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Neural and Evolutionary 
Computing 

 
• What is this course about ? 

 
• Computational Intelligence 

 
• Neural Computing 

 
• Evolutionary Computing 

 
• Related techniques 
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What is this course about ? 
• As almost all courses in Computer Science it is about problem 

solving 
 

• Its main aim is to present techniques to solve hard problems 
 

• There are problems which are hard: 
– both for humans and computers (e.g. large combinatorial 

optimization problems, multimodal / multiobjective 
optimization problems etc) – computationally hard problems 

– for computers but rather easy for humans (e.g. character 
recognition, face recognition, speech recognition etc) – ill 
posed problem 
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Computationally hard  problems 
• Problems characterized by a large space of solutions for which 

there are no exact methods of polynomial complexity (so-called 
NP hard problems) – they are characterized by a huge size 
search space (which cannot be exhaustively searched) 
 

Examples: 
– Satisfiability problem (SAT): find the values of boolean 

variables for which a logical formula is true. For n variables 
the search space has the size 2n 
 

– Travelling Salesman Problem (TSP):  find a minimal cost 
tour which visits n towns. The search size is (n-1)! (in the 
symmetric case, it is  (n-1)!/2) 
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Ill-posed problems 
• The particularity of problems which are easy for humans but 

hard for computers is that they are ill-posed, i.e. there is difficult 
to construct an abstract model which reflects all particularities of 
the problem  
 

• Let us consider the following two problems: 
– Classify the employees of a company in two categories: first 

category will contain all of those who have an income larger 
than the average salary per company and the second 
category will contain the other employees 
 

– Classify the employees of a company in two categories: first 
category will contain all those which are good candidates for 
a bank loan and the second category will contain the other 
employees 



Neural and Evolutionary Computing - 
Lecture 1 

5 

Ill-posed problems 
• In the case of the first problem there is easy to construct a rule-

based classifier: 
      
     IF income > average THEN Class 1 
                                        ELSE Class 2  

 
• In the case of the second problem it is not so easy to construct a 

classifier because there are a lot of other interrelated elements 
(health status, family, career evolution etc) to be taken into 
account in order to decide if a given employee is reliable for a 
bank loan. A bank expert relies on his experience (previous 
success and failure cases) when he makes a decision  
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Ill-posed problems 
• Differences between well-posed and ill-posed problems: 

 
Well-posed problems: 
 
- There is an abstract model 

which describes the problem 
 

- Consequently, there is a 
solving method, i.e. an 
algorithm 

Ill-posed problems: 
- They cannot be easily 

formalized 
- There are only some 

examples  for which the 
results is known 

- The data about the problem 
could be incomplete or 
inconsistent 

- Thus, traditional methods 
cannot be applied 
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Ill-posed problems 
The methods appropriate for ill-posed problems should be 

characterized by: 
 
• Ability to extract models from examples (learning) 
• Ability to deal with dynamic environments (adaptability) 
• Ability  to deal with noisy, incomplete or inconsistent data 

(robustness) 
•  Ability to provide the answer in a reasonable amount of time 

(efficiency) 
 
The field dealing with such kind of methods is called “computational 

intelligence” or  “soft computing” 
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Computational Intelligence and 
Soft Computing 

Computational Intelligence 
“is a branch of the study of 

artificial intelligence; it aims to 
use learning, adaptive, or 
evolutionary algorithms to 
create programs that are, in 
some sense, intelligent. “ 
[Wikipedia 2012] 

 
“it deals with the study of 

adaptive mechanisms which 
allow the simulation of the 
intelligent behaviour in 
complex and/or dynamic 
environments” 

Soft Computing 
“is a collection of new techniques in 

computer science, especially in 
artificial intelligence; unlike hard 
computing, it is tolerant of 
imprecision, uncertainty and 
partial truth. In effect, the role 
model for soft computing is the 
human mind. The guiding 
principle of soft computing is: 
exploit the tolerance for 
imprecision, uncertainty and 
partial truth to achieve tractability, 
robustness and low solution 
cost.”  [Wikipedia 2012]  
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Computational Intelligence and 
Soft Computing 

