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Feedforward Neural Networks. 
Classification and Approximation 

 
 

 Classification and Approximation Problems 
 

 BackPropagation (BP) Neural Networks 
 

 Radial Basis Function (RBF) Networks 
 

 Support Vector Machines 
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Classification problems 
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Example 1: identifying the type of an iris flower  

• Attributes:  sepal/petal lengths, sepal/petal width 
•  Classes:  Iris setosa, Iris versicolor, Iris virginica 
 
Example 2:  handwritten character recognition 
• Attributes: various statistical and geometrical 

characteristics of the corresponding image 
• Classes: set of characters to be recognized  
⇒ Classification = find the relationship between some 

vectors with attribute values and classes labels 
            (Du Trier et al; Feature extraction methods for character 
                         Recognition. A Survey. Pattern Recognition, 1996) 
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Classification problems 
Classification:   

 
– Problem: identify the class to which a given data (described 

by a set of attributes) belongs 
 

– Prior knowledge: examples of data belonging to each class 

Simple example:  
    linearly separable case 

A more difficult example:  
    nonlinearly separable case 
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Approximation problems 
• Estimation of a hous price knowing: 

– Total surface 
– Number of rooms 
– Size of the back yard 
– Location 

  => approximation problem = find a numerical relationship 
between some output  and input value(s)  
 

• Estimating the amount of resources required by a software application 
or the number of users of a web service or a stock price knowing 
historical values 

         =>  prediction problem= 
find a relationship between future values 
 and previous values 
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Approximation problems 
Regression (fitting, prediction):   

 
– Problem:  estimate the value of a characteristic depending 

on the values of some predicting characteristics 
– Prior knowledge: pairs of corresponding values (training set) 

x 

y 

Known values 

Estimated value (for x’ which is not in the training set) 

x’ 
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Approximation problems 

All approximation (mapping) problems can be stated as follows: 
  
Starting from a set of data (Xi,Yi),  Xi in RN and Yi din RM  find a  

function F:RN -> RM which minimizes the distance between the 
data and the corresponding points on its graph:  ||Yi-F(Xi)||2 

 
Questions: 

 
• What structure (shape) should have F ? 
• How can we find the parameters defining the properties of F ?  
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Approximation problems 
Can be such a problem be solved by using neural networks ? 
 
Yes,  at least in theory, the neural networks are proven  “universal 

approximators” [Hornik, 1985]: 
 
“ Any continuous function can be approximated by a feedforward 

neural network having at least one hidden layer. The accuracy 
of the approximation depends on the number of hidden units.” 

 
• The shape of the function is influenced by the architecture of the 

network and by the properties of the activation functions. 
 

• The function parameters are in fact the weights corresponding 
to the connections between neurons.  
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Neural Networks Design 
Steps to follow in designing a neural network: 
 
• Choose the architecture:  number of layers, number of units on 

each layer, activation functions, interconnection style 
 

• Train the network:  compute the values of the weights using the 
training set and a learning algorithm.  
 

• Validate/test the network:  analyze the network behavior for data 
which do not belong to the training set.  
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Functional units (neurons) 
Functional unit: several inputs, one output 
Notations:   
•      input signals: y1,y2,…,yn 
•      synaptic weights: w1,w2,…,wn 

(they model the synaptic permeability)   
•      threshold (bias):  b (or theta) 
(it models the activation threshold of the 

neuron) 
•      Output: y 

 
• All these values are usually real 

numbers  

inputs 

output 

Weights assigned to 
the connections 

w1 

w2 

y1 

y2 

yn wn 



Neural and Evolutionary Computing - 
Lecture 2-3 

10 

Functional units (neurons) 
Output signal generation: 
• The input signals are “combined” by using the connection weights 

and the threshold  
– The obtained value corresponds to the local potential of the 

neuron 
– This “combination” is obtained by applying a so-called 

aggregation function  
• The output signal is constructed by applying an activation function 

– It corresponds to the pulse signals propagated along the axon 

Input signals 
(y1,…,yn) 

