
Neural and Evolutionary Computing -
Lecture 5

1

Recurrent neural networks

• Architectures

– Fully recurrent networks
– Partially recurrent networks

• Dynamics of recurrent networks
– Continuous time dynamics
– Discrete time dynamics

• Applications

Neural and Evolutionary Computing -
Lecture 5

2

 Recurrent neural networks

• Architecture

– Contains feedback connections
– Depending on the density of feedback connections there are:

• Fully recurrent networks (Hopfield model)
• Partially recurrent networks:

– With contextual units (Elman model, Jordan model)
– Cellular networks (Chua-Yang model)

• Applications
– Associative memories
– Combinatorial optimization problems
– Prediction
– Image processing
– Dynamical systems and chaotical phenomena modelling

Neural and Evolutionary Computing -
Lecture 5

3

Hopfield networks
Architecture:
 N fully connected units

Activation function:
 Signum/Heaviside
 Logistica/Tanh
Parameters:
 weight matrix

Notations: xi(t) – potential (state) of the neuron i at moment t
 yi(t)=f(xi(t)) – the output signal generated by unit i at moment t
 Ii(t) – the input signal
 wij – weight of connection between j and i

Neural and Evolutionary Computing -
Lecture 5

4

Hopfield networks
Functioning: - the output signal is generated by the evolution of a

 dynamical system
 - Hopfield networks are equivalent to dynamical systems

Network state:
 - the vector of neuron’s state X(t)=(x1(t), …, xN(t))
or
 - output signals vector Y(t)=(y1(t),…,yN(t))

Dynamics:
• Discrete time – recurrence relations (difference equations)
• Continuous time – differential equations

Neural and Evolutionary Computing -
Lecture 5

5

Hopfield networks
Discrete time functioning:
 the network state corresponding to moment t+1 depends on the

network state corresponding to moment t

Network’s state: Y(t)

Variants:
• Asynchronous: only one neuron can change its state at a given time
• Synchronous: all neurons can simultaneously change their states

Network’s answer: the stationary state of the network

Neural and Evolutionary Computing -
Lecture 5

6

Hopfield networks
Asynchronous

variant:

*),()1(

)()()1(
1

iityty

tItywfty

ii

N

j
ijjii

≠=+

+=+ ∑

=

Choice of i*:
 - systematic scan of {1,2,…,N}
 - random (but such that during N steps each neuron

changes its state just once)
Network simulation:
 - choose an initial state (depending on the problem to be solved)
 - compute the next state until the network reach a stationary state
 (the distance between two successive states is less than ε)

Neural and Evolutionary Computing -
Lecture 5

7

Hopfield networks
Synchronous variant:

Either continuous or discrete activation functions can be used
Functioning:

Initial state
 REPEAT
 compute the new state starting from the current one
 UNTIL < the difference between the current state and the previous

one is small enough >

NitItywfty
N

j
ijiji ,1 ,)()()1(

1
=

+=+ ∑

=

Neural and Evolutionary Computing -
Lecture 5

8

Hopfield networks
Continuous time functioning:

NitItxfwtx
dt

tdx
ij

N

j
iji

i ,1),())(()()(
1

=++−= ∑
=

Network simulation: solve (numerically) the system of differential
equations for a given initial state xi(0)

Example: Explicit Euler method

NiIxfwhxhx

NitItxfwhtxhhtx

NitItxfwtx
h

txhtx

i
old
j

N

j
ij

old
i

new
i

ij

N

j
ijii

ij

N

j
iji

ii

,1),)(()1(

:signalinput Constant

,1)),())((()()1()(

,1),())(()()()(

1

1

1

=++−≅

=++−≅+

=++−≅
−+

∑

∑

∑

=

=

=

Neural and Evolutionary Computing -
Lecture 5

9

Stability properties
Possible behaviours of a network:
• X(t) converged to a stationary state X* (fixed point of the network

dynamics)
• X(t) oscillates between two or more states
• X(t) has a chaotic behavior or ||X(t)|| becomes too large

Useful behaviors:
• The network converges to a stationary state

– Many stationary states: associative memory
– Unique stationary state: combinatorial optimization problems

• The network has a periodic behavior

– Modelling of cycles

Obs. Most useful situation: the network converges to a stable stationary

state

Neural and Evolutionary Computing -
Lecture 5

10

Stability properties

Illustration:

Formalization:

X* is asymptotic stable (wrt the initial conditions) if it is
 stable
 attractive

0*)(

)0()),(()(
0

=

==

XF

XXtXF
dt

tdX

Asymptotic stable Stable Unstable

Neural and Evolutionary Computing -
Lecture 5

11

Stability properties

Stability:
 X* is stable if for all ε>0 there exists δ(ε) > 0 such that:
 ||X0-X*||< δ(ε) implies ||X(t;X0)-X*||< ε

Attractive:
 X* is attractive if there exists δ > 0 such that:
 ||X0-X*||< δ implies X(t;X0)->X*

In order to study the asymptotic stability one can use the Lyapunov

method.

