
Neural and Evolutionary Computing -
Lecture 2-3

1

Feedforward Neural Networks.
Classification and Approximation

 Classification and Approximation Problems

 BackPropagation (BP) Neural Networks

 Radial Basis Function (RBF) Networks

 Support Vector Machines

Neural and Evolutionary Computing -
Lecture 2-3

2

Classification problems

2

Example 1: identifying the type of an iris flower

• Attributes: sepal/petal lengths, sepal/petal width
• Classes: Iris setosa, Iris versicolor, Iris virginica

Example 2: handwritten character recognition
• Attributes: various statistical and geometrical

characteristics of the corresponding image
• Classes: set of characters to be recognized
⇒ Classification = find the relationship between some

vectors with attribute values and classes labels
 (Du Trier et al; Feature extraction methods for character
 Recognition. A Survey. Pattern Recognition, 1996)

Neural and Evolutionary Computing -
Lecture 2-3

3

Classification problems
Classification:

– Problem: identify the class to which a given data (described

by a set of attributes) belongs

– Prior knowledge: examples of data belonging to each class

Simple example:
 linearly separable case

A more difficult example:
 nonlinearly separable case

Neural and Evolutionary Computing -
Lecture 2-3

4

Approximation problems
• Estimation of a hous price knowing:

– Total surface
– Number of rooms
– Size of the back yard
– Location

 => approximation problem = find a numerical relationship
between some output and input value(s)

• Estimating the amount of resources required by a software application
or the number of users of a web service or a stock price knowing
historical values

 => prediction problem=
find a relationship between future values
 and previous values

Neural and Evolutionary Computing -
Lecture 2-3

5

Approximation problems
Regression (fitting, prediction):

– Problem: estimate the value of a characteristic depending

on the values of some predicting characteristics
– Prior knowledge: pairs of corresponding values (training set)

x

y

Known values

Estimated value (for x’ which is not in the training set)

x’

Neural and Evolutionary Computing -
Lecture 2-3

6

Approximation problems

All approximation (mapping) problems can be stated as follows:

Starting from a set of data (Xi,Yi), Xi in RN and Yi din RM find a

function F:RN -> RM which minimizes the distance between the
data and the corresponding points on its graph: ||Yi-F(Xi)||2

Questions:

• What structure (shape) should have F ?
• How can we find the parameters defining the properties of F ?

Neural and Evolutionary Computing -
Lecture 2-3

7

Approximation problems
Can be such a problem be solved by using neural networks ?

Yes, at least in theory, the neural networks are proven “universal

approximators” [Hornik, 1985]:

“ Any continuous function can be approximated by a feedforward

neural network having at least one hidden layer. The accuracy
of the approximation depends on the number of hidden units.”

• The shape of the function is influenced by the architecture of the

network and by the properties of the activation functions.

• The function parameters are in fact the weights corresponding
to the connections between neurons.

Neural and Evolutionary Computing -
Lecture 2-3

8

Neural Networks Design
Steps to follow in designing a neural network:

• Choose the architecture: number of layers, number of units on

each layer, activation functions, interconnection style

• Train the network: compute the values of the weights using the
training set and a learning algorithm.

• Validate/test the network: analyze the network behavior for data
which do not belong to the training set.

Neural and Evolutionary Computing -
Lecture 2-3

9

Functional units (neurons)
Functional unit: several inputs, one output
Notations:
• input signals: y1,y2,…,yn
• synaptic weights: w1,w2,…,wn

(they model the synaptic permeability)
• threshold (bias): b (or theta)
(it models the activation threshold of the

neuron)
• Output: y

• All these values are usually real

numbers

inputs

output

Weights assigned to
the connections

w1

w2

y1

y2

yn wn

Neural and Evolutionary Computing -
Lecture 2-3

10

Functional units (neurons)
Output signal generation:
• The input signals are “combined” by using the connection weights

and the threshold
– The obtained value corresponds to the local potential of the

neuron
– This “combination” is obtained by applying a so-called

aggregation function
• The output signal is constructed by applying an activation function

– It corresponds to the pulse signals propagated along the axon

Input signals
(y1,…,yn)

Neuron’s state
(u)

Output signal
(y)

Aggregation
function

Activation
function

Neural and Evolutionary Computing -
Lecture 2-3

11

Functional units (neurons)
Aggregation functions:

...

)(

1,11

2

1
0

1

++==

−=−=

∑∑∏

∑∑

===

==

ji

n

ji
ijj

n

j
j

n

j

w
j

j

n

j
jj

n

j
j

yywywuyu

ywuwywu

j

Weighted sum Euclidean distance

Remark: in the case of the weighted sum the threshold can be
interpreted as a synaptic weight which corresponds to a virtual unit
which always produces the value -1

j

n

j
j ywu ∑

=

=
0

Multiplicative neuron High order connections

Neural and Evolutionary Computing -
Lecture 2-3

12

Functional units (neurons)
Activation functions:

uuf
u

uu
u

uf

u
u

uHuf

u
u

uuf

=

>
≤≤−

−<−
=

>
≤

==

>
≤−

==

)(
11

11
11

)(

01
00

)()(

01
01

)sgn()(signum

Heaviside

Saturated linear

linear

Neural and Evolutionary Computing -
Lecture 2-3

13

Functional units (neurons)
Sigmoidal aggregation functions

)exp(1
1)(

1)2exp(
1)2exp()tanh()(

u
uf

u
uuuf

−+
=

+
−

==

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

-6 -4 -2 2 4 6

-1

-0.5

0.5

1(Hyperbolic tangent)