Computational Intelligence 
“is a set of nature-inspired computational 

methodologies and approaches to 
address complex real-world problems 
to which traditional approaches, i.e., 
first principles modeling or explicit 
statistical modeling, are ineffective or 
infeasible. It primarily includes 
artificial neural networks, evolutionary 
computation and fuzzy logic.”  
[Wikipedia - 2014]  

Soft Computing 
“is a term applied to a field within 

computer science which is 
characterized by the use of inexact 
solutions to computationally hard 
tasks such as the solution of NP-
complete problems, for which there is 
no known algorithm that can compute 
an exact solution in polynomial time. 
Soft computing differs from 
conventional (hard) computing in that, 
unlike hard computing, it is tolerant of 
imprecision, uncertainty, partial truth, 
and approximation. In effect, the role 
model for soft computing is the 
human mind.” [Wikipedia - 2014]  

 



Neural and Evolutionary Computing - 
Lecture 1 

10 

Computational Intelligence 
Main components: 
 
Neural Computing    
 
Evolutionary 

Computing   
 
Granular Computing 

Tool/technique 
 
Artificial Neural 

Networks 
Evolutionary 

Algorithms 
 
Fuzzy Sets/Rough 

Sets/ Probabilistic 
Reasoning 

Inspiration source: 
 
Human brain  
 
Biological evolution 
 
Human reasoning and 

natural language 

CI covers all branches of science and engineering that are concerned  
with understanding and solving problems for which effective  
traditional algorithms do not exist. 
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Computational Intelligence and 
Natural Computing 

Natural computing = methods inspired by the nature way of solving 
problems 

Neural Computing 

Evolutionary Computing 

Granular Computing 

       DNA Computing 

Quantum Computing 

Membrane Computing 

Probabilistic Methods 
Granular Computing 

Bio-inspired meta-heuristics 

       ImmunoComputing 
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Computational Intelligence 
[A. Konar – Computational Intelligence, 2007]  
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Computational Intelligence 
[A. Konar – Computational Intelligence, 2007]  
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Neural Computing 
 
Basic principles 
 
The biological model 
 
Elements of an artificial neural network 
 
Classes of neural networks 
 
Applications 
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Neural Computing 
Traditional problem solving approach (appropriate for well-defined 

problems) 

Input data Result Algorithm = sequence of  
well defined operations 
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Neural Computing 
The neural (machine learning) approach:  

Input data Result 

Examples 

Neural Network =  
Adaptive (trainable) 
system consisting of  
many interconnected  
simple functional units 
 

Learning 



Neural and Evolutionary Computing - 
Lecture 1 

17 

Neural Computing 

Human brain 
                     cca 1010 neurons, cca 1014 connections 
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Artificial neural networks 
ANN =  set of interconnected functional units 
Functional unit = input connections + aggregation function + activation 

function 
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Artificial neural networks 
ANN components: 
 
- Architecture 

 
 

- Functioning 
 

- Learning: find the adaptive 
weights  2,1  ,
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Artificial neural networks 
Neural networks variants: 

Multilayer perceptron Hopfield model 

Kohonen network Cellular neural network 
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Artificial neural networks 
Learning = process of extracting a (computational) model from examples 
               = compute the adaptive parameters (weights) of the network 
 
Learning variants: 
• Supervised (with a teacher):  use the difference between the desired 

(correct) output and the actual output of the network to compute the 
adjustments of the adaptive weights 
 

• Unsupervised (without a teacher):  use only the correlations between 
input data (no knowledge of the correct answer) 
 

• Reinforcement: use reward and penalty values to adjust the weights 
(no use of the difference between the correct and actual outputs) 
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ANN applications 
 
• Classification 

– Supervised and unsupervised classification of data 
– Character/image/speech recognition 

• Approximation  
– Estimate the relationship between different variables (e.g. estimate 

the software projects effort based on software size, …) 
• Prediction 

– Extract time series models from data (e.g. predict de evolution of 
the exchange rate, …)  

