Trajectory based Search Algorithms (I)

- Motivation: local vs global optimization
- General structure of the local search algorithms
- Local Search Deterministic Methods:
 - Pattern Search
 - Nelder Mead
- Local Search Random Methods :
 - Matyas
 - Solis-Wets
- Metaheuristics for global search:
 - Local search with random restarts
 - Iterated local search

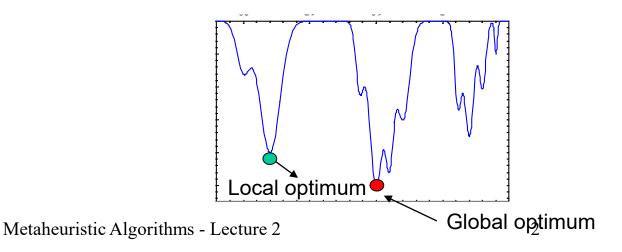
Local vs Global Optimization

Local optimization (minimization): find x^* such that $f(x^*) \le f(x)$ for all x in V(x*) (V(x*)=neighborhood of x);

Rmk: it requires the knowledge of an initial approximation and the search will focus on the neighborhood of this initial approximation

Global optimization:

- Find x* such that f(x*)<=f(x), for any x (from the entire search domain)
- If the objective function has local optima then the local search methods (e.g. gradient methods) can get stuck in such a local optimum



Local Optimization

Discrete search space:

- The neighborhood of an element is a finite set which can be completely explored

Particular case (permutation-like solutions):

- $s=(s_1, s_2, ..., s_n) s_i \text{ from } \{1, ..., n\}$
- V(s)={s'|s' can be obtained from s by interchanging two elements}
- Card V(s)=n(n-1)/2

Example (n=4) s =(2,4,1,3) s'=(1,4,2,3)

Continuous search space:

a) The objective function is differentiable – the search direction is established based on the changes in the objective function -> direction of increase (minimization) or decrease (maximization)

- Gradient method (first order derivatives-> first order methods)
- Newton-like methods (second order derivatives -> second order methods)

b) The objective function is not differentiable (or even discontinuous)

- Direct search methods(ex: Nelder Mead)
- Methods based on small random perturbations

(no derivatives are used -> zero-order methods) ³

Local search: general structure

Notations:

- S search space
- f objective function
- S_{*} set of local/global optima

s=(s₁,s₂,..., s_n) : element of S/ configuration/ candidate solution

 s_* = the best element discovered up to the current step

s* = optimal solution

Local search algorithm:

s = initial approximation
repeat
 s'=perturb(s)
 if f(s')<f(s) then
 s=s'
uptil <stopping condition>

until <stopping condition>

Remarks:

- 1. The initial approximation can be selected randomly or constructed based on a simple heuristic (e.g. greedy)
- 2. The perturbation can be deterministic (e.g. gradient based) or random
- The replacement of s with s' can be done also when f(s')=f(s) (the condition is in this case f(s')<=f(s))
- 4. Stopping condition:
 - (a) No improvement during the previous K iterations;
 - (b) Maximal number of iterations or of number of objective function evaluations

Metaheuristic Algorithms - Lecture 2

Local search: variants (I)

Local search algorithm:

```
s = initial approximation
repeat
```

```
s'=perturb(s)
if f(s')<f(s) then
    s=s'
until <stopping</pre>
```

condition>

More candidates:

```
s = initial approximation
repeat
    [s<sub>1</sub>,..., s<sub>m</sub>]= MultiplePerturb(s)
    s'=bestOf([s<sub>1</sub>,..., s<sub>m</sub>])
    if f(s')<f(s) then s=s'
until < stopping condition >
```

Remarks:

- 1. The search is more explorative at each iteration there are several candidates which are analyzed
- 2. Each objective function evaluation should be counted (if the stopping condition uses the number of evaluations)

Local search: variants (II)

```
More candidates:
```

```
s = initial approximation
repeat
    [s<sub>1</sub>,..., s<sub>m</sub>]= MultiplePerturb(s)
    s'=bestOf([s<sub>1</sub>,..., s<sub>m</sub>])
    if f(s')<f(s) then s=s'
until <stopping condition>
Return s
```