(Logistic)

Neural and Evolutionary Computing -
Lecture 2-3

14

Functional units (neurons)
• What can do a single neuron ?
• It can solve simple problems (linearly

separable problems)

OR
0 1

0

1

0 1

1 1 y=H(w1x1+w2x2-b)

Ex: w1=w2=1, w0=0.5

x1

x2

w1

w2

y

b
-1

Neural and Evolutionary Computing -
Lecture 2-3

15

Functional units (neurons)
• What can do a single neuron ?
• It can solve simple problems (linearly

separable problems)

OR
0 1

0

1

0 1

1 1 y=H(w1x1+w2x2-w0)

Ex: w1=w2=1, w0=0.5

x1

x2

w1

w2

y

w0
-1

AND
0 1

0

1

0 0

0 1

 y=H(w1x1+w2x2-w0)
Ex: w1=w2=1, w0=1.5

Neural and Evolutionary Computing -
Lecture 2-3

16

Functional units (neurons)
Representation of boolean functions: f:{0,1}2->{0,1}

Linearly separable
problem: one layer
network

Nonlinearly separable
problem: multilayer
network

OR

XOR

Neural and Evolutionary Computing -
Lecture 2-3

17

Architecture and notations
Feedforward network with K layers

0 1 k

Input
layer

Hidden layers Output layer

Y0=X

… … K
W1 W2 Wk Wk+1 WK

X1

Y1

F1

Xk

Yk

Fk

XK

YK

FK

X = input vector, Y= output vector, F=vectorial activation function

Neural and Evolutionary Computing -
Lecture 2-3

18

Functioning
Computation of the output vector

)()(

)))(...((
1

1111

−

−−

==

=
kkkkk

KKKKK

YWFXFY

XWFWFWFY

FORWARD Algorithm (propagation of the input signal toward the
output layer)

Y[0]:=X (X is the input signal)
FOR k:=1,K DO
 X[k]:=W[k]Y[k-1]
 Y[k]:=F(X[k])
ENDFOR
Rmk: Y[K] is the output of the network

Neural and Evolutionary Computing -
Lecture 2-3

19

A particular case
One hidden layer

Adaptive parameters: W1, W2

kjkjikik

N

k

N

j
jkjiki

wwww

xwfwfy

==

= ∑ ∑

= =

)1()2(

1

0

0

0

)1(
1

)2(
2

; :notationsimpler A

Neural and Evolutionary Computing -
Lecture 2-3

20

Learning process
Learning based on minimizing a error function
• Training set: {(x1,d1), …, (xL,dL)}
• Error function (mean squared error):

2

1

2

1

1

0

0

0
122

1)(∑∑ ∑ ∑
= = = =

−=

L

l

N

i

N

k

N

j
jkjik

l
i xwfwfd

L
WE

• Aim of learning process: find W which minimizes the error function
• Minimization method: gradient method

Neural and Evolutionary Computing -
Lecture 2-3

21

Learning process

Gradient based adjustement
ij

ijij w
twEtwtw

∂
∂

−=+
))(()()1(η

2

1

2

1

1

0

0

0
122

1)(∑∑ ∑ ∑
= = = =

−=

L

l

N

i

N

k

N

j
jkjik

l
i xwfwfd

L
WE

xk

yk

xi

yi

El(W)

Learning rate

Neural and Evolutionary Computing -
Lecture 2-3

22

Learning process
• Partial derivatives computation

2

1

2

1

1

0

0

0
122

1)(∑∑ ∑ ∑
= = = =

−=

L

l

N

i

N

k

N

j
jkjik

l
i xwfwfd

L
WE

xk

yk

xi

yi

∑ ∑ ∑

∑∑

= = =

==

−=

−=

−=−−=

∂
∂

−=−−=
∂

∂

2

1

2
1

0

0

0
12

2

1

'
1

'
1

'
2

2

1

'
2

2
1)(

)()()()()(

)()()(

N

i

N

k

N

j
jkjik

l
il

j
l
kj

N

i

l
iikkjkii

l
i

N

i
ik

kj

l

k
l
ikii

l
i

ik

l

xwfwfdWE

xxwxfxxfxfydw
w

WE

yyxfyd
w

WE

δδ

δ

Neural and Evolutionary Computing -
Lecture 2-3

23

Learning process
• Partial derivatives computation

∑ ∑ ∑

∑∑

= = =

==

−=

−=

−=−−=

∂
∂

−=−−=
∂

∂

2

1

2
1

0

0

0
12

2

1

'
1

'
1

'
2

2

1

'
2

2
1)(

)()()()()(

)()()(

N

i

N

k

N

j
jkjik

l
il

j
l
kj

N

i

l
iikkjkii

l
i

N

i
ik

kj

l

k
l
ikii

l
i

ik

l

xwfwfdWE

xxwxfxxfxfydw
w

WE

yyxfyd
w

WE

δδ

δ

Remark:
The derivatives of sigmoidal activation functions have particular

properties:
Logistic: f’(x)=f(x)(1-f(x))=y(1-y)
Tanh: f’(x)=1-f2(x)=1-y2

Neural and Evolutionary Computing -
Lecture 2-3

24

The BackPropagation Algorithm
Main idea:
For each example in the training

set:
 - compute the output signal
 - compute the error

corresponding to the output
level

 - propagate the error back into
the network and store the
corresponding delta values
for each layer