Neuron’s state 
(u) 

Output signal  
(y) 

Aggregation  
function 

Activation 
function 
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Functional units (neurons) 
Aggregation functions: 
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Functional units (neurons) 
Activation functions: 
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Functional units (neurons) 
Sigmoidal aggregation functions 
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Functional units (neurons) 
• What can do a single neuron ? 
• It can solve simple problems (linearly 

separable problems) 
 
 

OR 
0     1 

0 
 
1 

0      1 
 
1      1           y=H(w1x1+w2x2-b) 

Ex:    w1=w2=1, w0=0.5 

x1 

x2 

w1 

w2 

y 

b 
-1 
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Functional units (neurons) 
• What can do a single neuron ? 
• It can solve simple problems (linearly 

separable problems) 
 
 

OR 
0     1 

0 
 
1 

0      1 
 
1      1        y=H(w1x1+w2x2-w0) 

Ex:    w1=w2=1, w0=0.5 

x1 

x2 

w1 

w2 

y 

w0 
-1 

AND 
0     1 

0 
 
1 

0      0 
 
0      1 

       y=H(w1x1+w2x2-w0) 
Ex:    w1=w2=1, w0=1.5 
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Functional units (neurons) 
Representation of boolean functions:  f:{0,1}2->{0,1} 

Linearly separable  
problem: one layer 
network 

Nonlinearly separable  
problem: multilayer  
network 

OR 

XOR 
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Architecture and notations 
Feedforward network with K layers 

0 1 k 

Input  
layer 

Hidden layers Output layer 

Y0=X 

… … K 
W1 W2 Wk Wk+1 WK 

X1 

Y1 

F1 

Xk 

Yk 

Fk 

XK 

YK 

FK 

X = input vector, Y= output vector,  F=vectorial activation function  
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Functioning 
Computation of the output vector 
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FORWARD Algorithm (propagation of the input signal toward the 
output layer) 

 
Y[0]:=X (X is the input signal) 
FOR k:=1,K DO 
     X[k]:=W[k]Y[k-1] 
     Y[k]:=F(X[k]) 
ENDFOR  
Rmk: Y[K] is the output of the network 
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A particular case 
One hidden layer 
 
Adaptive parameters:  W1, W2 
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Learning process 
Learning based on minimizing a error function 
• Training set:  {(x1,d1), …, (xL,dL)} 
• Error function (mean squared error): 
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• Aim of learning process:  find W which minimizes the error function  
• Minimization method:  gradient method 
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Learning process  

Gradient based adjustement 
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Learning process  
• Partial derivatives computation 
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Learning process  
• Partial derivatives computation 
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Remark:  
The derivatives of sigmoidal activation functions have particular 

properties: 
Logistic: f’(x)=f(x)(1-f(x))=y(1-y) 
Tanh: f’(x)=1-f2(x)=1-y2 
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The BackPropagation Algorithm 
Main idea: 
For each example in the training 

set: 
   - compute the output signal  
   - compute the error 

corresponding to the output 
level 

   - propagate the error back into 
the network and store the 
corresponding delta values 
for each layer 

   - adjust each weight by using 
the error signal and input 
signal for each layer 

Computation of the output signal (FORWARD) 

Computation of the error signal (BACKWARD) 
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The BackPropagation Algorithm 
General structure 
Random initialization of weights 
 
REPEAT 
     FOR l=1,L  DO 
        FORWARD stage 
        BACKWARD stage 
        weights adjustement 
     ENDFOR 
     Error (re)computation 
UNTIL <stopping condition> 

Rmk. 
• The weights adjustment 

depends on the learning rate 
• The error computation needs 

the recomputation of the output 
signal for the new values of the 
weights 

• The stopping condition depends 
on the value of the error and on 
the number of epochs 

• This is a so-called serial 
(incremental) variant: the 
adjustment is applied separately 
for each example from the 
training set 

ep
oc
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The BackPropagation Algorithm 

