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Neural Networks with 
Unsupervised Learning 

 Particularities of unsupervised learning 
 

 Data clustering with neural networks (ART networks) 
 
 Vectorial quantization  

 
 Topological mapping (self-organizing maps or 

Kohonen networks) 
 

 Principal components analysis 
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Particularities of unsupervised 
learning 

Supervised learning 
 

• The training set contains both 
inputs and correct answers 

• Example:  classification in 
predefined classes for which 
examples of labeled data are 
known 

• It is similar with the 
optimization of an error 
function which measures the 
difference between the true 
answers and the answers 
given by the network 

Unsupervised learning: 
 
•The training set contains just input 
data 
•Example:  grouping data in 
categories based on the similarities 
between them 
•Relies on the statistical properties 
of data when tries to extract 
models from data 
•Does not use an error concept but 
a model quality concept which 
should be maximized 
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Data clustering 
Data clustering = identifying natural groups (clusters) in the data set 

such that 
– Data in the same cluster are highly similar 
– Data belonging to different clusters are dissimilar enough 

Rmk:  It does not exist an apriori labeling of the data (unlike 
supervised classification) and sometimes even the number of 
clusters is unknown 

Applications: 
• Identification of user profiles in the case of  e-commerce systems, 

e-learning systems etc. 
• Identification of homogeneous regions in digital images  (image 

segmentation) 
• Electronic document categorization 
• Biological data analysis (analysis of microarray data) 
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Data clustering 
• Example: synthetic bidimensional data (three sources of random 

data based on the normal distribution) 
• The real problems are usually characterized by high-dimensional 

data 
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Data clustering 
• Example: the real distribution of data according to their generation 
• Outliers may exist 
• Identifying the “right” cluster is not easy 
• The clusters can be represented by their means 
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Data clustering 
• Example: the real distribution of data according to their generation 
• Outliers may exist 
• Identifying the “right” cluster is not easy 
• The clusters can be represented by their means 
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Data clustering 
 
Example: image segmentation = identification the homogeneous 

regions in the image = reduction of the number of labels (colours) 
in the image in order to help the image analysis 

Rmk: satellite image obtained by combining three spectral bands 
(false color) 
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Data clustering 
A key element in data clustering is the similarity/dissimilarity measure 
 
The choice of an appropriate similarity/dissimilarity measure is 

influenced by the nature of attributes  
• Numerical attributes 
• Categorical attributes 
• Mixed attributes 
Remark: there are several methods to transform categorical attributes 

in numerical ones, e.g. binarization: 
Categorical attribute                         Binary coding 
Low                                                   1 0 0 
Medium                                             0 1 0 
High                                                  0  0 1  
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Data clustering 
• Measures which are appropriate for numerical data 
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Data clustering 
Clustering methods: 
 
• Partitional methods: 

– Lead to a data partitioning in disjoint or partially overlapping clusters 
– Each cluster is characterized by one or multiple prototypes 
 

• Hierarchical methods: 
– Lead to a hierarchy of partitions which can be visualized as a tree-like 

structure called dendrogram. 
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Data clustering 
Clustering methods: 
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Data clustering 
The prototypes can be: 
• The average of data in the 

class 
• The median of data in the 

class (more robust to 
outliers) 

 
The data are assigned to 

clusters based on the 
nearest prototype  (the 
nearest neighbor principle is 
frequently applied for 
classification tasks) 
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Neural networks for clustering 
Problem:  unsupervised classification of  N-dimensional data  in K 

clusters 
 
Architecture:  
• One input layer with N units 
• One linear layer with K output units 
• Full connectivity between the input and the output layers (the 

weights matrix, W, contains on row k the prototype 
corresponding to class k) 
 

Functioning: 
For an input data X  compute the distances between X and all 

prototypes and find the closest one.  This corresponds to the 
cluster to which X belongs. 

The unit having the closest weight vector to X is called winning unit 

W 
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Neural networks for clustering 
Training:  
Training set: {X1,X2,…, XL} 
 
Algorithms: 
•  the number of clusters (output units) is known 

–  “Winner Takes All” algorithm (WTA) 
 

• the number of clusters (output units) is unknown 
– “Adaptive Resonance Theory” (ART algorithms) 

 
Particularities of these algorithms:   
• Only the weights corresponding to the winning unit are adjusted 
• The learning rate is decreasing 
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Neural networks for clustering 
Examplu:  WTA algorithm 
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Neural networks for clustering 
Remarks: 
 
• Decreasing learning rate (it decreases to 0 but not too fast) 
• Corresponding mathematical properties: 
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Neural networks for clustering 
Remarks: 
• Decreasing learning rate 
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Neural networks for clustering 
Remarks: 
 