 - adjust each weight by using
the error signal and input
signal for each layer

Computation of the output signal (FORWARD)

Computation of the error signal (BACKWARD)

Neural and Evolutionary Computing -
Lecture 2-3

25

The BackPropagation Algorithm
General structure
Random initialization of weights

REPEAT
 FOR l=1,L DO
 FORWARD stage
 BACKWARD stage
 weights adjustement
 ENDFOR
 Error (re)computation
UNTIL <stopping condition>

Rmk.
• The weights adjustment

depends on the learning rate
• The error computation needs

the recomputation of the output
signal for the new values of the
weights

• The stopping condition depends
on the value of the error and on
the number of epochs

• This is a so-called serial
(incremental) variant: the
adjustment is applied separately
for each example from the
training set

ep
oc

h

Neural and Evolutionary Computing -
Lecture 2-3

26

The BackPropagation Algorithm

ENDFOR

: ,:
/* Stept Adjustemen * /

)(:),)((:

/* Step BACKWARD * /

)(: ,:),(: ,:

/* Step FORWARD * /
DO ,1: FOR

REPEAT
0:

)1,1(:),1,1(:

2

1

'
1

'
2

2

1

0
1

0

0

l
k

l
iikik

l
j

l
kkjkj

N

i

l
iik

l
k

l
k

l
i

l
i

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

ikkj

ywwxww

wxfydxf

xfyywxxfyxwx

Ll

p
randwrandw

ηδηδ

δδδ

+=+=

=−=

====

=

=

−=−=

∑

∑∑

=

==

Details (serial variant)

Neural and Evolutionary Computing -
Lecture 2-3

27

The BackPropagation Algorithm
Details (serial variant)

* OR UNTIL
1:

)2/(:
ENDFOR

)(:

/* summation Error * /

)(: ,:),(: ,:

/* Step FORWARD * /
DO ,1: FOR

0:
/*n computatioError * /

max

1

2

2

1

0
1

0

0

EEpp
pp

LEE

ydEE

xfyywxxfyxwx

Ll
E

L

l

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

<>
+=

=

−+=

====

=
=

∑

∑∑

=

==

E* denotes the expected training accuracy
pmax denots the maximal number of epochs

Neural and Evolutionary Computing -
Lecture 2-3

28

The BackPropagation Algorithm
Batch variant
Random initialization of weights

REPEAT
 initialize the variables which will

contain the adjustments
 FOR l=1,L DO
 FORWARD stage
 BACKWARD stage
 cumulate the adjustments
 ENDFOR
 Apply the cumulated adjustments
 Error (re)computation
UNTIL <stopping condition>

Rmk.
• The incremental variant can be

sensitive to the presentation
order of the training examples

• The batch variant is not
sensitive to this order and is
more robust to the errors in the
training examples

• It is the starting algorithm for
more elaborated variants, e.g.
momentum variant

ep
oc

h

Neural and Evolutionary Computing -
Lecture 2-3

29

The BackPropagation Algorithm

21

2211

2

1

'
1

'
2

2

1

0
1

0

0

21

: ,:
ENDFOR

: ,:
/* step Adjustment * /

)(:),)((:

/*step BACKWARD * /

)(: ,:),(: ,:

/* step FORWARD * /
DO ,1: FOR

00
REPEAT

0:

0..0,1..0,2..1),1,1(:),1,1(:

ikikikkjkjkj

l
k

l
iikik

l
j

l
kkjkj

N

i

l
iik

l
k

l
k

l
i

l
i

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

ikkj

ikkj

wwww

yx

wxfydxf

xfyywxxfyxwx

Ll
:,Δ:Δ

p
NjNkNirandwrandw

∆+=∆+=

+∆=∆+∆=∆

=−=

====

=

==

=

===−=−=

∑

∑∑

=

==

ηδηδ

δδδ

Details (batch variant)

Neural and Evolutionary Computing -
Lecture 2-3

30

The BackPropagation Algorithm

* OR UNTIL
1:

)2/(:
ENDFOR

)(:

/* summation Error * /

)(: ,:),(: ,:

/* Step FORWARD * /
DO ,1: FOR

0:
/*n computatioError * /

max

1

2

2

1

0
1

0

0

EEpp
pp

LEE

ydEE

xfyywxxfyxwx

Ll
E

L

l

l
i

l
i

l
i

l
i

N

k

l
kik

l
i

l
k

l
k

N

j

l
jkj

l
k

<>
+=

=

−+=

====

=
=

∑

∑∑

=

==

Neural and Evolutionary Computing -
Lecture 2-3

31

Variants
Different variants of BackPropagation can be designed by changing:

 Error function

 Minimization method

 Learning rate choice

 Weights initialization

Neural and Evolutionary Computing -
Lecture 2-3

32

Variants
Error function:
 MSE (mean squared error function) is appropriate in the case of

approximation problems
 For classification problems a better error function is the cross-

entropy error:
 Particular case: two classes (one output neuron):

– dl is from {0,1} (0 corresponds to class 0 and 1 corresponds to
class 1)

