
Neural and Evolutionary Computing -
Lecture 6

1

Random Search Algorithms.

Simulated Annealing

• Motivation

• Simple Random Search Algorithms

• Simulated Annealing Algorithms

Neural and Evolutionary Computing -
Lecture 6

2

Motivation
Global optimization:
• Identify the global optimum of a function : f(x*)>=f(x), for all x
• If the objective function has also local optima then the local

search methods (e.g. gradient-like methods as hill climbing) can
be trapped in such local optima

5101520

1

2

3

4

5

Global optimum

Local optimum

Example:
• Neural network training

Neural and Evolutionary Computing -
Lecture 6

3

Motivation
A taxonomy of global optimization methods

Neural and Evolutionary Computing -
Lecture 6

4

Random search algorithms
The local optima problem can be avoided by using random

perturbations in the search process.

Example:
The simplest idea is to replace the search direction corresponding to the

gradient with a random direction.

Advantages: the random search algorithms are very easy to be

implemented; the objective function does not have to be smooth; it is
enough if the function can be evaluated (even by simulations)

Disadvantages: the random search algorithms are not necessarily

convergent in the usual sense; in most cases they are only
convergent in a probabilistic sense.

Neural and Evolutionary Computing -
Lecture 6

5

Random search algorithms
Idea:
 - the current approximation of the solution is randomly perturbed
 - if the perturbed configuration is better than the current approximation

then the perturbation is accepted

Problem: find x* which minimizes the function f

General structure:

Initialize x
Repeat
 If f(x+z)<f(x) then x:=x+z
Until “ a stopping condition is satisfied ”

Neural and Evolutionary Computing -
Lecture 6

6

Ex: Matyas algorithm (1960)
Init x(0)
k:=0
e:=0
REPEAT
 generate a perturbation vector

(z1,…zn)
 IF f(x(k)+z)<f(x(k))
 THEN x(k+1):=x(k)+z
 e:=0
 ELSE x(k+1):=x(k)
 e:=e+1
 k:=k+1
UNTIL (k=kmax) OR (e=emax)

Obs. The components of the
random vector have the
normal distribution

Problem: how to choose the

parameters of the
perturbation ?

Example: N(0,s)

Neural and Evolutionary Computing -
Lecture 6

7

Random values simulating
A variant to generate random values distributed according to the

standard normal distribution is based on the Box-Muller algorithm

u:=random(0,1) // value uniformly distributed in (0,1)
v:=random(0,1)
r:=sqrt(-2*ln(u));
z1:=r*cos(2*PI*v)
z2:=r*sin(2*PI*v)
RETURN z1,z2
Remark:
1. each call of this algorithm will produce two independent values
2. to obtain a value distributed according to N(m,s) use the property:

N(m,s)=m+s*N(0,1)

Neural and Evolutionary Computing -
Lecture 6

8

Solis-Wets Algorithm (1981)
Init x(0)
k:=0; e:=0; m(0):=0
REPEAT
 generate a random vector (z1,…zn) having components with the

distribution N(m(k),1)
 IF f(x(k)+z)<f(x(k)) THEN x(k+1):=x(k)+z; m(k+1):=0.4*z+0.2*m(k)
 ELSE
 IF f(x(k)-z)<f(x(k)) THEN x(k+1):=x(k)-z; m(k+1):=m(k)-0.4*z
 ELSE
 IF f(x(k)-z)>f(x(k)) AND f(x(k)+z)>f(x(k)) THEN
 x(k+1):=x(k)
 m(k+1):=0.5*m(k)
 k:=k+1
UNTIL (k=kmax)

Neural and Evolutionary Computing -
Lecture 6

9

Applications
Neural networks: the Matyas and Solis-Wets algorithms were used in

training feedforward neural networks

Idea: the BackPropagation is replaced with a random search algorithm

Impact: the problem of local minima is partially solved in this way (by

random perturbation the algorithm can escape from the neighborhood
of a local minimum)

Remarks:
1. The evaluation of random algorithms can be conducted only in a

statistical framework (the algorithm should be executed for several
times and then the average and standard deviation of its results are
computed)

2. These algorithms belong to the class of Monte-Carlo algorithms

Neural and Evolutionary Computing -
Lecture 6

10

Simulated Annealing
Idea:
 - accept, with some probability, also perturbations which lead to

an increase of the objective function (in the case of minimization
problems)

Inspiration:
 - SA algorithms are inspired by the process of restructuring the

internal configuration in a solid which is annealed (e.g.
crystallization process):

• The solid is heated (up to the melting point): its particles
are randomly distributed.