Neural and Evolutionary Computing -
Lecture 5

12

Stability properties
Lyapunov

function:

0 toricepentru ,0))((
inferior marginita ,:

><

→

dt
tXdV

RRV N

• If one can find a Lyapunov function for a system then its
stationary solutions are asymptotically stable

• The Lyapunov function is similar to the energy function in
physics (the physical systems naturally converges to the lowest
energy state)

• The states for which the Lyapunov function is minimum are
stable states

• Hopfield networks satisfying some properties have Lyapunov
functions.

bounded

Neural and Evolutionary Computing -
Lecture 5

13

Stability properties
Stability result for continuous neural networks

If:
 - the weight matrix is symmetrical (wij=wji)
 - the activation function is strictly increasing (f’(u)>0)
 - the input signal is constant (I(t)=I)

Then all stationary states of the network are asymptotically stable

Associated Lyapunov function:

∑ ∫∑∑
=

−

==

+−−=
N

i

xfN

i
iij

N

ji
iijN

i

dzzfIxfxfxfwxxV
1

)(

0

1

11,
1)()()()(

2
1),...,(

Neural and Evolutionary Computing -
Lecture 5

14

Stability properties
Stability result for discrete neural networks (asynchronous case)
If:
 - the weight matrix is symmetrical (wij=wji)
 - the activation function is signum or Heaviside
 - the input signal is constant (I(t)=I)
Then all stationary states of the network are asymptotically stable

Corresponding Lyapunov function

∑∑
==

−−=
N

i
iiji

N

ji
ijN IyyywyyV

11,
1 2

1),...,(

Neural and Evolutionary Computing -
Lecture 5

15

Stability properties
This result means that:

• All stationary states are stable

• Each stationary state has attached an attraction region (if the

initial state of the network is in the attraction region of a given
stationary state then the network will converge to that stationary
state)

Remarks:
• This property is useful for associative memories

• For synchronous discrete dynamics this result is no more true,

but the network converges toward either fixed points or cycles of
period two

Neural and Evolutionary Computing -
Lecture 5

16

Associative memories
Memory = system to store and recall the information

Address-based memory:

– Localized storage: all components bytes of a value are stored
together at a given address

– The information can be recalled based on the address

Associative memory:
– The information is distributed and the concept of address

does not have sense
– The recall is based on the content (one starts from a clue

which corresponds to a partial or noisy pattern)

Neural and Evolutionary Computing -
Lecture 5

17

Associative memories
Properties:
• Robustness

Implementation:
• Hardware:

– Electrical circuits
– Optical systems

• Software:

– Hopfield networks simulators

Neural and Evolutionary Computing -
Lecture 5

18

Associative memories
Software simulations of associative memories:
• The information is binary: vectors having elements from {-1,1}
• Each component of the pattern vector corresponds to a unit in the

networks

Example (a)
(-1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-1,1,1,-1,-1, -1,-

1,1,1,-1,-1, -1,-1,1,1,-1,-1)

Neural and Evolutionary Computing -
Lecture 5

19

Associative memories

Associative memories design:
• Fully connected network with N signum units (N is the patterns

size)

Patterns storage:
• Set the weights values (elements of matrix W) such that the

patterns to be stored become fixed points (stationary states) of
the network dynamics

Information recall:
• Initialize the state of the network with a clue (partial or noisy

pattern) and let the network to evolve toward the corresponding
stationary state.

Neural and Evolutionary Computing -
Lecture 5

20

Associative memories
Patterns to be stored: {X1,…,XL}, Xl in {-1,1}N

Methods:
• Hebb rule
• Pseudo-inverse rule (Diederich – Opper algorithm)

Hebb rule:
• It is based on the Hebb’s principle: “the synaptic permeability of

two neurons which are simultaneously activated is increased”

l
j

L

l

l
iij xx

N
w ∑

=

=
1

1

Neural and Evolutionary Computing -
Lecture 5

21

Associative memories

Properties of the Hebb’s rule:

• If the vectors to be stored are orthogonal (statistically uncorrelated)

then all of them become fixed points of the network dynamics

• Once the vector X is stored the vector –X is also stored

• An improved variant: the pseudo-inverse method

l
j

L

l

l
iij xx

N
w ∑

=

=
1

1

Orthogonal vectors

Complementary vectors

Neural and Evolutionary Computing -
Lecture 5

22

Associative memories
Pseudo-inverse method:

k
i

N

i

l
ilk

l
jlk

kl

l
iij

xx
N

Q

xQx
N

w

∑

∑

=

−

=

=

1

1

,

1

)(1

• If Q is invertible then all elements of {X1,…,XL} are fixed points of
the network dynamics

• In order to avoid the costly operation of inversion one can use an
iterative algorithm for weights adjustment

Neural and Evolutionary Computing -
Lecture 5

23

Associative memories

Diederich-Opper algorithm :

Initialize W(0) using the Hebb rule

Neural and Evolutionary Computing -
Lecture 5

24

Associative memories

Recall process:

• Initialize the network state

with a starting clue

• Simulate the network until
the stationary state is
reached.

Stored patterns

Noisy patterns (starting clues)

Neural and Evolutionary Computing -
Lecture 5

25

Associative memories

Storage capacity:
– The number of patterns which can be stored and recalled

(exactly or approximately)
– Exact recall: capacity=N/(4lnN)
– Approximate recall (prob(error)=0.005): capacity = 0.15*N

Spurious attractors:

– These are stationary states of the networks which were not
explicitly stored but they are the result of the storage
method.

Avoiding the spurious states
– Modifying the storage method
– Introducing random perturbations in the network’s

dynamics

Neural and Evolutionary Computing -
Lecture 5

26

Solving optimization problems

• First approach: Hopfield & Tank (1985)

– They propose the use of a Hopfield model to solve the

traveling salesman problem.

– The basic idea is to design a network whose energy
function is similar to the cost function of the problem (e.g.
the tour length) and to let the network to naturally evolve
toward the state of minimal energy; this state would
represent the problem’s solution.

Neural and Evolutionary Computing -
Lecture 5

27

Solving optimization problems

A constrained optimization problem:
 find (y1,…,yN) satisfying:
 it minimizes a cost function C:RN->R
 it satisfies some constraints as Rk (y1,…,yN) =0 with
 Rk nonnegative functions

Main steps:
• Transform the constrained optimization problem in an

unconstrained optimization one (penalty method)
• Rewrite the cost function as a Lyapunov function
• Identify the values of the parameteres (W and I) starting from

the Lyapunov function
• Simulate the network

Neural and Evolutionary Computing -
Lecture 5

28

Solving optimization problems

Step 1: Transform the constrained optimization problem in an
unconstrained optimization one

0,

),...,(),...,(),...,(* 1
1

11

>

+= ∑
=

k

N

r

k
kkNN

ba

yyRbyyaCyyC

The values of a and b are chosen such that they reflect the relative
importance of the cost function and constraints

Neural and Evolutionary Computing -
Lecture 5

29

Solving optimization problems

Step 2: Reorganizing the cost function as a Lyapunov function

rkyIyywyyR

yIyywyyC

N

i
i

k
i

N

ji
ji

k
ijNk

N

i
i

obj
i

N

ji
ji

obj
ijN

,1 ,
2
1),....,(

2
1),....,(

11,
1

11,
1

=−−=

−−=

∑∑

∑∑

==

==

Remark: This approach works only for cost functions and constraints
which are linear or quadratic

Neural and Evolutionary Computing -
Lecture 5

30

Solving optimization problems

Step 3: Identifying the network parameters:

NiIbaII

Njiwbaww

k
i

r

k
k

obj
ii

k
ij

r

k
k

obj
ijij

,1 ,

,1, ,

1

1

=+=

=+=

∑

∑

=

=

Neural and Evolutionary Computing -
Lecture 5

31

Solving optimization problems
 Designing a neural network for TSP (n towns):

N=n*n neurons
The state of the neuron (i,j) is interpreted as follows:

 1 - the town i is visited at time j
 0 - otherwise

A

C

D E

B 1 2 3 4 5
A 1 0 0 0 0
B 0 0 0 0 1
C 0 0 0 1 0
D 0 0 1 0 0
E 0 1 0 0 0

AEDCB

Neural and Evolutionary Computing -
Lecture 5

32

Solving optimization problems

Constraints:
 - at a given time only one town is visited

(each column contains exactly one
value equal to 1)

 - each town is visited only once (each
row contains exactly one value equal to
1)