– yl is from (0,1) and can be interpreted as the probability of class
1

∑
=

−−+−=
L

l
llll ydydWCE

1

))1ln()1(ln()(

Rmk: the partial derivatives change, thus the adjustment terms
will be different

Neural and Evolutionary Computing -
Lecture 2-3

33

Variants

)1()1(

)1(
)1(

)1()1(
)()

1
1

()2('
2

llll

ll
ll

llll

l

l

l

l
l

dyyd

yy
yy

dyydxf
y
d

y
d

−−−=

−⋅
−

−−−
=

−
−

−=δ

Entropy based error:
 Different values of the partial derivatives
 In the case of logistic activation functions the error signal will be:

Neural and Evolutionary Computing -
Lecture 2-3

34

Variants
Minimization method:
 The gradient method is a simple but not very efficient method

 More sophisticated and faster methods can be used instead:

 Conjugate gradient methods
 Newton’s method and its variants

 Particularities of these methods:

 Faster convergence (e.g. the conjugate gradient converges in n
steps for a quadratic error function)

 Needs the computation of the hessian matrix (matrix with
second order derivatives) : second order methods

Neural and Evolutionary Computing -
Lecture 2-3

35

Variants
Example: Newton’s method

))(())(()()1(

:is wof estimation new theThus
0))(()())(())((

:ofsolution thebe willminimum
 the respect towith expansion sTaylor' thederivatingBy

))(())((

))())((())((
2
1))(()))((())(()(

p)epoch toingcorrespondn (estimatio)(in expansion sTaylor'By
 weightsall of vector theis ,:

1 pwEpwHpwpw

pwEpwpwHwpwH

w

ww
pwEpwH

pwwpwHpwwpwwpwEpwEwE

pw
RwRRE

ji
ij

TT

nn

∇⋅−=+

=∇+−

∂∂
∂

=

−−+−∇+≅

∈→

−

Neural and Evolutionary Computing -
Lecture 2-3

36

Variants

Advantage:
• Does not need the computation of the hessian

j

i
ij

T
p

T

L

l

T
Ll

w
wEwJ

wewJ

pwepwJIpwJpwJpwpw

wEwEwewEwE

∂
∂

=

=

+⋅−=+

==

−
=
∑

)(
)(

)(ofjacobian)(

))(())(()))(())((()()1(

))(),...,(()(),()(

1
1

1

µ

Particular case: Levenberg-Marquardt
• This is the Newton method adapted for the case when the

objective function is a sum of squares (as MSE is)

Used in order to deal with
singular matrices

Neural and Evolutionary Computing -
Lecture 2-3

37

Problems in BackPropagation
 Low convergence rate (the error decreases too slow)

 Oscillations (the error value oscillates instead of continuously

decreasing)

 Local minima problem (the learning process is stuck in a local
minima of the error function)

 Stagnation (the learning process stagnates even if it is not a
local minima)

 Overtraining and limited generalization

Neural and Evolutionary Computing -
Lecture 2-3

38

Problems in BackPropagation
Problem 1: The error decreases too slow or the error value

oscillates instead of continuously decreasing

Causes:
• Inappropriate value of the learning rate (too small values lead to

slow convergence while too large values lead to oscillations)
– Solution: adaptive learning rate

• Slow minimization method (the gradient method needs small

learning rates in order to converge)
 Solutions:
 - heuristic modification of the standard BP (e.g. momentum)
 - other minimization methods (Newton, conjugate gradient)

Neural and Evolutionary Computing -
Lecture 2-3

39

Problems in BackPropagation
Adaptive learning rate:

• If the error is increasing then the learning rate should be decreased
• If the error significantly decreases then the learning rate can be

increased
• In all other situations the learning rate is kept unchanged

)1()()1()1()()1()1(
21),1()()1()1()(
10),1()()1()1()(

−=⇒−+≤≤−−
<<−=⇒−−<
<<−=⇒−+>

pppEpEpE
bpbppEpE
apappEpE

ηηγγ
ηηγ
ηηγ

Example: γ=0.05

Neural and Evolutionary Computing -
Lecture 2-3

40

Problems in BackPropagation
Momentum variant:
 Increase the convergence speed by introducing some kind of

“inertia” in the weights adjustment: the weight changes
corresponding to the current epoch includes the adjustments from
the previous epoch

)()1()1(pwypw ijjiij ∆+−=+∆ αδαη

Momentum coefficient: α in [0.1,0.9]

Neural and Evolutionary Computing -
Lecture 2-3

41

Problems in BackPropagation
Momentum variant:
 The effect of these enhancements is that flat spots of the error

surface are traversed relatively rapidly with a few big steps, while
the step size is decreased as the surface gets rougher. This
implicit adaptation of the step size increases the learning speed
significantly.

