## Other population-based metaheuristics

- IS - Immune Systems
- DE - Differential Evolution
- PMB - Probabilistic Model Building Algorithms
- MA - Memetic Algorithms


## Immune Systems

## Short history:

- mid 1980- first models
- 1990 - Ishida proposes a first application of immune models in problem solving
- mid 1990:
- Forrest et al: applications in computer security
- Hunt et al: applications in data analysis
- Current tendency: back to the biological model


## Applications

- Anomaly detection and information systems security
- Data analysis (classification, pattern recognition, clustering etc)
- Optimization;
- Self-organization and autonomous control;


## Natural Immune Systems

The natural immune system contains two main components:

- innate (inherited from the parents) - based on granulocytes (neutrophils, eosinophils si basophils) and macrophages
- Adaptive - based on lymphocytes (B cells and T cells)



## Natural immune system

Particularity: active at different levels


## Natural immune systems

The adaptive component of the immune system is able to:

- Memorize (ability to recall previous contacts with pathogens and to react quickly)
- Learn (ability to identify/recognize unknown pathogens)
a) Active elements: lymphocytes
- They contain specific receptors able to recognize the antigens (the organisms usually contain a library of millions of receptors)
- There are two types of lymphocytes:
- B cells
- Synthesized in the bone marrow
- Contain receptors called antibodies - the recognition process is based on the complementarity between the binding region of the B cell and the epitope of the antigen
- T cells: Synthesized by thymus


## Natural immune system

## Main mechanisms

Negative selection: censoring the T cells which recognize the self components (they define the normal behaviour)

Clonal selection: proliferation and differentiation of cells which recognized an antigen (learning and generalization)

Affinity maturation: the affinity of $B$ cells which recognized an antigen is reinforced by

- Mutation on the receptors (the mutation probability inversely correlated with the affinity)
- The storage of cells with high affinity in a memory (cells pool)
- Removal of the cells with incorrect behavior


## Natural immune system

## Main mechanisms:



## Natural immune system

Main steps:


Metaheuristics - Lecture 8

## Natural immune system

## Primary and secondary reaction



Primary reaction: first answer at the contact with an antigen

Secondary reaction: rapid answer

## AIS = Artificial Immune System

Idea of AIS based problem solving:
Problem to be solved = environment
Solution (unknown) = antigen
Approximation of the solution (population element) = antibody
Measure of the quality of an element = affinity

## AIS = Artificial Immune System

Main idea of AIS [DeCastro, Timmis, 2002]


## Problem

## AIS = Artificial Immune System

Main idea of AIS[DeCastro, Timmis, 2002]


Correlated to a distance (dissimilarity)
-Euclidean
-Manhattan
$\bullet$-Hamming

Problem

## AIS = Artificial Immune System

Main idea of AIS [DeCastro, Timmis, 2002]


Clonal Selection Negative Selection Immune Network Models<br>Positive Selection<br>Bone Marrow Algorithms

Application

## AIS = Artificial Immune System

## CLONALG (Clonal Selection)

```
Initialization
REPEAT
    Antigenic presentation
    a. Affinity evaluation
    b. Clonal selection and expansion
    c. Affinity maturation
    d. Metadynamics
UNTIL "stopping condition"
```


## AIS = Artificial Immune System

- CLONALG (Clonal Selection)

Initialization
REPEAT
Antigenic presentation
a. Affinity evaluation
b. Clonal selection and expansion
c. Affinity maturation
d. Metadynamics

UNTIL "stopping condition"

## AIS = Artificial Immune System

## CLONALG (Clonal Selection)

```
Initialization
REPEAT
    Antigenic presentation
    a. Affinity evaluation
    b. Clonal selection and expansion
    c. Affinity maturation
    d. Metadynamics
UNTIL "stopping condition"
For each data (antigen) the steps 1-d are executed
```