More candidates - other variant:
s = initial approximation
best = s
repeat
 [s₁,..., s_m]=MultiplePerturb(s)
 s=bestOf([s₁,..., s_m])
 if f(s)<f(best) then best=s
until <stopping condition>
return best

Remarks:

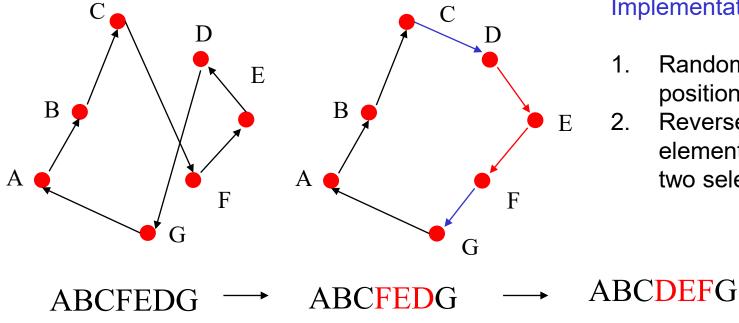
- 1. The best out of the m candidate solutions is unconditionally accepted and is further used to generate new candidates
- 2. The best candidate solution obtained up to the current moment is preserved (ensuring the elitism of the searching process; elitism = the best configuration so far is saved if a good configuration is found it cannot be lost)

- Aim of the perturbation: constructing a new candidate solution starting from the existing one
- Perturbation types (depending on the nature of the perturbation):
 - Deterministic (e.g. hill climbing = choose the best configuration in the neighborhood)
 - Random (e.g. random walk = choose a random configuration from the neighborhood)
- Perturbation types (depending on the perturbation intensity):
 - Local (small) -> exploitation (intensification of search)
 - Global (large) -> exploration (diversification of the search)
- Perturbation types (depending on the search space):
 - Discrete search space (replacement of one or several components)
 - Continuous search space (adding a perturbing term to the current configuration)

Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current configuration by applying some transformations which are typical to the problem to be solved

Example 1: TSP (Travelling Salesman Problem)

Generating a new configuration (2-opt transformation)



Implementation:

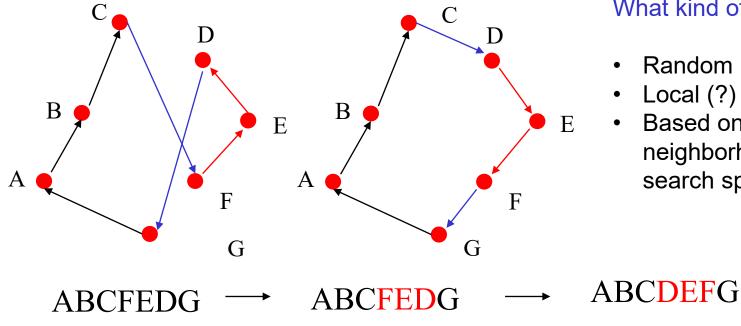
- Random choice of two positions
- Reverse the order of elements between the two selected positions

Metaheuristic Algorithms - Lecture 2

Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current configuration by applying some transformations which are typical to the problem to be solved

Example 1: TSP (Travelling Salesman Problem)

Generating a new configuration (2-opt transformation)



Metaheuristic Algorithms - Lecture 2

What kind of perturbation?

- Random
- Local (?)
- Based on a finite neighborhood (discrete search space)

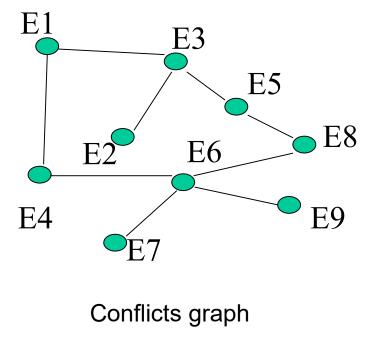
Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current one by applying some transformations which are typical to the problem to be solved

Example 2: Timetabling

- Remove conflicts (violated constraints) by moving or exchanging elements
- Current configuration perturbation:
 - Move an event which violates a constraint in a free slot