ENDFOR   
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Details (serial variant) 
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The BackPropagation Algorithm 
Details (serial variant) 
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E* denotes the expected training accuracy 
pmax denots the maximal number of epochs 



Neural and Evolutionary Computing - 
Lecture 2-3 

28 

The BackPropagation Algorithm 
Batch variant 
Random initialization of weights 
 
REPEAT 
     initialize the variables which will 

contain the adjustments 
     FOR l=1,L  DO 
        FORWARD stage 
        BACKWARD stage 
        cumulate the adjustments 
     ENDFOR 
     Apply the cumulated adjustments 
     Error (re)computation 
UNTIL <stopping condition> 

Rmk. 
• The incremental variant can be 

sensitive to the presentation 
order of the training examples 
 

• The batch variant is not 
sensitive to this order and is 
more robust to the errors in the 
training examples 
 

• It is the starting algorithm for 
more elaborated variants, e.g. 
momentum variant 

ep
oc
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The BackPropagation Algorithm 
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The BackPropagation Algorithm 

* OR   UNTIL
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Variants 
Different variants of BackPropagation can be designed by changing: 

 
 Error function 

 
 Minimization method 

 
 Learning rate choice 

 
 Weights initialization 
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Variants 
Error function: 
 MSE (mean squared error function) is appropriate in the case of 

approximation problems 
 For classification problems a better error function is the cross-

entropy error: 
 Particular case: two classes (one output neuron): 

– dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to 
class 1) 

– yl is from (0,1) and can be interpreted as the probability of class 
1  
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Rmk:  the partial derivatives change, thus the adjustment terms  
will be different 
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Variants 
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Entropy based error:   
 Different values of the partial derivatives 
 In the case of logistic activation functions the error signal will be: 
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Variants 
Minimization method: 
 The gradient method is a simple but not very efficient method 

 
 More sophisticated and faster  methods can be used instead: 

 Conjugate gradient methods 
 Newton’s method and its variants 

 
 Particularities of these methods: 

 Faster convergence (e.g. the conjugate gradient converges in n 
steps for a quadratic error function) 

 Needs the computation of the hessian matrix (matrix with 
second order derivatives) : second order methods 
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Variants 
Example:  Newton’s method 
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Variants 

Advantage: 
• Does not need the computation of the hessian 
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Particular case:  Levenberg-Marquardt 
• This is the Newton method adapted for the case when the 

objective function is a sum of squares (as MSE is) 

Used in order to deal with  
singular matrices 
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Problems in BackPropagation 
 Low convergence rate (the error decreases too slow) 

 
 Oscillations (the error value oscillates instead of continuously 

decreasing) 
 

 Local minima problem (the learning process is stuck in a local 
minima of the error function) 
 

 Stagnation (the learning process stagnates even if it is not a 
local minima) 
 

 Overtraining and limited generalization 
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Problems in BackPropagation 
Problem 1: The error decreases too slow or the error value 

oscillates instead of continuously decreasing 
 

Causes:   
• Inappropriate value of the learning rate (too small values lead to 

slow convergence while too large values lead to oscillations) 
– Solution:  adaptive learning rate 

 
• Slow minimization method (the gradient method needs small 

learning rates in order to converge) 
     Solutions:   
       -  heuristic modification of the standard BP (e.g. momentum) 
       -  other minimization methods (Newton, conjugate gradient) 
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Problems in BackPropagation 
Adaptive learning rate: 
 
• If the error is increasing then the learning rate should be decreased 
• If the error significantly decreases then the learning rate can be 

increased 
• In all other situations the learning rate is kept unchanged 
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Example:  γ=0.05 
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Problems in BackPropagation 
Momentum variant: 
 Increase the convergence speed by introducing some kind of 

“inertia” in the weights adjustment: the weight changes 
corresponding to the current epoch includes the adjustments from 
the previous epoch 
 

)()1()1( pwypw ijjiij ∆+−=+∆ αδαη

Momentum coefficient: α in [0.1,0.9] 
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Problems in BackPropagation 
Momentum variant: 
 The effect of these enhancements is that flat spots of the error 

surface are traversed relatively rapidly with a few big steps, while 
the step size is decreased as the surface gets rougher. This 
implicit adaptation of the step size increases the learning speed 
significantly.  