• “Dead” units:  units which are never winners 

 
Cause: inappropriate initialization of prototypes 
 
Solutions: 
• Using vectors from the training set as initial prototypes 

 
• Adjusting not only the winning units but also the other units 

(using a much smaller learning rate) 
 

• Penalizing the units which frequently become  winners 
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Neural networks for clustering 
• Penalizing the units which frequently become  winners: change the 

criterion to establish if a unit is a winner or not 
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Neural networks for clustering 
It is useful to normalize both the input data and the weights 

(prototypes): 
 
• The normalization of data from the training set is realized before 

the training 
 

• The weights are normalized during the training: 
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Neural networks for clustering 
Adaptive Resonance Theory: gives solutions to the following 

problems arising in the design of unsupervised classification 
systems: 

 
• Adaptability (plasticity) 

– Refers to the capacity of the system to assimilate new data 
and to identify new clusters (this usually means a variable 
number of clusters) 
 

• Stability     
– Refers to the capacity of the system to conserve the 

clusters’ structures such that during the adaptation process 
the system does not radically change its output for a given 
input data 
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Neural networks for clustering 
Example: ART2 

algorithm 
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Neural networks for clustering 
Remarks: 
 
• The value of ρ influences the number of output units (clusters) 

– A small value of ρ leads to a large number of clusters 
– A large value of ρ leads to a small number of clusters 

 
• Main drawback: the presentation order of the training data 

influences the training process 
 

• The main difference between this algorithm and that used to 
find the centers of a RBF network is represented just by the 
adjustment equations 
 

• There are also versions for binary data (alg ART1) 
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Vectorial quantization 
Aim of vectorial quantization: 
 
• Mapping a region of RN to a finite set of prototypes 

 
• Allows the partitioning of a N-dimensional region in a finite 

number of subregions such that each subregion is identified by 
a prototype 
 

• The cuantization process allows to replace a N-dimensional 
vector with the index of the region which contains it leading to a 
very simple compression method, but with loss of information. 
The aim is to minimize this loss of information 
 

• The number of prototypes should be large in the dense regions 
and small in  less dense regions 
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Vectorial quantization 
Example 
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Vectorial quantization 
• If the number of regions is predefined then one can use the 

WTA algorithm 
 

• There is also a supervised variant of vectorial quantization  
     (LVQ - Learning Vector Quantization) 
 
     Training set: {(X1,d1),…,(XL,dL)} 
 
LVQ algorithm: 
1. Initialize the prototypes by applying  a WTA algorithm to the  

set {X1,…,XL} 
2. Identify the clusters based on the nearest neighbour criterion 
3. Establish the label for each class by using the labels from the 

training set:  for each class is assigned the most frequent label 
from  d1,…dL 
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Vectorial quantization 
• Iteratively adjust the prototypes by applying an algorithm similar 

to that of perceptron (one layer neural networks). At each 
iteration one applies 
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Topological mapping 
• It is a variant of vector quantization which ensures the 

conservation of the neighborhood relations between input data 
 

– Similar input data will either belong to the same class or to 
“neighbor” classes.  
 

– In order to ensure this we need to define an order relationship 
between prototypes and between the network’s output units.  
 

– The architecture of the networks which realize topological 
mapping is characterized  by the existence of a geometrical 
structure of the output level;  this correspond to a one, two or 
three-dimensional grid.  
 

– The networks with such an architecture are called Kohonen 
networks or self-organizing maps (SOMs) 
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Self-organizing maps (SOMs) 
They were designed in the beginning in order to model the so-called 

cortical maps (regions on the brain surface which are sensitive 
to some inputs):  
 

– Topographical maps (visual system) 
 

– Tonotopic maps (auditory system) 
 

– Sensorial maps (associated with the skin surface and its 
receptors) 
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Self-organizing maps (SOMs) 
• Sensorial map (Wilder Penfield) 

 

Left part: somatosensory cortex  
    – receives sensations 
    – sensitive areas, e.g. 

fingers, mouth, take up 
most space of the map 

 
 
Right part: motor cortex 
    – controls the movements 
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Self-organizing maps (SOMs) 
Applications of SOMs: 
 
– low dimensional views of high-dimensional data 
– data clustering 

 
Specific applications (http://www.cis.hut.fi/research/som-research/) 

– Automatic speech recognition  
– Clinical voice analysis  
– Monitoring of the condition of industrial plants and processes  
– Cloud classification from satellite images  
– Analysis of electrical signals from the brain  
– Organization of and retrieval from large document collections 