• The material is the slowly cooled down: its particles are

reorganized in order to reach a low energy state

Contributors: Metropolis(1953), Kirkpatrick, Gelatt, Vecchi
(1983), Cerny (1985)

Neural and Evolutionary Computing -
Lecture 6

11

Simulated Annealing
Analogy:

Minimization problem:

Objective function

Configuration (candidate solution)

Perturbation of the current

configuration
Parameter which controls the

optimization process

Physical process:

• System energy

• System state

• Change of the system state

• Temperature

SA= (meta) heuristic method inspired by physical processes

Neural and Evolutionary Computing -
Lecture 6

12

Simulated Annealing
Some physics:
• Each state of the system has a corresponding probability

• The probability corresponding to a given state depends on the

energy of the state and on the system temperature (Boltzmann
distribution)

∑
∈

−=

−=

S

))(exp()(

))(exp(
)(

1)(

s B

B
T

Tk
sETZ

Tk
sE

TZ
sP

E(s) = energy of state s
T = temperature
Z(T)=partition function
 (normalization factor)
kB = Boltzmann constant

Neural and Evolutionary Computing -
Lecture 6

13

Simulated Annealing
Some physics:
• Large values of T (T goes to infinity): the argument of exp is

almost 0 => the states have all the same probability

• Small values of T (T goes to 0): only the states with non-zero
energy will have non-zero probabilities

∑
∈

−=

−=

S

))(exp()(

))(exp(
)(

1)(

s B

B
T

Tk
sETZ

Tk
sE

TZ
sP

E(s) = energy of state s
T = temperature
Z(T)=partition function
 (normalization factor)
kB = Boltzmann constant

Neural and Evolutionary Computing -
Lecture 6

14

Simulated Annealing
How can we use these results from physics to solve an optimization

problem ?

• It would be enough to generate configurations according to the

Boltzmann distribution for smaller and smaller values of the
temperature.

• Problem: it is difficult to compute the partition function Z(T) (it
means to compute a sum over all possible configurations in the
search space which is practically impossible for real-world
problems – it would correspond to an exhaustive search)

• Solution: the distribution is approximated by simulating the
evolution of a stochastic process (Markov chain) having as
stationary distribution the Boltzmann distribution => Metropolis
algorithm

Neural and Evolutionary Computing -
Lecture 6

15

Simulated Annealing
Metropolis algorithm (1953)
Init x(0)
k:=0
REPEAT
 x’:=perturb(x(k))
 IF f(x’)<f(x(k)) THEN x(k+1):=x’ (unconditionally)
 ELSE x(k+1):=x’
 with probability min{1,exp(-(f(x’)-f(x(k))/T)}

 k:=k+1
UNTIL “a stopping condition is satisfied”

Neural and Evolutionary Computing -
Lecture 6

16

Simulated Annealing
Properties of the Metropolis algorithm

• Another acceptance probability:
 P(x(k+1)=x’) = 1/(1+exp((f(x’)-f(x(k))/T))

• Implementation issue: assigning a value with a given probability

is based on generating a random value in (0,1)
 u:=Random(0,1)
 IF u<P(x(k+1)=x’) THEN x(k+1)=x’
 ELSE x(k+1)=x(k)
• Large values for T -> high acceptance probability for any

configuration (pure random search)
 Small values for T -> High acceptance probabilities only for the

states with low energy values (greedy search - similar to a
gradient descent method)

Neural and Evolutionary Computing -
Lecture 6

17

Simulated Annealing
Properties of the Metropolis algorithm
• The rules used to generate new configurations depend on the

problem to be solved

Optimization in continuous
domains

x’=x+z
z=(z1,…,zn)
zi : generated according to the

distribution:

• N(0,T)

• Cauchy(T) (Fast SA)

• etc

Combinatorial optimization

The new configuration is selected

deterministically or randomly
from the neighborhood of the
current configuration

Example: TSP – 2-opt

transformation

Neural and Evolutionary Computing -
Lecture 6

18

Simulated Annealing
TSP (Travelling Salesman Problem)
• Generating a new configuration from an existing one (2-opt

transformation)

A

B

C
D

E

F

G

ABCFEDG

A

B

C
D

E

F

G

ABCFEDG ABCDEFG

Neural and Evolutionary Computing -
Lecture 6

19

Simulated Annealing
Simulated Annealing = repeated application of the Metropolis

algorithm for decreasing values of the temperature

General structure
Init x(0), T(0)
i:=0
REPEAT
 apply Metropolis (for kmax iterations)
 compute T(i+1)
 i:=i+1
UNTIL T(i)<eps

Problem: How to choose the cooling scheme ?