Simple gradient 
descent 

Use of inertia term 
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Problems in BackPropagation 
Problem 2: Local minima problem (the learning process is stuck in a 

local minima of the error function) 
 
Cause: the gradient based methods  are local optimization methods 
 
Solutions: 
• Restart the training process using other randomly initialized 

weights 
• Introduce random perturbations into the values of weights: 

 variablesrandom :       , =+= ijijijij ww ξξ

• Use a global optimization method 
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Problems in BackPropagation 
Solution: 
• Replacing the gradient method with a stochastic optimization 

method 
• This means using a random perturbation instead of an adjustment 

based on the gradient computation 
• Adjustment step: 

)W:(W adjustment accept the THEN )()( IF

 valuesrandom

∆+=<∆+

=∆

WEWE
ij

Rmk: 
• The adjustments are usually based on normally distributed 

random variables 
• If the adjustment does not lead to a decrease of the error then it is 

not accepted 
 



Neural and Evolutionary Computing - 
Lecture 2-3 

44 

Problems in BackPropagation 
Problem 3: Stagnation (the learning process 

stagnates even if it is not a local minima) 
 
Cause: the adjustments are too small because the 

arguments of the sigmoidal functions are too large 
 
Solutions: 

– Penalize the large values of the weights 
(weights-decay) 

 
– Use only the signs of derivatives not their 

values  
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Problems in BackPropagation 

Penalization of large values of the weights: add a regularization 
term to the error function 

∑+=
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ijr wWEWE
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2
)( )()( λ
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Problems in BackPropagation 
Resilient BackPropagation (use only the sign of the derivative not 

its value) 
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Problems in BackPropagation 
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Problems in BackPropagation 
Problem 4: Overtraining and limited generalization ability 
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Problems in BackPropagation 
Problem 4: Overtraining and limited generalization ability 
 
Causes: 
• Network architecture (e.g. number of hidden units) 

– A large number of hidden units can lead to overtraining (the 
network extracts not only the useful knowledge but also the 
noise in data) 

• The size of the training set 
– Too few examples are not enough to train the network 

• The number of epochs (accuracy on the training set) 
– Too many epochs could lead to overtraining 

 
Solutions: 
• Dynamic adaptation of the architecture 
• Stopping criterion based on  validation error; cross-validation 
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Problems in BackPropagation 
Dynamic adaptation of the architectures: 
 
• Incremental strategy: 

 
– Start with a small number of hidden neurons 
– If the learning does not progress new neurons are introduced 

 
 
• Decremental  strategy: 

– Start with a large number of hidden neurons 
– If there are neurons with small weights (small contribution to the 

output signal) they can be eliminated 
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Problems in BackPropagation 
Stopping criterion based on  validation error : 
 
• Divide the learning set in m parts: (m-1) are for training and 

another one for validation 
• Repeat the weights adjustment as long as the error on the 

validation subset is decreasing (the learning is stopped when 
the error on the validation subset start increasing) 

Cross-validation: 
• Applies for m times the learning algorithm by successively 

changing the learning and validation steps 
 
1: S=(S1,S2, ....,Sm) 
2: S=(S1,S2, ....,Sm)  
....    
m: S=(S1,S2, ....,Sm)  
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Problems in BackPropagation 
 
Stop the learning process when the error on the validation set start 

to increase (even if the error on the training set is still 
decreasing) : 

 

Error on the training set 

Error on the validation set 
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RBF networks 
RBF - “Radial Basis Function”: 
 
Architecture:   

– Two levels of functional units 
– Aggregation functions: 

