k+1 
UNTIL (k=kmax) 
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Applications 
Neural networks:  the Matyas and Solis-Wets algorithms were used in 

training feedforward neural networks 
 
Idea: the BackPropagation is replaced with a random search algorithm 
 
Impact:  the problem of local minima is partially solved in this way (by 

random perturbation the algorithm can escape from the neighborhood 
of a local minimum) 

 
Remarks:   
1. The evaluation of random algorithms can be conducted only in a 

statistical framework (the algorithm should be executed for several 
times and then the average and standard deviation of its results are 
computed) 
 

2. These algorithms belong to the class of  Monte-Carlo algorithms 
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Simulated Annealing 
Idea:    
      -  accept, with some probability, also perturbations which lead to 

an increase of the objective function (in the case of minimization 
problems) 

Inspiration: 
 - SA algorithms are inspired by the process of restructuring the 

internal configuration in a solid which is annealed (e.g. 
crystallization process): 

• The solid is heated (up to the melting point):  its particles 
are randomly distributed.  

 
• The material is the slowly cooled down:  its particles are 

reorganized in order to reach a low energy state  
 

Contributors: Metropolis(1953), Kirkpatrick, Gelatt, Vecchi 
(1983), Cerny (1985) 
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Simulated Annealing 
Analogy:    
       

Minimization problem: 
 
Objective function 
 
Configuration (candidate solution) 
 
Perturbation of the current 

configuration 
Parameter which controls the 

optimization process 
       

Physical process: 
 
• System energy  

 
• System state 

 
• Change of the system state 

 
• Temperature    
       

SA= (meta) heuristic method inspired by physical processes 
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Simulated Annealing 
Some physics:   
• Each state of the system has a corresponding probability    

 
• The probability corresponding to a given state depends on the 

energy of the state and on the system temperature (Boltzmann 
distribution) 
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Simulated Annealing 
Some physics:   
• Large values of T (T goes to infinity): the argument of exp is 

almost 0 => the states have all the same probability 
 

• Small values of T (T goes to 0): only the states with non-zero 
energy will have non-zero probabilities 
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Simulated Annealing 
How can we use these results from physics to solve an optimization 

problem ? 
 
• It would be enough to generate configurations according to the 

Boltzmann distribution for smaller and smaller values of the 
temperature.  
 

• Problem: it is difficult to compute the partition function Z(T) (it 
means to compute a sum over all possible configurations in the 
search space which is practically impossible for real-world 
problems – it would correspond to an exhaustive search) 

• Solution:  the distribution is approximated by simulating the 
evolution of a stochastic process (Markov chain) having as 
stationary distribution the Boltzmann distribution => Metropolis 
algorithm  
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Simulated Annealing 
Metropolis algorithm (1953)  
Init x(0) 
k:=0  
REPEAT 
   x’:=perturb(x(k)) 
    IF  f(x’)<f(x(k)) THEN x(k+1):=x’  (unconditionally) 
                             ELSE x(k+1):=x’   
                                       with probability min{1,exp(-(f(x’)-f(x(k))/T)} 
                                                
    k:=k+1 
UNTIL “a stopping condition is satisfied” 
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Simulated Annealing 
Properties of the Metropolis algorithm  
 
• Another acceptance probability:  
                  P(x(k+1)=x’) = 1/(1+exp((f(x’)-f(x(k))/T)) 
 
• Implementation issue: assigning a value with a given probability 

is based on generating a random value in (0,1) 
  u:=Random(0,1) 
             IF u<P(x(k+1)=x’) THEN x(k+1)=x’ 
                                           ELSE x(k+1)=x(k) 
• Large values for T -> high acceptance probability for any 

configuration (pure random search) 
        Small values for T -> High acceptance probabilities only for the 

states with low energy values  (greedy search - similar to a 
gradient descent method)   
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Simulated Annealing 
Properties of the Metropolis algorithm 
• The rules used to generate new configurations depend on the 

problem to be solved 

Optimization in continuous 
domains 

x’=x+z 
z=(z1,…,zn) 
zi : generated according to the 

distribution: 
 
• N(0,T) 

 
• Cauchy(T)  (Fast SA) 

 
• etc 

Combinatorial optimization 
 
The new configuration is selected 

deterministically or randomly 
from the neighborhood of the 
current configuration  

 
Example: TSP – 2-opt 

transformation 
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Simulated Annealing 
TSP (Travelling Salesman Problem) 
• Generating a new configuration from an existing one (2-opt 

transformation) 
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Simulated Annealing 
Simulated Annealing = repeated application of the Metropolis 

algorithm for decreasing values of the temperature 
 
General structure 
Init x(0), T(0) 
i:=0  
REPEAT 
    apply Metropolis  (for kmax iterations) 
    compute T(i+1) 
    i:=i+1 
UNTIL T(i)<eps 
 
Problem:  How to choose the cooling scheme ? 
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Simulated Annealing 
Cooling schemes: 
 
T(k)=T(0)/(k+1) 
 
T(k)=T(0)/ln(k+c) 
 
T(k)=aT(k-1)  (a<1, ex: a=0.995) 
 
Remark. T(0) should be chosen such that during the first iterations 

almost all new configurations are accepted (this ensures a good 
exploration of the search space) 
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Simulated Annealing 
Convergence properties: 
 
If the following properties are satisfied: 
 
• Pg(x(k+1)=x’|x(k)=x)>0 for any x and x’ (the transition probability 

between any two configurations is non-zero)  
 

• Pa(x(k+1)=x’|x(k)=x)=min{1,exp(-(f(x’)-f(x))/T)} (Metropolis 
acceptance probability) 
 

• T(k)=C/lg(k+c) (logarithmic cooling schedule) 
 

then P(f(x(k))=f(x*)) -> 1 (x(k) is convergent in probability to the global 
minimum x*) 
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Simulated Annealing 
Variant: another acceptance probability (Tsallis) 
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Simulated Annealing 
Example: Travelling Salesman Problem (TSP)   
           (TSPLib:  http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95) 
 
Test instance: eil51  – 51 towns 
 
Parameters:   
•  5000 iterations;  T is changed at each 100 iterations 
• T(k)=T(0)/(1+log(k)) 
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http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
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Simulated Annealing 
Example: TSP  
Test instance: eil51 (TSPlib) 
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Simulated Annealing 
Example: timetabling  
 
Problem: Let us consider a set of events/ 

activities  (ex: lectures, exams), a 
set of rooms and some time slots.  