Simple gradient
descent

Use of inertia term

Neural and Evolutionary Computing -
Lecture 2-3

42

Problems in BackPropagation
Problem 2: Local minima problem (the learning process is stuck in a

local minima of the error function)

Cause: the gradient based methods are local optimization methods

Solutions:
• Restart the training process using other randomly initialized

weights
• Introduce random perturbations into the values of weights:

 variablesrandom : , =+= ijijijij ww ξξ

• Use a global optimization method

Neural and Evolutionary Computing -
Lecture 2-3

43

Problems in BackPropagation
Solution:
• Replacing the gradient method with a stochastic optimization

method
• This means using a random perturbation instead of an adjustment

based on the gradient computation
• Adjustment step:

)W:(W adjustment accept the THEN)()(IF

 valuesrandom

∆+=<∆+

=∆

WEWE
ij

Rmk:
• The adjustments are usually based on normally distributed

random variables
• If the adjustment does not lead to a decrease of the error then it is

not accepted

Neural and Evolutionary Computing -
Lecture 2-3

44

Problems in BackPropagation
Problem 3: Stagnation (the learning process

stagnates even if it is not a local minima)

Cause: the adjustments are too small because the

arguments of the sigmoidal functions are too large

Solutions:

– Penalize the large values of the weights
(weights-decay)

– Use only the signs of derivatives not their

values

-6 -4 -2 2 4 6

0.2

0.4

0.6

0.8

1

Very small derivates

Neural and Evolutionary Computing -
Lecture 2-3

45

Problems in BackPropagation

Penalization of large values of the weights: add a regularization
term to the error function

∑+=
ji

ijr wWEWE
,

2
)()()(λ

The adjustment will be:

ijij
r
ij wλ2)(−∆=∆

Neural and Evolutionary Computing -
Lecture 2-3

46

Problems in BackPropagation
Resilient BackPropagation (use only the sign of the derivative not

its value)

ab

w
pWE

w
pWEpb

w
pWE

w
pWEpa

p

w
pWEp

w
pWEp

pw

ijij
ij

ijij
ij

ij

ij
ij

ij
ij

ij

<<<

<
∂

−∂
⋅

∂
−∂

−∆

>
∂

−∂
⋅

∂
−∂

−∆
=∆

<
∂

−∂
∆

>
∂

−∂
∆−

=∆

10

0))2(())1((if)1(

0))2(())1((if)1(
)(

0))1((if)(

0))1((if)(
)(

Neural and Evolutionary Computing -
Lecture 2-3

47

Problems in BackPropagation

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem 4: Overtraining and limited generalization ability

5 hidden units 10 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Neural and Evolutionary Computing -
Lecture 2-3

48

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10 hidden units 20 hidden units

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Neural and Evolutionary Computing -
Lecture 2-3

49

Problems in BackPropagation
Problem 4: Overtraining and limited generalization ability

Causes:
• Network architecture (e.g. number of hidden units)

– A large number of hidden units can lead to overtraining (the
network extracts not only the useful knowledge but also the
noise in data)

• The size of the training set
– Too few examples are not enough to train the network

• The number of epochs (accuracy on the training set)
– Too many epochs could lead to overtraining

Solutions:
• Dynamic adaptation of the architecture
• Stopping criterion based on validation error; cross-validation

Neural and Evolutionary Computing -
Lecture 2-3

50

Problems in BackPropagation
Dynamic adaptation of the architectures:

• Incremental strategy:

– Start with a small number of hidden neurons
– If the learning does not progress new neurons are introduced

• Decremental strategy:

– Start with a large number of hidden neurons
– If there are neurons with small weights (small contribution to the

output signal) they can be eliminated

Neural and Evolutionary Computing -
Lecture 2-3

51

Problems in BackPropagation
Stopping criterion based on validation error :

• Divide the learning set in m parts: (m-1) are for training and

another one for validation
• Repeat the weights adjustment as long as the error on the

validation subset is decreasing (the learning is stopped when
the error on the validation subset start increasing)

Cross-validation:
• Applies for m times the learning algorithm by successively

changing the learning and validation steps

1: S=(S1,S2,,Sm)
2: S=(S1,S2,,Sm)
....
m: S=(S1,S2,,Sm)

Neural and Evolutionary Computing -
Lecture 2-3

52

Problems in BackPropagation

Stop the learning process when the error on the validation set start

to increase (even if the error on the training set is still
decreasing) :

Error on the training set

Error on the validation set

Neural and Evolutionary Computing -
Lecture 2-3

53

RBF networks
RBF - “Radial Basis Function”:

Architecture:

– Two levels of functional units
– Aggregation functions:

• Hidden units: distance

between the input
vector and the
corresponding center
vector

• Output units: weighted
sum

N K M

C W

centers weights

∑
=

−=−=
N

i

k
ii

kk cxCXCXG
1

2)(),(

Rmk: hidden units do not have
bias values (activation thresholds)

Neural and Evolutionary Computing -
Lecture 2-3

54

RBF networks
The activation functions for the hidden

neurons are functions with radial
symmetry

– Hidden units generates a significant

output signal only for input vectors
which are close enough to the
corresponding center vector

The activation functions for the output units
are usually linear functions

N K M

C W

centers weights

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

Neural and Evolutionary Computing -
Lecture 2-3

55

RBF networks
Examples of functions with

radial symmetry:

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

22
3

22
2

22
1

/1)(

)/(1)(

))2/(exp()(

σ

σ

σ

+=

+=

−=

uug

uug
uug

g1 (σ=1)

g2 (σ=1)

g3 (σ=1)

Rmk: the parameter σ controls
the width of the graph

Neural and Evolutionary Computing -
Lecture 2-3

56

RBF networks
Computation of the output signal:

)(,

,1 ,)(

0
1

0
1

k
ki

K

k
kiki

i

K

k

k
iki

CXgzwzwy

MiwCXgwy

−=−=

=−−=

∑

∑

=

= N K M

C W

Centers matrix Weight matrix

The vectors Ck can be interpreted as prototypes;
 - only input vectors similar to the prototype of the hidden unit