 
• Hidden units:  distance 

between the input 
vector and the 
corresponding center 
vector 
 

• Output units: weighted 
sum 

N K M 
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centers weights 
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Rmk: hidden units do not have 
bias values (activation thresholds)  
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RBF networks 
The activation functions for the hidden 

neurons are functions with radial 
symmetry 

 
– Hidden units generates a significant 

output signal only for input vectors 
which are close enough to the 
corresponding center vector 
 

The activation functions for the output units 
are usually linear functions 
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RBF networks 
Examples of functions with 

radial symmetry: 
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Rmk:  the parameter σ controls 
the width of the graph 
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RBF networks 
Computation of  the output signal: 
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The vectors  Ck can be interpreted as prototypes;  
       - only input vectors similar to the prototype of the hidden unit 

“activate” that unit 
       - the output of the network for a given input vector will be 

influenced only by the output of the hidden units having centers 
close enough to the input vector 
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RBF networks 
Each hidden unit is “sensitive” to a 

region in the input space 
corresponding to a neighborhood 
of its center. This region is called 
receptive field 

The size of the receptive field 
depends on the parameter σ 
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RBF networks 
• The receptive fields of all hidden 

units covers the input space 
• A good covering of the input space 

is essential for the approximation 
power of the network  

• Too small or too large values of the 
width of the radial basis function 
lead to inappropriate covering of the 
input space 
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RBF networks 
• The receptive fields of all hidden 

units covers the input space 
• A good covering of the input space 

is essential for the approximation 
power of the network  

• Too small or too large values of the 
width of the radial basis function 
lead to inappropriate covering of the 
input space 

subcovering 
overcovering 

appropriate covering 
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RBF networks 
RBF networks are universal approximators:   
     a network with N inputs and M outputs can approximate any 

function defined on RN, taking values in RM, as long as there are 
enough hidden units 

 
The theoretical foundations of RBF networks are: 
 
• Theory of approximation 
• Theory of regularization 
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RBF networks 
Adaptive parameters: 
• Centers (prototypes) corresponding to hidden units 
• Receptive field widths (parameters of the radial symmetry 

activation functions) 
• Weights associated to connections between the hidden and 

output layers 
 

Learning variants: 
• Simultaneous learning of all parameters (similar to 

BackPropagation) 
– Rmk:  same drawbacks as multilayer perceptron’s 

BackPropagation 
• Separate learning of parameters: centers,  widths, weights 
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RBF networks 
Separate learning : 
Training set:   {(x1,d1), …, (xL,dL)} 
 
1.  Estimating of the centers:  simplest variant 

• K=L  (nr of centers = nr of examples),  
• Ck=xk  (this corresponds to the case of exact 

interpolation: see the example for XOR)  
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RBF networks 
Example (particular case) :  RBF network to represent XOR 
• 2 input units 
• 4 hidden units 
• 1 output unit 

0 
1 

1 

 0 

Centers: 
Hidden unit 1:  (0,0) 
Hidden unit 2:  (1,0) 
Hidden unit 3:  (0,1) 
Hidden unit 4:  (1,1) 

Weights: 
w1:  0 
w2:  1 
w3:  1 
w4:  0 

Activation function: 
g(u)=1 if u=0 
g(u)=0 if u<>0 

This approach cannot be applied for general approximation problems 
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RBF networks 
Separate learning : 
Training set:   {(x1,d1), …, (xL,dL)} 
 
1. Estimating of the centers 

 

• K<L :  the centers are established  
•  by random selection from the training set 

• simple but not very effective 
  

•  by systematic selection from the training set 
(Orthogonal Least Squares) 
 

• by using a clustering method 
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RBF networks 
Orthogonal Least Squares: 
 
• Incremental selection of centers such that the error on the 

training set is minimized 
 
• The new center is chosen such that it is orthogonal on the 

space generated by the previously chosen centers (this process 
is based on the Gram-Schmidt orthogonalization method)  
 

• This approach is related with regularization theory and ridge 
regression 
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RBF networks 
Clustering: 
 
• Identify K groups in the input data {X1,…,XL} such that data in a 

group are sufficiently similar and data in different groups are 
sufficiently dissimilar 
 

