
Neural and Evolutionary Computing -
Lecture 1

1

Neural and Evolutionary
Computing

• What is this course about ?

• Computational Intelligence

• Neural Computing

• Evolutionary Computing

• Related techniques

Neural and Evolutionary Computing -
Lecture 1

2

What is this course about ?
• As almost all courses in Computer Science it is about problem

solving

• Its main aim is to present techniques to solve hard problems

• There are problems which are hard:
– both for humans and computers (e.g. large combinatorial

optimization problems, multimodal / multiobjective
optimization problems etc) – computationally hard problems

– for computers but rather easy for humans (e.g. character
recognition, face recognition, speech recognition etc) – ill
posed problem

Neural and Evolutionary Computing -
Lecture 1

3

Computationally hard problems
• Problems characterized by a large space of solutions for which

there are no exact methods of polynomial complexity (so-called
NP hard problems) – they are characterized by a huge size
search space (which cannot be exhaustively searched)

Examples:
– Satisfiability problem (SAT): find the values of boolean

variables for which a logical formula is true. For n variables
the search space has the size 2n

– Travelling Salesman Problem (TSP): find a minimal cost
tour which visits n towns. The search size is (n-1)! (in the
symmetric case, it is (n-1)!/2)

Neural and Evolutionary Computing -
Lecture 1

4

Ill-posed problems
• The particularity of problems which are easy for humans but

hard for computers is that they are ill-posed, i.e. there is difficult
to construct an abstract model which reflects all particularities of
the problem

• Let us consider the following two problems:
– Classify the employees of a company in two categories: first

category will contain all of those who have an income larger
than the average salary per company and the second
category will contain the other employees

– Classify the employees of a company in two categories: first
category will contain all those which are good candidates for
a bank loan and the second category will contain the other
employees

Neural and Evolutionary Computing -
Lecture 1

5

Ill-posed problems
• In the case of the first problem there is easy to construct a rule-

based classifier:

 IF income > average THEN Class 1
 ELSE Class 2

• In the case of the second problem it is not so easy to construct a

classifier because there are a lot of other interrelated elements
(health status, family, career evolution etc) to be taken into
account in order to decide if a given employee is reliable for a
bank loan. A bank expert relies on his experience (previous
success and failure cases) when he makes a decision

Neural and Evolutionary Computing -
Lecture 1

6

Ill-posed problems
• Differences between well-posed and ill-posed problems:

Well-posed problems:

- There is an abstract model

which describes the problem

- Consequently, there is a
solving method, i.e. an
algorithm

Ill-posed problems:
- They cannot be easily

formalized
- There are only some

examples for which the
results is known

- The data about the problem
could be incomplete or
inconsistent

- Thus, traditional methods
cannot be applied

Neural and Evolutionary Computing -
Lecture 1

7

Ill-posed problems
The methods appropriate for ill-posed problems should be

characterized by:

• Ability to extract models from examples (learning)
• Ability to deal with dynamic environments (adaptability)
• Ability to deal with noisy, incomplete or inconsistent data

(robustness)
• Ability to provide the answer in a reasonable amount of time

(efficiency)

The field dealing with such kind of methods is called “computational

intelligence” or “soft computing”

Neural and Evolutionary Computing -
Lecture 1

8

Computational Intelligence and
Soft Computing

Computational Intelligence
“is a branch of the study of

artificial intelligence; it aims to
use learning, adaptive, or
evolutionary algorithms to
create programs that are, in
some sense, intelligent. “
[Wikipedia 2012]

“it deals with the study of

adaptive mechanisms which
allow the simulation of the
intelligent behaviour in
complex and/or dynamic
environments”

Soft Computing
“is a collection of new techniques in

computer science, especially in
artificial intelligence; unlike hard
computing, it is tolerant of
imprecision, uncertainty and
partial truth. In effect, the role
model for soft computing is the
human mind. The guiding
principle of soft computing is:
exploit the tolerance for
imprecision, uncertainty and
partial truth to achieve tractability,
robustness and low solution
cost.” [Wikipedia 2012]

Neural and Evolutionary Computing -
Lecture 1

9

Computational Intelligence and
Soft Computing

Computational Intelligence
“is a set of nature-inspired computational

methodologies and approaches to
address complex real-world problems
to which traditional approaches, i.e.,
first principles modeling or explicit
statistical modeling, are ineffective or
infeasible. It primarily includes
artificial neural networks, evolutionary
computation and fuzzy logic.”
[Wikipedia - 2014]