## AIS = Artificial Immune System

## CLONALG (Clonal Selection)

```
Initialization
REPEAT
    Antigenic presentation
    a. Affinity evaluation
    b. Clonal selection and expansion
    c. Affinity maturation
    d. Metadynamics
UNTIL "stopping condition"
Compute the affinity
a) Data mining pb: affinity is higher if the similarity is higher
b) Optimization pb : affinity is higher if the fitness is higher (the fitness is correlated with the objective function value)

\section*{AIS = Artificial Immune System}

\section*{CLONALG (Clonal Selection)}
```

Initialization
REPEAT
Antigenic presentation
a. Affinity evaluation
b. Clonal selection and expansion
c. Affinity maturation
d. Metadynamics
UNTIL "stopping condition"

```
- Select \(n\) elements from \(P\) in decreasing order of affinity
- Generate for each selected element a number (proportional to the affinity) of clones

\section*{AIS = Artificial Immune System}

\section*{CLONALG (Clonal Selection)}

\section*{Initialization \\ REPEAT}

Antigenic presentation
a. Affinity evaluation
b. Clonal selection and expansion
c. Affinity maturation
d. Metadynamics

UNTIL "stopping condition"
- Apply mutation to each clone
- The mutation rate is inverse proportional to the affinity
- Add the new element to the population
- Evaluate the affinity for new elements and store the best element

\section*{AIS = Artificial Immune System}
- CLONALG (Clonal Selection)
Initialization
REPEAT
Antigenic presentation
a. Affinity evaluation
b. Clonal selection and expansion
c. Affinity maturation
d. Metadynamics

UNTIL "stopping condition"
- Some of the elements of the population having small affinity are replaced with random elements

\section*{AIS = Artificial Immune System}

Applications of CLONALG
- Pattern recognition = generate "detectors" for the recognition of characters specified by bitmaps

Rmk: affinity is measured using the Hamming distance

\[
\mathbf{P}=\left[\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3} \\
p_{4} \\
p_{5}
\end{array}\right]=\left[\begin{array}{llllllllllll}
1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1
\end{array}\right]
\]

\section*{AIS = Artificial Immune System}

Applications of CLONALG
- Multi-modal optimization = identify all optima (local and global) of a function


\section*{AIS = Artificial Immune System}

Properties of CLONALG
- The general structure is similar to the structure of an evolutionary algorithm (instead of fitness is used the affinity)
- The specific elements refer to:
- The cloning process is controlled by the value of the affinity
- The mutation probability is inverse proportional to the affinity
- The low affinity elements are replaced with random elements

\section*{AIS = Artificial Immune System}

Negative selection algorithm
- It is based on the pronciple of the discrimination between self and non-self
- The self elements are considered to be representations of the normal behavior of a system
- The aim of the algorithm is to generate a set of detectors which are different from the set S of self elements (they would be detectors of nonself elements - would correspond to anomalous behavior)
- The algorithm will monitor the system functioning and will detect elements similar to non-self.

\section*{AIS = Artificial Immune System}

Negative selection algorithm

Generating the set of detectors


System monitoring

Applications: computer security (intruders detection) - limited applicability

\section*{AIS = Artificial Immune System}

Negative selection algorithm
```