Neural and Evolutionary Computing -
Lecture 6

20

Simulated Annealing
Cooling schemes:

T(k)=T(0)/(k+1)

T(k)=T(0)/ln(k+c)

T(k)=aT(k-1) (a<1, ex: a=0.995)

Remark. T(0) should be chosen such that during the first iterations

almost all new configurations are accepted (this ensures a good
exploration of the search space)

Neural and Evolutionary Computing -
Lecture 6

21

Simulated Annealing
Convergence properties:

If the following properties are satisfied:

• Pg(x(k+1)=x’|x(k)=x)>0 for any x and x’ (the transition probability

between any two configurations is non-zero)

• Pa(x(k+1)=x’|x(k)=x)=min{1,exp(-(f(x’)-f(x))/T)} (Metropolis
acceptance probability)

• T(k)=C/lg(k+c) (logarithmic cooling schedule)

then P(f(x(k))=f(x*)) -> 1 (x(k) is convergent in probability to the global
minimum x*)

Neural and Evolutionary Computing -
Lecture 6

22

Simulated Annealing
Variant: another acceptance probability (Tsallis)

>∆>
≤∆>∆−−

≤∆
= −

110 ,0
110 ,)/)1(1(

0 ,1
)'()1/(1

f-q), (Δf
f-q), (ΔfTfq

f
xP q

a

)1,0(
)()'(

∈
−=∆

q
xfxff

Neural and Evolutionary Computing -
Lecture 6

23

Simulated Annealing
Example: Travelling Salesman Problem (TSP)
 (TSPLib: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95)

Test instance: eil51 – 51 towns

Parameters:
• 5000 iterations; T is changed at each 100 iterations
• T(k)=T(0)/(1+log(k))

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

Location of towns

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95

Neural and Evolutionary Computing -
Lecture 6

24

Simulated Annealing
Example: TSP
Test instance: eil51 (TSPlib)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

T(0)=10,cost=478.384

T(0)=1, cost=481.32

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

T(0)=5, cost=474.178

Minimal Cost: 426

Neural and Evolutionary Computing -
Lecture 6

25

Simulated Annealing
Example: timetabling

Problem: Let us consider a set of events/

activities (ex: lectures, exams), a
set of rooms and some time slots.

 Assign each event to a room and a
time slot such that some constraints
are satisfied

The constraints could be

– Hard (strong)
– Soft (weak)

T1 T2 T3

S1 E1 E3 E9

S2 E5 E8

S3 E6 E4

S4 E2 E7

Neural and Evolutionary Computing -
Lecture 6

26

Simulated Annealing
• Hard constraints (the solution is acceptable only if they are

satisfied):
– Each event is scheduled only once
– In each room there is only one event at a given time moment
– There are no simultaneous events involving the same

participants

E1

E2

E3

E4

E5

E6

E7

E8

E9

T1 T2 T3
S1 E1 E3 E9
S2 E5 E8

S3 E6 E4

S4 E2 E7

Constraints graph: two nodes are connected if the
corresponding events cannot be scheduled in the
same time

Neural and Evolutionary Computing -
Lecture 6

27

Simulated Annealing
• Soft constraints (the solution is better if they are satisfied):

– There are no more than k events per day involving the same
participant

– There are no participants involved in only one event in a day

Idea: the soft constraints are usually included in the objective function
by using the penalty method, e.g the number of participants
involved in more than k events/day is as small as possible