(WebSOM)  
– Analysis and visualization of large collections of statistical 

data (macroeconomic date) 
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Kohonen networks 
Architecture: 
 
• One input layer 

 
• One layer of output units placed 

on a grid (this allows defining 
distances between units and 
defining neighboring units) 

• Grids: 
Wrt the size: 

- One-dimensional 
- Two-dimensional 
- Three-dimensional 

Wrt the structure: 
- Rectangular 
- Hexagonal 
- Arbitrary (planar graph) 

Rectangular               Hexagonal 

Input             Output 
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Kohonen networks 
• Defining neighbors for the output units 

 
– Each functional unit (p) has a position vector (rp) 

 
– For n-dimensional grids the position vector will have n 

components 
 

– Choose a distance on the space of position vectors 
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Kohonen networks 
• A neighborhood of order (radius) s of the unit p:: 

• Example: for a two dimensional grid the first order neighborhoods 
of p having rp=(i,j) are (for different types of distances): 
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Kohonen networks 
• Functioning: 

– For an input vector, X, we find the winning unit based on the 
nearest neighbor criterion (the unit having the weights vector 
closest to X) 
 

– The result can be the position vector of the winning unit or the 
corresponding weights vector (the prototype associated to the 
input data) 
 

• Learning: 
– Unsupervised 

 
– Training set:  {X1,…,XL} 

 
– Particularities:  similar with WTA learning but besides the 

weights of the winning unit also the weights of some 
neighboring units are adjusted. 
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Kohonen networks 
• Learning algorithm 

max

)(

 Until
)(),( compute   

1t:   t
Endfor   

*)( allfor   ),)((:      

 allfor  ,such that  * find      

do  ,1: For   
Repeat

  )(),(,, Initialize

tt
tts

pNpWXtWW

p),Wd(X),Wd(Xp

Ll

tsttW

ts
plpp

plp*l

>

+=

∈−+=

≤

=

η

η

η



Neural & Evolutionary Computing - 
Lecture 4 

37 

Kohonen networks 
• Learning algorithm 

 
– By adjusting the units in the neighbourhood of the winning one 

we ensure the preservation of the topological relation between 
data (similar data will correspond to neighboring units) 

 
– Both the learning rate and the neighborhood size are 

decreasing in time  
 

– The decreasing rule for the learning rate is similar to that from 
WTA (e.g. eta(t+1)=0.99*eta(t); eta(0)=1) 
 

– The initial size of the neighbor should be large enough  (in the 
first learning steps all weights should be adjusted). Example: 
s(0)=m/2  (m is the number of units for a 1D network or the size 
of the grid for a 2D network), s(t+T)=s(t)/2 (s is halved at each 
T iterations) 
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Kohonen networks 
• There are two main stages in the learning process  

 
– Ordering stage:  it corresponds to the first iterations when the 

neighbourhood size is large enough; its role is to ensure the 
ordering of the weights such that similar input data are in 
correspondence with neighboring units.  
 

– Refining stage: it corresponds to the last iterations, when the 
neighborhood size is small (even just one unit – this is similar 
to a WTA algorithm); its role is to refine the weights such that 
the weight vectors are representative prototypes for the input 
data. 

 
Rmk:  in order to differently adjust the winning unit and the units in the 

neighbourhood one can use the concept of neighborhood function.  
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Kohonen networks 
• Using a neighborhood function: 

• Examples: 

if 
otherwise 
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Kohonen networks 
• Illustration of topological mapping 

 
– visualize the points corresponding to the weights vectors 

attached to the units.  
 

– Connect the points corresponding to neighboring units 
(depending on the grid one point can be connected with  
1,2,3,4 other points) 

One dimensional grid Two dimensional grid 
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Kohonen networks 
• Illustration of topological mapping  

 
– Two dimensional input data randomly generated inside a circular 

ring 
– The functional units are concentrated in the regions where are 

data 
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Kohonen networks 
• Traveling salesman problem:   

 
– Find a route of minimal length  which visits only once each town 

(the tour length is the sum of euclidean distances between the 
towns visited at consecutive time moments) 
 

– We use a network having two input units and n output units placed 
on a circular one-dimensional grids (unit n and unit 1 are 
neighbours). Such a network is called elastic net  
 

– The input data are the coordinates of the towns 
 

– During the learning process the weights of the units converges 
toward the positions of towns and the neighborhood relationship 
on the iunits set  illustrates the order in which the towns should be 
visited.  
 