Soft Computing
“is a term applied to a field within

computer science which is
characterized by the use of inexact
solutions to computationally hard
tasks such as the solution of NP-
complete problems, for which there is
no known algorithm that can compute
an exact solution in polynomial time.
Soft computing differs from
conventional (hard) computing in that,
unlike hard computing, it is tolerant of
imprecision, uncertainty, partial truth,
and approximation. In effect, the role
model for soft computing is the
human mind.” [Wikipedia - 2014]

Neural and Evolutionary Computing -
Lecture 1

10

Computational Intelligence
Main components:

Neural Computing

Evolutionary

Computing

Granular Computing

Tool/technique

Artificial Neural

Networks
Evolutionary

Algorithms

Fuzzy Sets/Rough

Sets/ Probabilistic
Reasoning

Inspiration source:

Human brain

Biological evolution

Human reasoning and

natural language

CI covers all branches of science and engineering that are concerned
with understanding and solving problems for which effective
traditional algorithms do not exist.

Neural and Evolutionary Computing -
Lecture 1

11

Computational Intelligence and
Natural Computing

Natural computing = methods inspired by the nature way of solving
problems

Neural Computing

Evolutionary Computing

Granular Computing

 DNA Computing

Quantum Computing

Membrane Computing

Probabilistic Methods
Granular Computing

Bio-inspired meta-heuristics

 ImmunoComputing

Neural and Evolutionary Computing -
Lecture 1

12

Computational Intelligence
[A. Konar – Computational Intelligence, 2007]

Neural and Evolutionary Computing -
Lecture 1

13

Computational Intelligence
[A. Konar – Computational Intelligence, 2007]

Neural and Evolutionary Computing -
Lecture 1

14

Neural Computing

Basic principles

The biological model

Elements of an artificial neural network

Classes of neural networks

Applications

Neural and Evolutionary Computing -
Lecture 1

15

Neural Computing
Traditional problem solving approach (appropriate for well-defined

problems)

Input data Result Algorithm = sequence of
well defined operations

Neural and Evolutionary Computing -
Lecture 1

16

Neural Computing
The neural (machine learning) approach:

Input data Result

Examples

Neural Network =
Adaptive (trainable)
system consisting of
many interconnected
simple functional units

Learning

Neural and Evolutionary Computing -
Lecture 1

17

Neural Computing

Human brain
 cca 1010 neurons, cca 1014 connections

Neural and Evolutionary Computing -
Lecture 1

18

Artificial neural networks
ANN = set of interconnected functional units
Functional unit = input connections + aggregation function + activation

function

inputs

output
 y

Weighted
connections

)exp(1
1)()()(

)tanh()()sgn()(

)(0
1

u
ufuHuf

uufuuf

wxwfy j

n

j
j

−+
==

==

−= ∑
=

Aggregation function

activation functions

x1

xj

xn

w1

wj

wn

Neural and Evolutionary Computing -
Lecture 1

19

Artificial neural networks
ANN components:

- Architecture

- Functioning

- Learning: find the adaptive
weights 2,1 ,

1

0

0

0

12 Nixwfwfy
N

k

N

j
jkjiki =

















= ∑ ∑

= =

A feedforward neural network

Neural and Evolutionary Computing -
Lecture 1

20

Artificial neural networks
Neural networks variants:

Multilayer perceptron Hopfield model

Kohonen network Cellular neural network

Neural and Evolutionary Computing -
Lecture 1

21

Artificial neural networks
Learning = process of extracting a (computational) model from examples
 = compute the adaptive parameters (weights) of the network

Learning variants:
• Supervised (with a teacher): use the difference between the desired

(correct) output and the actual output of the network to compute the
adjustments of the adaptive weights

• Unsupervised (without a teacher): use only the correlations between
input data (no knowledge of the correct answer)

• Reinforcement: use reward and penalty values to adjust the weights
(no use of the difference between the correct and actual outputs)

Neural and Evolutionary Computing -
Lecture 1

22

ANN applications

• Classification

– Supervised and unsupervised classification of data
– Character/image/speech recognition

• Approximation
– Estimate the relationship between different variables (e.g. estimate

the software projects effort based on software size, …)
• Prediction

– Extract time series models from data (e.g. predict de evolution of
the exchange rate, …)

• Control
– Nonlinear systems modelling

• Optimization
– Electronic circuits design

• Signal analysis
– Adaptive filters

Neural and Evolutionary Computing -
Lecture 1

23

Evolutionary Computing

Basic principles

The structure of an Evolutionary

Algorithm

Traditional classes of

Evolutionary Algorithms

Applications of Evolutionary

Computing

Neural and Evolutionary Computing -
Lecture 1

24

Evolutionary Computing

• It is inspired by the biological evolution; it stands on the
principles of Darwin’s natural evolution theory: genetic
inheritance and survival of the fittest