E1

E2

E3

E4

E5

E6

E7

E8

E9

T1 T2 T3
S1 E1 E3 E9
S2 E5 E8

S3 E6 E4

S4 E2 E7

Neural and Evolutionary Computing -
Lecture 6

28

Simulated Annealing
• Perturbing the current

configuration:
– The transfer of an event

which does not satisfy a
strong constraint

T1 T2 T3
S1 E1 E3 E9
S2 E5 E6 E8

S3 E4

S4 E2 E7

T1 T2 T3
S1 E1 E3 E9
S2 E5 E8

S3 E6 E4
S4 E2 E7

E1

E2

E3

E4

E5

E6

E7

E8

E9

Neural and Evolutionary Computing -
Lecture 6

29

Simulated Annealing
• Perturbing the current

configuration:
– Swapping two events

T1 T2 T3
S1 E1 E9
S2 E5 E6 E8

S3 E3 E4

S4 E2 E7

T1 T2 T3
S1 E1 E9
S2 E5 E3 E8

S3 E6 E4
S4 E2 E7

E1

E2

E3

E4

E5

E6

E7

E8

E9

Neural and Evolutionary Computing -
Lecture 6

30

Related techniques
Tabu Search

Creator: Fred Glover (1986)

Aim : combinatorial optimization method

Particularity:
• It is an iterative local search technique based on the exploration of the

neighborhood of the current element (the neighborhood is defined as the set
of all configurations which can be reached from the current configuration by
applying once the search operator); the search operators are specific to the
problem (e.g. 2-opt for TSP)

• It uses a list of prohibited configurations (called tabu list) which contains the
configurations which are not acceptable in the following iterations (usually
the tabu list is implemented as a circular list)

Neural and Evolutionary Computing -
Lecture 6

31

Related techniques – Tabu Search
Tabu Search - General Structure:

generate an initial configuration
REPEAT

– Select the best element in the neigborhood of the current
configuration which is not included in the tabu list

– Update the tabu list
UNTIL <stopping condition>

Remarks:
1. If the neighborhood is too large then it is possible to evaluate only

a sample from the neighborhood.
2. In order to improve the behavior one can apply periodically steps of

intensification and diversification

Neural and Evolutionary Computing -
Lecture 6

32

Related techniques – Tabu Search
Intensification:

Aim: exploitation of promising regions

Implementation:
• Count the number of iterations when a component remains

unchanged – the good components are those with large values of
the corresponding counter

• Restart the search process from the best configuration by keeping
frozen the good components

Neural and Evolutionary Computing -
Lecture 6

33

Related techniques – Tabu Search
Diversification:

Aim: exploration of the unvisited regions

Implementation:
• Compute the frequency of values used for each component. The

values with low frequencies are under explored
• Restart the search process from configurations which contain

under explored values or change the fitness function by penalizing
the very frequent values of the components

Neural and Evolutionary Computing -
Lecture 6

34

Related techniques – VNS
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997]

– Idea: they use a set of neighborhoods V1, V2,...,Vkmax which is
explored in an incremental way; in each neighborhood the
search is done using a local search method

– Obs: the neihborhood set for a configuration x is established
depending on the problem to be solved but such that if k<k2
then the elements of Vk1(x) can be obtained from x using fewer
operations than are necessare to construct the elements of
Vk2(x)

– Example: for the traveling salesman problem Vk (x) can contain
the configurations (routes) obtained from x by applying k swaps
of some randomly selected nodes

Neural and Evolutionary Computing -
Lecture 6

35

Related techniques – VNS
VNS - Variable Neighborhood Search [Mladenovic, P. Hansen, 1997]

General structure
Initialize x (randomly in the search space)
k:=1
WHILE k<=kmax DO
 select x’ randomly from Vk(x);
 construct x’’ from x’ by applying a local search method
 IF f(x’’)<f(x’) THEN x:=x’’; k:=1
 ELSE k:=k+1

Neural and Evolutionary Computing -
Lecture 6

36

Related techniques – direct local
search

• Nelder – Mead

– It is based on successively applying some simple transformations
on the elements of a set of n+1 candidates (a simplex):

• Reflection
• Expansion
• Contraction
• Reduction

• Hooke – Jeeves (pattern search)

	�Random Search Algorithms. Simulated Annealing
	Motivation
	Motivation
	Random search algorithms
	Random search algorithms
	Ex: Matyas algorithm (1960)
	Random values simulating
	Solis-Wets Algorithm (1981)
	Applications
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Simulated Annealing
	Related techniques
	Related techniques – Tabu Search
	Related techniques – Tabu Search
	Related techniques – Tabu Search
	Related techniques – VNS
	Related techniques – VNS
	Related techniques – direct local search