– Since more than one unit can approach one town the network 
should have more units than towns (twice or even three times) 
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Kohonen networks 
• Traveling salesmen problem:   

 

a) Initial 
configuration 

b) After 1000 
iterations 

c) After 2000 
iterations 

town 

Weights 
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Kohonen networks 
• Other applications: 

 
– Autonomous robots control: the  robot is trained with input 

data which belong to the regions where there are not 
obstacles (thus the robot will learn the map of the region 
where he can move) 
 

– Categorization of electronic documents: WebSOM  
 
• WEBSOM is a method for automatically organizing 

collections of text documents and for preparing visual 
maps of them to facilitate the mining and retrieval of 
information.  
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Kohonen networks 
• WebSOM  (http://websom.hut.fi/websom/) 

The colors express the homogeneity. 
Light color:  high similarity,  Dark color: low similarity 

The labels represents  
keywords of the core  
vocabulary of the area  
in question.  
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Kohonen networks 
• World Poverty Map (http://www.cis.hut.fi/research/som-

research/worldmap.html /) - based on World Bank data from 1992 
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Principal components analysis 
• Aim:   

 
– reduce the dimension of the vector data by preserving as much as 

possible from the information they contain. 
 

– It is useful in data mining where the data to be processed have a 
large number of attributes (e.g. multispectral satellite images, gene 
expression data) 

 
 

• Usefulness: reduce the size of data in order to prepare them for 
other tasks (classification, clustering); allows the elimination of 
irrelevant or redundant  components of the data 
 
 

• Principle: realize a linear transformation of the data such that 
their size is reduced from N to M (M<N) and Y retains the most 
of the variability in the original data 

 
   Y=WX 
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Principal components analysis 
• Ilustration:  N=2, M=1 

 
The system of coordinates x1Ox2 is 

transformed into  y1Oy2 
 
Oy1  - this is the direction  

corresponding to the largest 
variation in data; thus we can 
keep just component y1; it is 
enough to solve a further 
classification task 
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Principal components analysis 
Formalization: 
 
- Suppose that the data are sampled from a N-dimensional 

random vector characterized by a given distribution (usually of 
mean 0 – if the mean is not 0 the data can be transformed by 
subtracting the mean) 
 

- We are looking for a pair of transformations  
  
                   T:RN->RM  and S:RM->RN 
 
                             X  --> Y  --> X’ 
                        T        S 
 

Which have the property that the reconstructed vector   
X’=S(T(X)) is as close as possible from  X   (the 
reconstruction error is small) 
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Principal components analysis 
Formalization:  the matrix  W (M rows and N columns) which leads to 

the smallest reconstruction error contains on its rows the 
eigenvectors (corresponding to the largest M eigenvectors) of 
the covariance matrix of the input data distribution  

0......
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Principal components analysis 
Constructing the transformation T (statistical method): 
 
• Transform the data such that their mean is 0 

 
• Construct the covariance matrix 

– Exact (when the data distribution is known) 
– Approximate (selection covariance matrix) 

 
• Compute the eigenvalues and the eigenvectors of C 

– They can be approximated by using numerical methods 
 

• Sort decreasingly the eigenvalues of C and select the 
eigenvectors corresponding to the M largest eigenvalues.  
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Principal components analysis 
Drawbacks of the statistical method : 
 
• High computational cost for large values of N 
• It is not incremental  

– When a new data have to be taken into consideration the 
covariance matrix should be recomputed  

 
Other variant: use a neural network with a simple architecture and 

an incremental learning algorithm 
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Neural networks for PCA 
Architecture: 
 
• N input units 
• M linear output units 
• Total connectivity between layers 

 
Functioning: 
 
• Extracting the principal 

components    
 

                  Y=WX 
• Reconstructing the initial data 

 
                  X’=WTY 

X    Y 

W 

   Y 

WT 

X’ 
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Neural networks for PCA 
Learning: 
 
• Unsupervised 

 
• Training set: {X1,X2,…}  (the 

learning is incremental, the learning 
is adjusted as it receives new data) 
 

Learning goal: reduce the 
reconstruction error (difference 
between X and X’) 

 
• It can be interpreted as a self-

supervised learning 

   Y 

WT 

X’ 
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Neural networks for PCA 
Self-supervised learning: 
 
Training set:  
 {(X1,X1), (X2,X2),….} 
 
Quadratic error for 

reconstruction (for one 
example): 
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Neural networks for PCA 
Oja’s algorithm: 
 
Training set:  
 {(X1,X1), (X2,X2),….}    Y 

WT 

X’ 
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the unit position and the 
rank of the eigenvalue 
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Neural networks for PCA 
Sanger’s algorithm: 
 
It is a variant of Oja’s algorithm which ensures the fact that the row I 

of W converges to the eigenvector corresponding to the ith 
eigenvalue (in decreasing order) 
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Particularity of the Sanger’s algorithm 
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