• Each group has a representative (e.g. the mean of data in the 
group) which can be considered the center  
 

• The algorithms for estimating the representatives of data belong 
to the class of partitional clustering methods 
 

• Classical algorithm: K-means 
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RBF networks 
K-means: 
 
• Start with randomly initialized 

centers 
 
• Iteratively: 

– Assign data to clusters based 
on the nearest center criterion 

– Recompute the centers as 
mean values of elements in 
each cluster 
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RBF networks 
K-means: 
 
• Start with randomly initialized 

centers 
 
• Iteratively: 

– Assign data to clusters based 
on the nearest center criterion 

– Recompute the centers as 
mean values of elements in 
each cluster 

 
 



Neural and Evolutionary Computing - 
Lecture 2-3 

69 

RBF networks 
K-means: 
 
• Ck:=(rand(min,max),…,rand(min,max)), k=1..K  or 
     Ck is a randomly selected input data 
 
• REPEAT 

– FOR l:=1,L 
 Find k(l) such that d(Xl,Ck(l)) <=d(Xl,Ck) 
     Assign Xl to class k(l) 
– Compute 
      Ck: = mean of elements which were assigned to class k 
UNTIL “no modification in the centers of the classes” 

 
Remarks:  
• usually the centers are not from the set of data  
• the number of clusters should be known in advance 
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RBF networks 
Incremental variant: 
 
• Start with a small number of centers, randomly initialized 

 
• Scan the set of input data: 

 
– If there is a center close enough to the data then this center is 

slightly adjusted in order to become even closer to the data 
 

–  if the data is dissimilar enough with respect to all centers then a 
new center is added (the new center will be initialized with the data 
vector) 
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RBF networks 
Incremental variant: 
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RBF networks 
2. Estimating the receptive fields widths. 
 
Heuristic rules: 
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RBF networks 
3. Estimating the weights of 

connections between hidden 
and output layers: 

 
• This is equivalent with the 

problem of training one layer 
linear network 
 

• Variants: 
– Apply linear algebra tools 

(pseudo-inverse computation) 
– Apply Widrow-Hoff learning 

(training based on the gradient 
method applied to one layer 
neural networks)  

 
 

 Initialization:   
wij(0):=rand(-1,1)  (the weights are 

randomly initialized in [-1,1]),  
k:=0  (iteration counter) 

 Iterative process 
REPEAT 

FOR l:=1,L DO 
Compute yi(l) and 

deltai(l)=di(l)-yi(l),  i=1,M 
Adjust the weights: 

wij:=wij+eta*deltai(l)*xj(l) 
Compute the E(W) for the new 

values of the weights 
k:=k+1 

UNTIL E(W)<E* OR k>kmax  
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RBF vs. BP networks 
RBF networks: 
 
• 1 hidden layer 

 
• Distance based aggregation 

function for the hidden units 
• Activation functions with 

radial symmetry for hidden 
units 
 

• Linear output units 
• Separate training of adaptive 

parameters 
 
• Similar with local 

approximation approaches 
 

BP networks: 
 
• many hidden layers 

 
• Weighted sum as aggregation 

function for the hidden units 
• Sigmoidal activation functions 

for hidden neurons 
 

• Linear/nonlinear output units 
 

• Simultaneous training of 
adaptive parameters 
 

• Similar with global 
approximation approaches 
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Support Vector Machines 
Support Vector Machine (SVM) = machine learning technique 

characterized by 
 

• The learning process is based on solving a quadratic optimization 
problem  
 

• Ensures a good generalization power 
 

• It relies  on the statistical learning theory (main contributors: 
Vapnik and Chervonenkis)  

• applications:  handwritten recognition, speaker identification , 
object recognition 
 

• Bibliografie: C.Burges – A Tutorial on SVM for Pattern Recognition, Data Mining 
and Knowledge Discovery, 2, 121–167 (1998) 
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Support Vector Machines 
Let us consider a simple linearly 

separable classification problem 

There is an infinity of lines (hyperplanes, in 
the general case) which ensure the 
separation in the two classes 

 
Which separating hyperplane is the best? 
 