Cost function:
 the tour length = sum of distances

between towns visited at consecutive
time moments

 1 2 3 4 5
A 1 0 0 0 0
B 0 0 0 0 1
C 0 0 0 1 0
D 0 0 1 0 0
E 0 1 0 0 0

Neural and Evolutionary Computing -
Lecture 5

33

Solving optimization problems

Constraints and cost function:

)()(

01

01

1,1,
1 ,1 1

2

1 1

2

1 1

+−
= ≠= =

= =

= =

+=

=

−

=

−

∑ ∑ ∑

∑ ∑

∑ ∑

jkjk

n

i

n

ikk

n

j
ijik

n

i

n

j
ij

n

j

n

i
ij

yyycYC

y

y

)11(
2

)(
2

)(*

2

1 1

2

1 1

1,1,
1 ,1 1

∑ ∑∑ ∑

∑ ∑ ∑

= == =

+−
= ≠= =

−+

−

++=

n

i

n

j
ij

n

j

n

i
ij

jkjk

n

i

n

ikk

n

j
ijik

yyb

yyycaYC

Cost function in the
unconstrained case:

Neural and Evolutionary Computing -
Lecture 5

34

Solving optimization problems

Identified parameters:

)11(
2

)(
2

)(*

2

1 1

2

1 1

1,1,
1 ,1 1

∑ ∑∑ ∑

∑ ∑ ∑

= == =

+−
= ≠= =

−+

−

++=

n

i

n

j
ij

n

j

n

i
ij

jkjk

n

i

n

ikk

n

j
ijik

yyb

yyycaYC

ij

n

i

n

j
ijklij

n

i

n

j

n

k

n

l
klij IyyywYV ∑∑∑∑∑∑

= == = = =

−−=
1 11 1 1 1

,2
1)(

bI
w

bacw

ij

ijij

jlikjlikjljlikklij

2

0

)()(

,

1,1,,

=

=

++−+−= +− δδδδδδ

Neural and Evolutionary Computing -
Lecture 5

35

Prediction in time series

• Time series = sequence of values measured at successive
 moments of time

• Examples:
– Currency exchange rate evolution
– Stock price evolution
– Biological signals (EKG)

• Aim of time series analysis: predict the future value(s) in the
series

Neural and Evolutionary Computing -
Lecture 5

36

Time series
The prediction (forecasting) is based on a model which describes the

dependency between previous values and the next value in the
series.

Order of the model

Parameters corresponding
to external factors

Neural and Evolutionary Computing -
Lecture 5

37

Time series
The model associated to a time series can be:

- Linear
- Nonlinear

- Deterministic
- Stochastic

Example: autoregressive model (AR(p))

noise = random variable from
N(0,1)

Neural and Evolutionary Computing -
Lecture 5

38

Time series

Neural networks. Variants:

• The order of the model is known

– Feedforward neural network with delayed input layer
 (p input units)

• The order of the model is unknown

– Network with contextual units (Elman network)

Neural and Evolutionary Computing -
Lecture 5

39

Networks with delayed input layer

Architecture:

Functioning:

Neural and Evolutionary Computing -
Lecture 5

40

Networks with delayed input layer
Training:

• Training set: {((xl,xl-1,…,xl-p+1),xl+1)}l=1..L

• Training algorithm: BackPropagation

• Drawback: needs the knowledge of p

Neural and Evolutionary Computing -
Lecture 5

41

Elman network
Architecture:

Functioning:

Contextual
units

Rmk: the contextual
units contain
copies of the
outputs of the
hidden layers
corresponding to
the previous
moment

Neural and Evolutionary Computing -
Lecture 5

42

Elman network
Training

Training set : {(x(1),x(2)),(x(2),x(3)),…(x(t-1),x(t))}

Sets of weights:

- Adaptive: Wx, Wc si W2

- Fixed: the weights of the connections between the hidden and the
contextual layers.

Training algorithm: BackPropagation

Neural and Evolutionary Computing -
Lecture 5

43

Cellular networks
Architecture:
• All units have a double role: input and

output units

• The units are placed in the nodes of a
two dimensional grid

• Each unit is connected only with units
from its neighborhood (the
neighborhoods are defined as in the
case of Kohonen’s networks)

• Each unit is identified through its
position p=(i,j) in the grid

virtual cells
(used to define
the context for
border cells)

Neural and Evolutionary Computing -
Lecture 5

44

Cellular networks
Activation function: ramp

-2 -1 1 2

-1

-0.5

0.5

1

Notations:
Xp(t) – state of unit p at time t
Yp(t) - output signal
Up(t) – control signal
Ip(t) – input from the environment
apq – weight of connection between unit q and unit p
bpq - influence of control signal Uq on unit p