• Control 
– Nonlinear systems modelling  

• Optimization 
– Electronic circuits design 

• Signal analysis 
– Adaptive filters 
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Evolutionary Computing 
 
Basic principles 
 
The structure of an Evolutionary 

Algorithm 
 
Traditional classes of 

Evolutionary Algorithms 
 
Applications of Evolutionary 

Computing 
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Evolutionary Computing 
 

• It is inspired by the biological evolution; it stands on the 
principles of Darwin’s natural evolution theory: genetic 
inheritance and survival of the fittest 
 

• The solution of a problem is identified by searching the solution 
space using a population of agents (individuals or 
chromosomes) 
 

• The elements of the population are encoded depending on the 
particularities of the problem (strings of binary or real values, 
trees, graphs etc) 
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Evolutionary Computing 

Natural Evolution 
Environment 

Individual 

Fitness 

 

Problem Solving 
Problem 
Potential solution 
Solution quality 

There is an analogy between the evolution in nature and  
problem solving 
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Structure of an EA 
 
 

Population  
initialization 

Evaluation 

Recombination, 
mutation 

Selection 

Stopping 
condition 

solution 
EA =  
Iterative process based  
on the sequential  
application  of several 
operators: 
     - recombination 
(crossover) 
     - mutation 
     - selection 
on a randomly initialized 
population 
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EA classes  
• Genetic Algorithms (GA):  

– Binary encoding of population elements 
– The main operator is the recombination (crossover)  
– The mutation is applied with a small probability 
– Appropriate for combinatorial optimization problems (search 

in discrete spaces) 
 

• Evolution Strategies (ES): 
– Real encoding of population elements 
– The main operator is the mutation 
– Appropriate for solving optimization/search problems over 

continuous domains 
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EA Classes 
• Genetic Programming (GP):  

– The population elements are computational structures (tress, 
arithmetical/logical expressions, programs etc.)  

– Appropriate for evolutionary design of computational 
structures (programs, circuits etc) 

• Evolutionary Programming (EP): 
– Real encoding of population elements 
– The mutation is the only operator 
– Used to solve optimization problems on continuous domains 

 

Current variants: hybrid techniques 
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Classes of optimization problems 
• Constrained and unconstrained optimization 

– Non-differentiable or discontinous functions or functions without a 
closed form (their evaluation is based on simulations) 

– Such kind of problems frequently appear in engineering design and 
in planning  

• Multimodal optimization 
– For functions having many local/global optima  
– Typical for industrial design  

• Multiobjective optimization 
– There are several conflicting objectives to be optimized  
– Typical for industrial design, data analysis and decision making 

• Optimization in dynamic and/or noisy environments 
– The optimization criteria changes in time or its evaluation is 

influenced by random factors 
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Applications 
 

• Planning (e.g. timetabling, tasks scheduling) 
 

• Prediction (e.g. currency exchange rate evolution) 
 

• Data and  image analysis  
 

• Structure prediction (e.g. protein structure prediction starting 
from the aminoacids sequence) 
 

• Neural networks design 
 

• Evolutionary art 
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Related techniques 
• Models inspired by the intelligence of swarms 
     PSO – Particle Swarm Optimization  (Eberhart, Kennedy -1995)     
     http://www.swarmintelligence.org/ 
     http://www.particleswarm.info/ 

– They are inspired by birds flocking, fish schooling, bees swarms and 
the behaviour of  other “social” entities 

– During the search process each individual is guided by: 
• The collective experience 
• The individual Experience 

– Applications:   
• Optimization 
• Control (nano robots used in medicine) 
• Creating complex interactive environments  
    (in games or cartoons) 

http://www.swarmintelligence.org/
http://www.particleswarm.info/
http://neo.lcc.uma.es/staff/jamal/portal/sites/default/files/images/pajarosPSO.png
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Related techniques 
• Ant based models  
     ACO – Ant Colony Optimization  (M. Dorigo, 1992) 

[http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html] 
     AS – Ant Systems 
 

– They are inspired by the behaviour of ant colonies when they search 
for food or organize their nest  