• The solution of a problem is identified by searching the solution
space using a population of agents (individuals or
chromosomes)

• The elements of the population are encoded depending on the
particularities of the problem (strings of binary or real values,
trees, graphs etc)

Neural and Evolutionary Computing -
Lecture 1

25

Evolutionary Computing

Natural Evolution
Environment

Individual

Fitness

Problem Solving
Problem
Potential solution
Solution quality

There is an analogy between the evolution in nature and
problem solving

Neural and Evolutionary Computing -
Lecture 1

26

Structure of an EA

Population
initialization

Evaluation

Recombination,
mutation

Selection

Stopping
condition

solution
EA =
Iterative process based
on the sequential
application of several
operators:
 - recombination
(crossover)
 - mutation
 - selection
on a randomly initialized
population

Neural and Evolutionary Computing -
Lecture 1

27

EA classes
• Genetic Algorithms (GA):

– Binary encoding of population elements
– The main operator is the recombination (crossover)
– The mutation is applied with a small probability
– Appropriate for combinatorial optimization problems (search

in discrete spaces)

• Evolution Strategies (ES):
– Real encoding of population elements
– The main operator is the mutation
– Appropriate for solving optimization/search problems over

continuous domains

Neural and Evolutionary Computing -
Lecture 1

28

EA Classes
• Genetic Programming (GP):

– The population elements are computational structures (tress,
arithmetical/logical expressions, programs etc.)

– Appropriate for evolutionary design of computational
structures (programs, circuits etc)

• Evolutionary Programming (EP):
– Real encoding of population elements
– The mutation is the only operator
– Used to solve optimization problems on continuous domains

Current variants: hybrid techniques

Neural and Evolutionary Computing -
Lecture 1

29

Classes of optimization problems
• Constrained and unconstrained optimization

– Non-differentiable or discontinous functions or functions without a
closed form (their evaluation is based on simulations)

– Such kind of problems frequently appear in engineering design and
in planning

• Multimodal optimization
– For functions having many local/global optima
– Typical for industrial design

• Multiobjective optimization
– There are several conflicting objectives to be optimized
– Typical for industrial design, data analysis and decision making

• Optimization in dynamic and/or noisy environments
– The optimization criteria changes in time or its evaluation is

influenced by random factors

Neural and Evolutionary Computing -
Lecture 1

30

Applications

• Planning (e.g. timetabling, tasks scheduling)

• Prediction (e.g. currency exchange rate evolution)

• Data and image analysis

• Structure prediction (e.g. protein structure prediction starting
from the aminoacids sequence)

• Neural networks design

• Evolutionary art

Neural and Evolutionary Computing -
Lecture 1

31

Related techniques
• Models inspired by the intelligence of swarms
 PSO – Particle Swarm Optimization (Eberhart, Kennedy -1995)
 http://www.swarmintelligence.org/
 http://www.particleswarm.info/

– They are inspired by birds flocking, fish schooling, bees swarms and
the behaviour of other “social” entities

– During the search process each individual is guided by:
• The collective experience
• The individual Experience

– Applications:
• Optimization
• Control (nano robots used in medicine)
• Creating complex interactive environments
 (in games or cartoons)

http://www.swarmintelligence.org/
http://www.particleswarm.info/
http://neo.lcc.uma.es/staff/jamal/portal/sites/default/files/images/pajarosPSO.png

Neural and Evolutionary Computing -
Lecture 1

32

Related techniques
• Ant based models
 ACO – Ant Colony Optimization (M. Dorigo, 1992)

[http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html]
 AS – Ant Systems

– They are inspired by the behaviour of ant colonies when they search
for food or organize their nest

– Stigmergy is a main concept which expresses the indirect
communication between ants by using the pheromone trails

Applications:
- Optimization (routing problems)
- Planning (allocation problems)
- Data analysis (clustering)
- Image classification

Neural and Evolutionary Computing -
Lecture 1

33

Related techniques
• Immune Systems Model
 AIS– Artificial Immune Systems (L. Castro, 1999)

[http://www.dca.fee.unicamp.br/~lnunes/immune.html]

– It is inspired by the ability of the biological immune
systems to recognize the pathogen agents and to react to
an attack

Applications:
- Intruder Detection Systems
- Multimodal optimization
- Data mining (clustering)

Neural and Evolutionary Computing -
Lecture 1

34

Related techniques
• DNA (molecular) Computing
 First approach: Adleman’s experiment (1994) –

solving the TSP problems for 7 towns by using
tools from molecular biology

 Current status:
– autonomous biomolecular computer of molecular

scale (2004)
– a superthin computer of just two molecules thick

has been designed (it generates various patterns)
(2010)

– Algorithms inspired by operations on DNA
structures (splicing, cloning, filtering)

A DNA computer is basically a collection of
specially selected DNA strands whose
combinations will result in the solution to some
problem

Neural and Evolutionary Computing -
Lecture 1

35

Related techniques
• Membrane Computing (P-systems)
 [http://ppage.psystems.eu]

• First model: P-systems proposed by Gh. Paun (1998)
• A P system is a computing model which abstracts from the way

the alive cells process chemical compounds in their
compartmental structure.