Neural and Evolutionary Computing -
Lecture 5

45

Cellular networks
Functioning:

Remarks:
• The grid has a boundary of fictitious units (which usually

generate signals equal to 0)
• Particular case: the weights of the connections between

neighboring units do not depend on the positions of units
Example: if p=(i,j), q=(i-1,j), p’=(i’,j’), q’=(i’-1,j’) then

apq= ap’q’=a-1,0

Signal generated by
other units

Control
signal

Input signal

Neural and Evolutionary Computing -
Lecture 5

46

Cellular networks
These networks are called cloning template cellular networks
Example:

Neural and Evolutionary Computing -
Lecture 5

47

Cellular networks
Illustration of the cloning template elements

Neural and Evolutionary Computing -
Lecture 5

48

Cellular networks
Software simulation = equivalent to numerical solving of a differential

system (initial value problem)

Explicit Euler method

Applications:
• Gray level image processing
• Each pixel corresponds to a unit of the network
• The gray level is encoded by using real values from [-1,1]

Neural and Evolutionary Computing -
Lecture 5

49

Cellular networks
Image processing:

• Depending on the choice of templates, of control signal (u), initial

condition (x(0)), boundary conditions (z) different image
processing tasks can be solved:

– Edge detection in binary images

– Gap filling in binary images

– Noise elimination in binary images

– Identification of horizontal/vertical line segments

Neural and Evolutionary Computing -
Lecture 5

50

Cellular networks
Example 1: edge detection
z=-1, U=input image, h=0.1

UXI

BA

=−=

−
−−

−
=

=

)0(,1
010
121

010
 ,

000
030
000

http://www.isiweb.ee.ethz.ch/haenggi/CNN_web/CNNsim_adv.html

Neural and Evolutionary Computing -
Lecture 5

51

Cellular networks
Example 2: gap filling
z=-1,
U=input image,
h=0.1

1) are pixels (all 1)0(,5.0
000
040
000

 ,
010
15.11
010

==

=

=

ijxI

BA

Neural and Evolutionary Computing -
Lecture 5

52

Cellular networks
Example 3: noise removing
z=-1, U=input image, h=0.1

UXI

BA

==

=

=

)0(,0
000
000
000

 ,
010
121
010

Neural and Evolutionary Computing -
Lecture 5

53

Cellular networks
Example 4: horizontal line detection
z=-1, U=input image, h=0.1

UXI

BA

=−=

=

=

)0(,1
000
111
000

 ,
000
020
000

Neural and Evolutionary Computing -
Lecture 5

54

Other related models
Reservoir computing (www.reservoir-computing.org)

Particularities:
• These models use a set of hidden units (called reservoir) which are

arbitrarly connected (their connection weights are randomly set; each of
these units realize a nonlinear transformation of the signals received
from the input units.

• The output values are obtained by a linear combination of the signals
produced by the input units and by the reservoir units.

• Only the weights of connections toward the output units are trained

Neural and Evolutionary Computing -
Lecture 5

55

Other related models
Reservoir computing (www.reservoir-computing.org)

Variants:

• Temporal Recurrent Neural Network (Dominey 1995)
• Liquid State Machines (Natschläger, Maass and Markram 2002)
• Echo State Networks (Jaeger 2001)
• Decorrelation-Backpropagation Learning (Steil 2004)

Neural and Evolutionary Computing -
Lecture 5

56

Other related models
Echo State Networks:
U(t) = input vector
X(t) = reservoir state vector
Z(t)=[U(t);X(t)] = concatenated input and state

vectors
Y(t) = output vector

X(t)=(1-a)X(t-1)+a tanh(Win U(t)+W X(t-1))
Y(t)=Wout Z(t)

Win ,W – random matrices (W is scaled such

that the spectral radius has a predefined
value);

Wout - set by training

M. Lukosevicius – Practical Guide to
Applying Echo State Networks

Neural and Evolutionary Computing -
Lecture 5

57

Other related models
Applications of reservoir computing:

- Speech recognition
- Handwritten text recognition
- Robot control
- Financial data prediction
- Real time prediction of epilepsy seizures

	�Recurrent neural networks �
	� Recurrent neural networks �
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Hopfield networks
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Stability properties
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories
	Associative memories�
	Associative memories�
	Associative memories�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Solving optimization problems�
	Prediction in time series
	Time series
	Time series
	Time series
	Networks with delayed input layer
	Networks with delayed input layer
	Elman network
	Elman network
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Cellular networks
	Other related models
	Other related models
	Other related models
	Other related models