That which leads to the best generalization 

ability = correct classification for data 
which do not belong to the training set 
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Support Vector Machines 
Which is the best separating line (hyperplane)  ? 

That for which the minimal distance to the 
convex hulls corresponding to the two 
classes is maximal 

 
 
 
The lines (hyperplanes) going through the 

marginal points are called canonical lines 
(hyperplanes) 

The distance between these lines is 2/||w||, 
Thus maximizing the width of the separating 

regions means minimizing the norm of w 

m 

m 

wx+b=0 

Eq. of the separating 
hyperplane 

wx+b=-1 

wx+b=1 
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Support Vector Machines 
How can we find the separating hyperplane? 

Find w and b which  
      minimize  ||w||2     
  (maximize the separating region) 
 

and satisfy 
      (wxi+b)yi-1>=0 
For all examples in the training set 

{(x1,y1),(x2,y2),…,(xL,yL)}  
      yi=-1 for the green class 
      yi=1  for the red class 
(classify correctly all examples from the 

training set) 
 
 
 

 
   
 

m 

m 

wx+b=0 
wx+b=-1 

wx+b=1 
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Support Vector Machines 
The constrained minimization problem can be solved by using the 

Lagrange multipliers method: 
Initial problem:    
    minimize  ||w||2  such that (wxi+b)yi-1>=0  for all i=1..L 
Introducing the Lagrange multipliers, the initial optimization problem is 

transformed in a problem of finding the saddle point of V: 
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Support Vector Machines 
Thus we arrived to the problem of maximizing the dual function (with 

respect to α): 
    

such that the following constraints are satisfied: 
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By solving the above problem (with respect to the multipliers α) the 
coefficients of the separating hyperplane can be computed as 
follows: 
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where k is the index of a non-zero multiplier and xk is the corresponding 
training example (belonging to class +1) 
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Support Vector Machines 
Remarks: 
• The nonzero multipliers correspond to the examples for which the 

constraints are active (w x+b=1 or w x+b=-1). These examples are 
called support vectors and they are the only examples which have 
an influence on the equation of the separating hyperplane 
 

• the other examples from the training set (those corresponding to 
zero multipliers) can be modified without influencing the separating 
hyperplane) 

 
• The decision function obtained by solving the quadratic optimizaton 

problem is: 
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Support Vector Machines 
What happens when the data are not very well separated?  

The condition corresponding to each class is 
relaxed: 

1 daca    ,1
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Thus the constraints in the dual problem are also changed: 

Cii ≤≤≥ αα 0 used isit   0 of instead



Neural and Evolutionary Computing - 
Lecture 2-3 

83 

Support Vector Machines 
What happens if the problem is nonlineary separable?  
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Support Vector Machines 
In the general case a transformation is applied: 

)',()'()(
:becomes  vectorsed transform theofproduct scalar   theand  )(

xxKxx
xx

=⋅
→

θθ
θ

Since the optimization problem contains only scalar products it is not 
necessary to know explicitly the transformation θ but it is enough to 
know the kernel function K 
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Support Vector Machines 

Example 2: Constructing a kernel function when the decision surface 
corresponds to an arbitrary quadratic function (from dimension 2 the 
pb.is transferred in dimension 5).  
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Support Vector Machines 
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The decision function becomes: 

Examples of kernel functions: 
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Support Vector Machines 
Implementations 
 
LibSVM  [http://www.csie.ntu.edu.tw/~cjlin/libsvm/]: (+ links to 

implementations in Java, Matlab, R, C#, Python, Ruby) 
 
SVM-Light [http://www.cs.cornell.edu/People/tj/svm_light/]: 

implementation in C 
 
Spider [http://www.kyb.tue.mpg.de/bs/people/spider/tutorial.html]: 

implementation in Matlab  
 
SciLab interface for  LibSVM 

(http://atoms.scilab.org/toolboxes/libsvm 
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