“activate” that unit
 - the output of the network for a given input vector will be

influenced only by the output of the hidden units having centers
close enough to the input vector

Neural and Evolutionary Computing -
Lecture 2-3

57

RBF networks
Each hidden unit is “sensitive” to a

region in the input space
corresponding to a neighborhood
of its center. This region is called
receptive field

The size of the receptive field
depends on the parameter σ

−= 2

2

2
exp)(

σ
uug

2σ

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1

σ =1.5

σ =0.5

σ =1

Neural and Evolutionary Computing -
Lecture 2-3

58

RBF networks
• The receptive fields of all hidden

units covers the input space
• A good covering of the input space

is essential for the approximation
power of the network

• Too small or too large values of the
width of the radial basis function
lead to inappropriate covering of the
input space

-10 -7.5 -5 -2.5 2.5 5 7.5 10

0.2

0.4

0.6

0.8

1

subcovering overcovering

appropriate covering

Neural and Evolutionary Computing -
Lecture 2-3

59

RBF networks
• The receptive fields of all hidden

units covers the input space
• A good covering of the input space

is essential for the approximation
power of the network

• Too small or too large values of the
width of the radial basis function
lead to inappropriate covering of the
input space

subcovering
overcovering

appropriate covering

σ=0.01

σ=1

σ=100

Neural and Evolutionary Computing -
Lecture 2-3

60

RBF networks
RBF networks are universal approximators:
 a network with N inputs and M outputs can approximate any

function defined on RN, taking values in RM, as long as there are
enough hidden units

The theoretical foundations of RBF networks are:

• Theory of approximation
• Theory of regularization

Neural and Evolutionary Computing -
Lecture 2-3

61

RBF networks
Adaptive parameters:
• Centers (prototypes) corresponding to hidden units
• Receptive field widths (parameters of the radial symmetry

activation functions)
• Weights associated to connections between the hidden and

output layers

Learning variants:
• Simultaneous learning of all parameters (similar to

BackPropagation)
– Rmk: same drawbacks as multilayer perceptron’s

BackPropagation
• Separate learning of parameters: centers, widths, weights

Neural and Evolutionary Computing -
Lecture 2-3

62

RBF networks
Separate learning :
Training set: {(x1,d1), …, (xL,dL)}

1. Estimating of the centers: simplest variant

• K=L (nr of centers = nr of examples),
• Ck=xk (this corresponds to the case of exact

interpolation: see the example for XOR)

Neural and Evolutionary Computing -
Lecture 2-3

63

RBF networks
Example (particular case) : RBF network to represent XOR
• 2 input units
• 4 hidden units
• 1 output unit

0
1

1

 0

Centers:
Hidden unit 1: (0,0)
Hidden unit 2: (1,0)
Hidden unit 3: (0,1)
Hidden unit 4: (1,1)

Weights:
w1: 0
w2: 1
w3: 1
w4: 0

Activation function:
g(u)=1 if u=0
g(u)=0 if u<>0

This approach cannot be applied for general approximation problems

Neural and Evolutionary Computing -
Lecture 2-3

64

RBF networks
Separate learning :
Training set: {(x1,d1), …, (xL,dL)}

1. Estimating of the centers

• K<L : the centers are established
• by random selection from the training set

• simple but not very effective

• by systematic selection from the training set
(Orthogonal Least Squares)

• by using a clustering method

Neural and Evolutionary Computing -
Lecture 2-3

65

RBF networks
Orthogonal Least Squares:

• Incremental selection of centers such that the error on the

training set is minimized

• The new center is chosen such that it is orthogonal on the

space generated by the previously chosen centers (this process
is based on the Gram-Schmidt orthogonalization method)

• This approach is related with regularization theory and ridge
regression

Neural and Evolutionary Computing -
Lecture 2-3

66

RBF networks
Clustering:

• Identify K groups in the input data {X1,…,XL} such that data in a

group are sufficiently similar and data in different groups are
sufficiently dissimilar

• Each group has a representative (e.g. the mean of data in the
group) which can be considered the center

• The algorithms for estimating the representatives of data belong
to the class of partitional clustering methods

• Classical algorithm: K-means

Neural and Evolutionary Computing -
Lecture 2-3

67

RBF networks
K-means:

• Start with randomly initialized

centers

• Iteratively:

– Assign data to clusters based
on the nearest center criterion

– Recompute the centers as
mean values of elements in
each cluster

Neural and Evolutionary Computing -
Lecture 2-3

68

RBF networks
K-means:

• Start with randomly initialized

centers

• Iteratively:

– Assign data to clusters based
on the nearest center criterion

– Recompute the centers as
mean values of elements in
each cluster

Neural and Evolutionary Computing -
Lecture 2-3

69

RBF networks
K-means:

• Ck:=(rand(min,max),…,rand(min,max)), k=1..K or
 Ck is a randomly selected input data

• REPEAT

– FOR l:=1,L
 Find k(l) such that d(Xl,Ck(l)) <=d(Xl,Ck)
 Assign Xl to class k(l)
– Compute
 Ck: = mean of elements which were assigned to class k
UNTIL “no modification in the centers of the classes”

Remarks:
• usually the centers are not from the set of data
• the number of clusters should be known in advance

Neural and Evolutionary Computing -
Lecture 2-3

70

RBF networks
Incremental variant:

• Start with a small number of centers, randomly initialized

• Scan the set of input data:

– If there is a center close enough to the data then this center is

slightly adjusted in order to become even closer to the data

– if the data is dissimilar enough with respect to all centers then a
new center is added (the new center will be initialized with the data
vector)

Neural and Evolutionary Computing -
Lecture 2-3

71

RBF networks
Incremental variant:

εη
ηη

ηδ

α

<>
=

+=
=+=

−⋅+=<

≤∈

=

=
===

=

−

 OR UNTIL
:

1:
 :;1: ELSE

)(: THEN),(IF
),(),(such that },...,1{* find

DO L1,:l FOR
REPEAT

0:
..1;..1max),(min,:

:

max

0

*

0

tt
t

tt
XCKK

CXCCCXd
CXdCXdKk

t
KkNirandC

KK

lK

klkkkl

klkl

k
i

δ is a disimilarity threshold
α controls the decrease of the learning rates

Neural and Evolutionary Computing -
Lecture 2-3

72

RBF networks
2. Estimating the receptive fields widths.

Heuristic rules:

kunit by drepresente orsinput vect:,...,),,(1

 tocenters closest the:,...,),,(1
]1,5.0[, center toclosest the),,(

centersbetween distance maximal ,
2

1

1

1

1

max
max

∑

∑

=

=

=

=

∈==

==

k
k

q

j

qjk

k
k

jm
m

j

jk
k

kjjk
k

XXXCd
q

σ

CmCCCCd
m

σ

CCCCdσ

d
K

d

γγ

σ

Neural and Evolutionary Computing -
Lecture 2-3

73

RBF networks
3. Estimating the weights of

connections between hidden
and output layers:

• This is equivalent with the

problem of training one layer
linear network

• Variants:
– Apply linear algebra tools

(pseudo-inverse computation)
– Apply Widrow-Hoff learning

(training based on the gradient
method applied to one layer
neural networks)

 Initialization:
wij(0):=rand(-1,1) (the weights are

randomly initialized in [-1,1]),
k:=0 (iteration counter)

 Iterative process
REPEAT

FOR l:=1,L DO
Compute yi(l) and

deltai(l)=di(l)-yi(l), i=1,M
Adjust the weights:

wij:=wij+eta*deltai(l)*xj(l)
Compute the E(W) for the new

values of the weights
k:=k+1

UNTIL E(W)<E* OR k>kmax

Neural and Evolutionary Computing -
Lecture 2-3

74

RBF vs. BP networks
RBF networks:

• 1 hidden layer

• Distance based aggregation

function for the hidden units
• Activation functions with

radial symmetry for hidden
units

• Linear output units
• Separate training of adaptive

parameters

• Similar with local

approximation approaches

BP networks:

• many hidden layers

• Weighted sum as aggregation

function for the hidden units
• Sigmoidal activation functions

for hidden neurons

• Linear/nonlinear output units

• Simultaneous training of
adaptive parameters

• Similar with global
approximation approaches

Neural and Evolutionary Computing -
Lecture 2-3

75

Support Vector Machines
Support Vector Machine (SVM) = machine learning technique

characterized by

• The learning process is based on solving a quadratic optimization
problem

• Ensures a good generalization power

• It relies on the statistical learning theory (main contributors:
Vapnik and Chervonenkis)

• applications: handwritten recognition, speaker identification ,
object recognition

• Bibliografie: C.Burges – A Tutorial on SVM for Pattern Recognition, Data Mining
and Knowledge Discovery, 2, 121–167 (1998)

Neural and Evolutionary Computing -
Lecture 2-3

76

Support Vector Machines
Let us consider a simple linearly

separable classification problem

There is an infinity of lines (hyperplanes, in
the general case) which ensure the
separation in the two classes

Which separating hyperplane is the best?

That which leads to the best generalization

ability = correct classification for data
which do not belong to the training set

Neural and Evolutionary Computing -
Lecture 2-3

77

Support Vector Machines
Which is the best separating line (hyperplane) ?

That for which the minimal distance to the
convex hulls corresponding to the two
classes is maximal

The lines (hyperplanes) going through the

marginal points are called canonical lines
(hyperplanes)

The distance between these lines is 2/||w||,
Thus maximizing the width of the separating

regions means minimizing the norm of w

m

m

wx+b=0

Eq. of the separating
hyperplane

wx+b=-1

wx+b=1

Neural and Evolutionary Computing -
Lecture 2-3

78

Support Vector Machines
How can we find the separating hyperplane?

Find w and b which
 minimize ||w||2
 (maximize the separating region)

and satisfy
 (wxi+b)yi-1>=0
For all examples in the training set

{(x1,y1),(x2,y2),…,(xL,yL)}
 yi=-1 for the green class
 yi=1 for the red class
(classify correctly all examples from the

training set)

m

m

wx+b=0
wx+b=-1

wx+b=1

Neural and Evolutionary Computing -
Lecture 2-3

79

Support Vector Machines
The constrained minimization problem can be solved by using the

Lagrange multipliers method:
Initial problem:
 minimize ||w||2 such that (wxi+b)yi-1>=0 for all i=1..L
Introducing the Lagrange multipliers, the initial optimization problem is

transformed in a problem of finding the saddle point of V:

),,(minmax*)*,*,(:ifpoint saddle is *)*,*,(

0),1)((
2
1),,(

,

1

2

ααα

ααα

α bwVbwVbw

bxwywbwV

bw

iii

L

i
i

=

≥−+⋅−= ∑
=

To solve this problem the dual function should be constructed:

i

L

i
iii

L

i
i

bw

y
b
bwVxyw

w
bwV

bwVW

∑∑
==

=⇒=
∂

∂
=⇒=

∂
∂

=

11

,

00),,(0),,(

),,(min)(

αααα

αα

Neural and Evolutionary Computing -
Lecture 2-3

80

Support Vector Machines
Thus we arrived to the problem of maximizing the dual function (with

respect to α):

such that the following constraints are satisfied:

)(
2
1)(

1,1
jijij

L

ji
i

L

i
i xxyyW ⋅−= ∑∑

==

αααα

0 ,0
1

=≥ ∑
=

i

L

i
ii yαα

By solving the above problem (with respect to the multipliers α) the
coefficients of the separating hyperplane can be computed as
follows:

ki

L

i
ii xwbxyw ⋅−==∑

=

1* ,*
1
α

where k is the index of a non-zero multiplier and xk is the corresponding
training example (belonging to class +1)

Neural and Evolutionary Computing -
Lecture 2-3

81

Support Vector Machines
Remarks:
• The nonzero multipliers correspond to the examples for which the

constraints are active (w x+b=1 or w x+b=-1). These examples are
called support vectors and they are the only examples which have
an influence on the equation of the separating hyperplane

• the other examples from the training set (those corresponding to
zero multipliers) can be modified without influencing the separating
hyperplane)

• The decision function obtained by solving the quadratic optimizaton

problem is:

*))(sgn()(
1

bzxyzD i

L

i
ii +⋅= ∑

=

α

Neural and Evolutionary Computing -
Lecture 2-3

82

Support Vector Machines
What happens when the data are not very well separated?

The condition corresponding to each class is
relaxed:

1 daca ,1
1 daca ,1
−=+≤+⋅

=−≥+⋅

iii

iii

ybxw
ybxw

ξ
ξ

The function to be minimized becomes:

)1)((
2
1),,,(

11

2 −+⋅−+= ∑∑
==

bxwyCwbwV ii

L

i
i

L

i
i αξξα

Thus the constraints in the dual problem are also changed:

Cii ≤≤≥ αα 0 used isit 0 of instead

Neural and Evolutionary Computing -
Lecture 2-3

83

Support Vector Machines
What happens if the problem is nonlineary separable?

022
2

2
1 =−+ Rxx

2
21

2
22

2
11

 ,1

, ,0

Rbww
xzxzbzw

−===

===+⋅

2
222

2
111

)(

)(

xxx
xxx

=→

=→

θ

θ

Neural and Evolutionary Computing -
Lecture 2-3

84

Support Vector Machines
In the general case a transformation is applied:

)',()'()(
:becomes vectorsed transform theofproduct scalar theand)(

xxKxx
xx

=⋅
→

θθ
θ

Since the optimization problem contains only scalar products it is not
necessary to know explicitly the transformation θ but it is enough to
know the kernel function K

Neural and Evolutionary Computing -
Lecture 2-3

85

Support Vector Machines

Example 2: Constructing a kernel function when the decision surface
corresponds to an arbitrary quadratic function (from dimension 2 the
pb.is transferred in dimension 5).

2
2121

2121
2
2

2
121

)1'()','(),()',(

)1,2,2,2,,(),(

+⋅=⋅=

=

xxxxxxxxK
xxxxxxxx

θθ

θ

Example 1: Transforming a nonlinearly separable problem in a linearly
separable one by going to a higher dimension

1-dimensional nonlinearly separable pb

αββαβα ++−=−− xxxx)())((2

αβ
βα

=
+−==

==

=++

b
ww

xzxz
bzwzw

)(,1
,

0

21

2
2

1

2211

2-dimensional linearly separable pb

Neural and Evolutionary Computing -
Lecture 2-3

86

Support Vector Machines

)'tanh()',(

)
2

'
exp()',(

)1'()',(

2

2

bxkxxxK

xx
xxK

xxxxK d

+⋅=

−
−=

+⋅=

σ

The decision function becomes:

Examples of kernel functions:

*)),(sgn()(
1

bzxKyzD i

L

i
ii += ∑

=

α

Neural and Evolutionary Computing -
Lecture 2-3

87

Support Vector Machines
Implementations

LibSVM [http://www.csie.ntu.edu.tw/~cjlin/libsvm/]: (+ links to

implementations in Java, Matlab, R, C#, Python, Ruby)

SVM-Light [http://www.cs.cornell.edu/People/tj/svm_light/]:

implementation in C

Spider [http://www.kyb.tue.mpg.de/bs/people/spider/tutorial.html]:

implementation in Matlab

SciLab interface for LibSVM

(http://atoms.scilab.org/toolboxes/libsvm

	Feedforward Neural Networks. Classification and Approximation
	Classification problems
	Classification problems
	Approximation problems
	Approximation problems
	Approximation problems
	Approximation problems
	Neural Networks Design
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Functional units (neurons)
	Architecture and notations
	Functioning
	A particular case
	Learning process
	Learning process
	Learning process
	Learning process
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	The BackPropagation Algorithm
	Variants
	Variants
	Variants
	Variants
	Variants
	Variants
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	Problems in BackPropagation
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF networks
	RBF vs. BP networks
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines
	Support Vector Machines