       Assign each event to a room and a 
time slot such that some constraints 
are satisfied 

 
The constraints could be 

– Hard (strong) 
– Soft (weak) 

T1 T2 T3 

S1 E1 E3 E9 

S2 E5 E8 

S3 E6 E4 

S4 E2 E7 
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Simulated Annealing 
• Hard constraints (the solution is acceptable only if they are 

satisfied): 
– Each event is scheduled only once 
– In each room there is only one event at a given time moment 
– There are no simultaneous events involving the same 

participants 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 

T1 T2 T3 
S1 E1 E3 E9 
S2 E5 E8 

S3 E6 E4 

S4 E2 E7 

Constraints graph: two nodes are connected if the 
corresponding events cannot be scheduled in the 
same time  
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Simulated Annealing 
• Soft constraints (the solution is better if they are satisfied): 

– There are no more than k events per day involving the same 
participant 

– There are no participants involved in only one event in a day 
 

Idea: the soft constraints are usually included in the objective function 
by using the penalty method, e.g the number of participants 
involved in more than k events/day is as small as possible 
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T1 T2 T3 
S1 E1 E3 E9 
S2 E5 E8 

S3 E6 E4 

S4 E2 E7 
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Simulated Annealing 
• Perturbing the current 

configuration: 
– The transfer of an event 

which does not satisfy a 
strong constraint 

T1 T2 T3 
S1 E1 E3 E9 
S2 E5 E6 E8 

S3 E4 

S4 E2 E7 

T1 T2 T3 
S1 E1 E3 E9 
S2 E5 E8 

S3 E6 E4 
S4 E2 E7 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 
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Simulated Annealing 
• Perturbing the current 

configuration: 
– Swapping two events 

T1 T2 T3 
S1 E1 E9 
S2 E5 E6 E8 

S3 E3 E4 

S4 E2 E7 

T1 T2 T3 
S1 E1 E9 
S2 E5 E3 E8 

S3 E6 E4 
S4 E2 E7 

E1 

E2 

E3 

E4 

E5 

E6 

E7 

E8 

E9 
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Related techniques 
Tabu Search   
 
Creator: Fred Glover (1986) 
 
Aim : combinatorial optimization method  
 
Particularity: 
• It is an iterative local search technique based on the exploration of the 

neighborhood of the current element (the neighborhood is defined as the set 
of all configurations which can be reached from the current configuration by 
applying once the search operator); the search operators are specific to the 
problem (e.g. 2-opt for TSP) 

• It uses a list of prohibited configurations (called tabu list) which contains the 
configurations which are not acceptable in the following iterations (usually 
the tabu list is implemented as a circular list) 
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Related techniques – Tabu Search 
Tabu Search - General Structure: 
 
generate an initial configuration 
REPEAT 

– Select the best element in the neigborhood of the current 
configuration which is not included in the tabu list  

– Update the tabu list 
UNTIL <stopping condition> 
 
Remarks: 
1. If the neighborhood is too large then it is possible to evaluate only 

a sample from the neighborhood.   
2. In order to improve the behavior one can apply periodically steps of 

intensification and diversification 
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Related techniques – Tabu Search 
Intensification: 
 
Aim: exploitation of promising regions 
 
Implementation: 
• Count the number of iterations when a component remains 

unchanged – the good components are those with large values of 
the corresponding counter 

• Restart the search process from the best configuration by keeping 
frozen the good components 
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Related techniques – Tabu Search 
Diversification: 
 
Aim: exploration of the unvisited regions 
 
Implementation: 
• Compute the frequency of values used for each component. The 

values with low frequencies are under explored  
• Restart the search process from configurations which contain 

under explored values or change the fitness function by penalizing 
the very frequent values of the components 
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Related techniques – VNS 
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997] 
 

– Idea:  they use a set of neighborhoods V1, V2,...,Vkmax which is 
explored in an incremental way;  in each neighborhood the 
search is done using a local search method 
 

– Obs: the neihborhood set for a configuration x is established 
depending on the problem to be solved but such that if k<k2 
then the elements of Vk1(x)  can be obtained from x using fewer 
operations than are necessare to construct the elements of 
Vk2(x) 

– Example: for the traveling salesman problem Vk (x) can contain 
the configurations (routes) obtained from  x by applying k swaps 
of some randomly selected nodes 
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Related techniques – VNS 
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997] 
 
General structure 
Initialize x (randomly in the search space) 
k:=1 
WHILE k<=kmax DO 
    select x’ randomly from Vk(x); 
    construct x’’ from x’ by applying a local search method 
    IF f(x’’)<f(x’) THEN x:=x’’; k:=1 
                         ELSE k:=k+1 
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Related techniques – direct local 
search 

 
• Nelder – Mead  

– It is based on successively applying some simple transformations 
on the elements of a set of n+1 candidates (a simplex): 

• Reflection 
• Expansion 
• Contraction 
• Reduction 

 
• Hooke – Jeeves (pattern search) 
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