input : S Seen = set of seen known self elements
output: D = set of generated detectors
begin
repeat
Randomly generate potential detectors and place them in a set P
Determine the affinity of each member of P}\mathrm{ with each member of
the self set }\mp@subsup{S}{\mathrm{ seen }}{
If at least one element in S recognises a detector in P according to a
recognition threshold, then the detector is rejected, otherwise it is
added to the set of available detectors D
until Until stopping criteria has been met
end

```
J.Timmis, P. Andrews, N. Owens, E. Clark - An Interdisciplinary Perspective of Artificial Immune Systems, Evolutionary Intelligence, Volume 1, Number 1, 5-26, 2008

\section*{AIS = Artificial Immune System}
aiNET Algorithm
Initialization
REPEAT
- Antigenic presentation
a. Affinity evaluation
b. Clonal selection and expansion
c. Affinity maturation
d. Metadynamics
e. Clonal suppression
- Network interactions (analysis of interactions between network antibodies = computation of affinity between pairs of antibodies)
- Network suppression (eliminate the antibodies which are similar to other antibodies)
- Diversity (insertion of random antibodies)

UNTIL "stopping condition"

\section*{AIS = Artificial Immune System}

Properties of aiNET:
- aiNET is similar to CLONALG but it uses a suppression mechanism based on the affinity between the population elements
- aiNET was initially used for data clustering (but it has difficulty in the case of arbitrary distributed data)
- aiNET was successfully applied in solving multimodal optimization problems

\section*{AIS = Artificial Immune System}
aiNET - clustering

Training Pattern


Result immune network


\section*{AIS = Artificial Immune System}
aiNET - multimodal optimization

Initial population


Final population


\section*{Differential Evolution (DE)}

Creators: Rainer Storn \& Kenneth Price (1995)
Aim: continuous optimization
Idea: for each element of the current population:
- Randomly select 3 elements
- The mutation is based on the computation of the difference between two elements; the difference (multiplied by a scale factor) is added to the third element. The obtained element is called mutant
- The mutant element is recombined with the current element leading to the so-called trial element
- If the trial element is better than the current element then it replaces it

\section*{Differential Evolution (DE)}

Problem: maximization of \(\mathrm{f}: \mathrm{D} \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}\)
\(X=\left\{x_{1}, \ldots, x_{m}\right\}\) - current population
\(Y=\left\{y_{1}, \ldots, y_{m}\right\}\) - population of candidates
\(Z=\left\{z_{1}, \ldots, z_{m}\right\}-\) new population
\(y_{i}^{j}=\left\{\begin{array}{cc}x_{r_{1}}^{j}+F \cdot\left(x_{r_{2}}^{j}-x_{r_{3}}^{j}\right), & \text { with probability } p \\ x_{i}^{j}, & \text { with probability } 1-p\end{array}\right.\)
\(r_{1}, r_{2}, r_{3}=\) random indices from \(\{1, \ldots, \mathrm{~m}\}\)
\(F \in(0,2], p \in(0,1]\)
\[
z_{i}= \begin{cases}x_{i}, & f\left(x_{i}\right)>f\left(y_{i}\right) \\ y_{i}, & f\left(x_{i}\right) \leq f\left(y_{i}\right)\end{cases}
\]


\section*{Differential Evolution (DE)}

Variants
\[
\begin{aligned}
& y_{i}^{j}=\left\{\begin{array}{cc}
x_{r_{1}}^{j}+F \cdot\left(x_{r_{2}}^{j}-x_{r_{3}}^{j}\right) \cdot N(0,1), & \text { with probability } p \\
x_{i}^{j}, & \text { with probability } 1-p
\end{array}\right. \\
& y_{i}^{j}=\left\{\begin{array}{cc}
x_{r_{1}}^{j}+F_{1} \cdot\left(x_{r_{2}}^{j}-x_{r_{3}}^{j}\right)+F_{2} \cdot\left(x_{r_{4}}^{j}-x_{r_{5}}^{j}\right), & \text { with probability } p \\
x_{i}^{j}, & \text { with probability } 1-p
\end{array}\right. \\
& y_{i}^{j}=\left\{\begin{array}{cc}
\lambda x_{*}^{j}+(1-\lambda) x_{r_{1}}^{j}+F \cdot\left(x_{r_{2}}^{j}-x_{r_{3}}^{j}\right), & \text { with probability } p \\
x_{i}^{j}, & \text { with probability } 1-p
\end{array}\right. \\
& x_{*}=\text { best element of the population }
\end{aligned}
\]

Taxonomy: DE/base element/number of differences/crossover type (e.g. \(\mathrm{DE} / \mathrm{rand} / 1 / \mathrm{bin}, \mathrm{DE} /\) rand \(/ 2 / \mathrm{bin}, \mathrm{DE} /\) best \(/ 1 / \mathrm{bin}\) etc.)