– Stigmergy is a main concept which expresses the indirect 
communication between ants by using the pheromone trails 

Applications: 
- Optimization (routing problems) 
- Planning (allocation problems) 
- Data analysis (clustering) 
- Image classification 
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Related techniques 
• Immune Systems Model  
     AIS– Artificial Immune Systems  (L. Castro, 1999) 

[http://www.dca.fee.unicamp.br/~lnunes/immune.html] 
      

– It is inspired by the ability of the biological immune 
systems to recognize the pathogen agents and to react to 
an attack 

 
Applications: 
- Intruder Detection Systems 
- Multimodal optimization 
- Data mining (clustering) 
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Related techniques 
• DNA (molecular) Computing  
    First approach:  Adleman’s experiment  (1994) – 

solving the TSP problems for 7 towns by using 
tools from molecular biology 

    Current status:  
– autonomous biomolecular computer of molecular 

scale (2004) 
– a superthin computer of just two molecules thick 

has been designed (it generates various patterns) 
(2010) 

– Algorithms inspired by operations on DNA 
structures (splicing, cloning, filtering) 

A DNA computer is basically a collection of 
specially selected DNA strands whose 
combinations will result in the solution to some 
problem  
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Related techniques 
• Membrane Computing  (P-systems)  
        [http://ppage.psystems.eu] 

 
• First model:  P-systems proposed by Gh. Paun (1998) 
• A P system is a computing model which abstracts from the way 

the alive cells process chemical compounds in their 
compartmental structure.  

• They process multisets of symbol objects placed in a 
hierarchically structured system of membranes (inspired by the 
structure of cells) 

• Many theoretical results concerning their computation power but 
less practical applications (however there are reported 
applications in applications, in biology, linguistics, computer 
science, management)  
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Related techniques 
• Artificial Bee Colony (Karaboga, 2005) 

http://mf.erciyes.edu.tr/abc/ 
– Inspired by the artificial behavior of honey bees 

 
• Biogeography Based Optimization (BBO Algorithms) - D. Simon, 

2008  http://academic.csuohio.edu/simond/bbo/ 
- Inspired by geographical distribution of biological organisms 
 

• Fireflies Algorithm (X.S. Yang, 2008) 
– inspired by the flashing behaviour of fireflies 
 

• Cuckoo Search (X.S. Yang & S. Deb, 2009) 
– Inspired by the habits of some cuckoo species to lay their 

eggs in the nests of other birds 
 

• Bat Algorithm (X.S. Yang & A.H Gandomi, 2010) 
– Inspired by echolocation abilities of bats 
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Course structure 
• Artificial Neural Networks for classification, approximation, 

prediction, optimization 
– Feedforward neural networks (BackPropagation, Radial Basis 

Functions) 
– Recurrent neural networks (Hopfield model) 

• Random optimization algorithms 
– Random Search 
– Simulated annealing 

• Evolutionary algorithms 
– Genetic algorithms 
– Evolutionary strategies 
– Evolutionary and Genetic Programming 
– Evolutionary algorithms for multi-objective optimization 
– Evolutionary design 
– Parallel and distributed evolutionary algorithms 

• Related techniques:  PSO (particle swarm optimization), ACO (ant 
colony optimization), AIS (artificial immune systems), DE 
(differential evolution), EDA (estimation of distribution algorithms) 
etc 
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Lab structure 
Lab 1: Classification problems (pattern recognition) - 

feedforward NN 
Lab 2: Approximation  and prediction problems – feedforward 

NN 
Lab 3: Combinatorial optimization problems – Simulated 

Annealing, Genetic Algorithms 
Lab 4: Continuous optimization problems (nonlinear 

programming)- Evolution Strategies 
Lab 5: Evolutionary design problems  - Genetic Programming 
Lab 6: Multiobjective optimization problems - MOEA 
Lab 7: Applications of related techniques (ACO, PSO, AIS) 
 
Testing environments: 
Scilab, Weka, R 
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Evaluation 
 
Grading:  
 
 Project:  60-80% 
 
 Written test (open books):  20% 
 
    Lab activity: 20% 
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