• They process multisets of symbol objects placed in a
hierarchically structured system of membranes (inspired by the
structure of cells)

• Many theoretical results concerning their computation power but
less practical applications (however there are reported
applications in applications, in biology, linguistics, computer
science, management)

Neural and Evolutionary Computing -
Lecture 1

36

Related techniques
• Artificial Bee Colony (Karaboga, 2005)

http://mf.erciyes.edu.tr/abc/
– Inspired by the artificial behavior of honey bees

• Biogeography Based Optimization (BBO Algorithms) - D. Simon,

2008 http://academic.csuohio.edu/simond/bbo/
- Inspired by geographical distribution of biological organisms

• Fireflies Algorithm (X.S. Yang, 2008)
– inspired by the flashing behaviour of fireflies

• Cuckoo Search (X.S. Yang & S. Deb, 2009)
– Inspired by the habits of some cuckoo species to lay their

eggs in the nests of other birds

• Bat Algorithm (X.S. Yang & A.H Gandomi, 2010)
– Inspired by echolocation abilities of bats

Neural and Evolutionary Computing -
Lecture 1

37

Course structure
• Artificial Neural Networks for classification, approximation,

prediction, optimization
– Feedforward neural networks (BackPropagation, Radial Basis

Functions)
– Recurrent neural networks (Hopfield model)

• Random optimization algorithms
– Random Search
– Simulated annealing

• Evolutionary algorithms
– Genetic algorithms
– Evolutionary strategies
– Evolutionary and Genetic Programming
– Evolutionary algorithms for multi-objective optimization
– Evolutionary design
– Parallel and distributed evolutionary algorithms

• Related techniques: PSO (particle swarm optimization), ACO (ant
colony optimization), AIS (artificial immune systems), DE
(differential evolution), EDA (estimation of distribution algorithms)
etc

Neural and Evolutionary Computing -
Lecture 1

38

Lab structure
Lab 1: Classification problems (pattern recognition) -

feedforward NN
Lab 2: Approximation and prediction problems – feedforward

NN
Lab 3: Combinatorial optimization problems – Simulated

Annealing, Genetic Algorithms
Lab 4: Continuous optimization problems (nonlinear

programming)- Evolution Strategies
Lab 5: Evolutionary design problems - Genetic Programming
Lab 6: Multiobjective optimization problems - MOEA
Lab 7: Applications of related techniques (ACO, PSO, AIS)

Testing environments:
Scilab, Weka, R

Neural and Evolutionary Computing -
Lecture 1

39

References
Course materials:
http://web.info.uvt.ro/~dzaharie/nec2014

References:
A.Engelbrecht: Computational Intelligence. An Introduction,

John Wiley and Sons, 2007
L. Rutkowski: Computational Intelligence: Methods and

Techniques, Springer, 2008
A.Konar: Computational Intelligence: Principles, Techniques

and Applications, Springer, 2005
Z. Michalewicz, D. Fogel: How to Solve It. Modern Heuristics.

Springer, 1999

Neural and Evolutionary Computing -
Lecture 1

40

Evaluation

Grading:

 Project: 60-80%

 Written test (open books): 20%

 Lab activity: 20%

	Neural and Evolutionary Computing
	What is this course about ?
	Computationally hard problems
	Ill-posed problems
	Ill-posed problems
	Ill-posed problems
	Ill-posed problems
	Computational Intelligence and Soft Computing
	Computational Intelligence and Soft Computing
	Computational Intelligence
	Computational Intelligence and Natural Computing
	Computational Intelligence
	Computational Intelligence
	Neural Computing
	Neural Computing
	Neural Computing
	Neural Computing
	Artificial neural networks
	Artificial neural networks
	Artificial neural networks
	Artificial neural networks
	ANN applications
	Evolutionary Computing
	Evolutionary Computing
	Evolutionary Computing
	Structure of an EA
	EA classes
	EA Classes
	Slide Number 29
	Slide Number 30
	Related techniques
	Related techniques
	Related techniques
	Related techniques
	Related techniques
	Related techniques
	Course structure
	Lab structure
	References
	Evaluation