\section*{Differential Evolution (DE)}

Control parameters:

Scale factor (F):
- range: ( 0,2 )
- small values: exploitation of the search space (local search) can lead to premature convergence
- large values: exploration of the search space

Crossover probability:
- small values (<0.5): appropriate for separable problems
- large values (>0.5): appropriate for nonseparable problems

\section*{Differential Evolution (DE)}

Self-adapting [jDE - Brest, 2006]
- Each individual is extended with two components corresponding to the control parameters ( \(F\) and \(p\) )
- At each generation the parameters are randomly changed

Best performance: JADE, SHADE etc

\section*{Probabilistic Model Building Algorithms}

Particularity: class of algorithms which search the solution space by estimating and simulating some probability distributions

\section*{Variants:}
- Estimation of Distribution Algorithms (EDA) [Mühlenbein \& Paass, 1996]
- Iterated Density Estimation Algorithms (IDEA) [Bosman \& Thierens, 2000]
- Bayesian Optimization Algorithms (BOA) [Pelikan, Goldberg, \& Cantu-Paz, 1998]

Idea: the mutation and crossover operators are replaced with a process for the estimation of the probability distribution of selected elements and a process of sampling new elements using this distribution

Remark: the sampled values should be promising elements

\section*{Probabilistic Model Building Algorithms}

Illustration [M.Pelikan - Probabilistic Model Building GA Tutorial]


\section*{Probabilistic Model Building Algorithms}

General structure.

Step 1: Population initialization (m elements)
Step 2: REPEAT
- select m'<m elements from the current population (based on their fitness)
- estimate a probability distribution using the selected elements
- sample m elements from the estimated probability distribution

UNTIL <stopping condition>

\section*{Probabilistic Model Building Algorithms}

\section*{Remarks}
- The main difficulty is to estimate the probability distribution (especially when the components of individuals are correlated)
- A simplified variant is based on the assumption that the components are independent; therefore the corresponding probabilities can be estimated separately.

Variants based on the independence assumption:
- UMDA (Univariate Marginal Distribution Algorithm)
- PBIL (Probabilistic Based Incremental Learning)

\section*{Probabilistic Model Building Algorithms}

UMDA (Mühlenbein, Paass, 1996)
\[
P^{t}\left(x_{i}\right)=\frac{\sum_{j=1}^{m^{\prime}} \delta_{j}\left(X_{i}=x_{i} \mid S(t-1)\right)}{m^{\prime}} \text { probability of component i }
\]
\(S(t-1)\) is the population selected at iteration ( \(t-1\) )
\(\delta_{j}\left(X_{i}=x_{i} \mid S(t-1)\right)=1\) if the j th selected element contains the value \(x_{i}\) on position i

PBIL (Baluja, 1995)
\[
\begin{aligned}
& P^{t}\left(x_{i}\right)=(1-\alpha) P^{(t-1)}\left(x_{i}\right)+\alpha \frac{\sum_{j=1}^{m^{\prime}} \delta_{j}\left(X_{i}=x_{i} \mid S(t-1)\right)}{m^{\prime}} \\
& \alpha \in(0,1]
\end{aligned}
\]

\section*{Memetic Algorithms}

Creator: Pablo Moscato (1989)

Particularity: hybridization of EAs with local search techniques

Name: "memetic" comes "meme", a term coined by Richard Dawkins to specify the transfer unit of different entities (biological, cultural etc) between generations

Variants: Hybrid Evolutionary Algorithms, Baldwinian Evolutionary Algorithms, Lamarckian Evolutionary Algorithms, Cultural Algorithms or Genetic Local Search

\section*{Memetic Algorithms}

General structure:
Step 1: Population Initialization
Step 2: WHILE <stopping condition>
- Evaluate the elements of the population
- Generate new elements using the variation operators (mutation and crossover)
- Select a subpopulation on which are applied some local search operators (e.g. SA, TS etc)

\section*{Remarks:}
1. The local search can be based on a set of operators - the operators to be applied are probabilistically selected
2. The elements which define the local search operators can be evolved.```