	S 1	S2	S3
T1	E1	E3	E9
T2	E4	\checkmark	E8
T3	E2	E5	
T4	E6		E7

	S 1	S2	S3
T1	E1		E9
T2	E4	E3	E8
T3	E2	E5	
T4	E6		E7



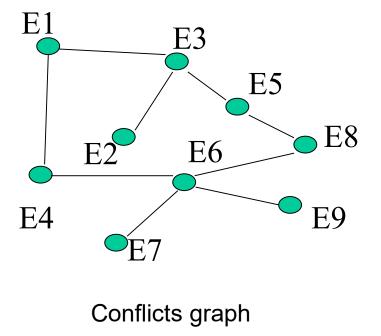
Combinatorial optimization problems: the new configuration is chosen in the neighborhood of the current one by applying some transformations which are typical to the problem to be solved

Example 2: Timetabling

- Remove conflicts (violated constraints) by moving or exchanging elements
- Current configuration perturbation:
 - Exchange two events

	S 1	S2	S 3
T1	E1		E9
T2	E4	E3	E8
T3	E2 ↑	E5	
T4	E6 [↓]		E7

	S 1	S2	S3
T1	E1		E9
T2	E4	E3	E8
T3	E6	E5	
T4	E2		E7



Optimization in continuous domains Random perturbation

```
Perturb(s,p,inf,sup,r)
for i=1:n
  if rand(0,1)<=p then
    repeat
       pert=rand(-r,r)
       until inf<=s_i+pert<=sup
       s_i=s_i+pert
       end if
  end for
  return s</pre>
```

Deterministic perturbation by direct search (it does not use derivatives)

- Pattern Search (Hooke -Jeeves)
- Nelder Mead

Notations:

sup
s=the candidate solution to be perturbed
p=perturbation probability
r=perturbation "radius"
[inf, sup] = search range
n = problem size (number of
components of a solution
rand(a,b) = random value uniformly
distributed on [a,b]
Metaheuristic Algorithms - Lecture 2

Local search: pattern search

Idea: successive modifications of the components of the current configuration

```
PatternSearch(s,r)
```

```
s=initial approximation
```

r=initial value

```
best=s
```

```
repeat
```

```
s′=s
```

```
for i=1:n
```

```
if f(s+r*e_i) < f(s') then s'=s+r*e_i
```

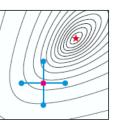
```
if f(s-r*e_i) < f(s') then s'=s-r*e_i
```

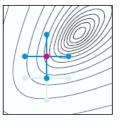
end for

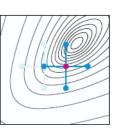
```
if s==s' then r=r/2
else s=s'
```

end

```
if f(s)<f(best) then best=s
until <stopping condition>
return best
```

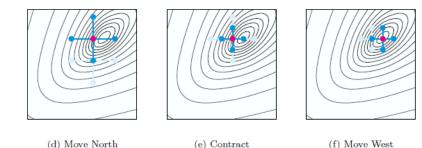






(a) Initial pattern

(b) Move North



T.G. Kolda et al., Optimization by direct search: new perspectives on some classical and modern methods, SIAM Review, 45(3), 385-482, 2003

Remark:

1. e_i =(0,0,...,0,1,0,...,0) (1 on position i) 2. At each iteration are constructed 2n candidates out of which the best one is selected 13

Local search: pattern search

Idea: successive modifications of the components of the current configuration

```
PatternSearch(s,r)
```

```
s=initial approximation
```

r=initial value

best=s

```
repeat
```

```
s' = s
```

```
for i=1:n
```

```
if f(s+r*e_i) < f(s') then s'=s+r*e_i
```

```
if f(s-r*e_i) < f(s') then s'=s-r*e_i
```

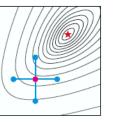
end for

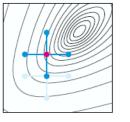
```
if s==s' then r=r/2
```

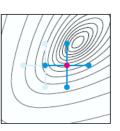
```
else s=s'
```

end

```
if f(s)<f(best) then best=s
until <stopping condition>
return best
```

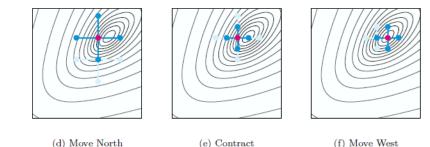






(a) Initial pattern

(b) Move North



T.G. Kolda et al., Optimization by direct search: new perspectives on some classical and modern methods, SIAM Review, 45(3), 385-482, 2003

Remarks:

3. The search neighborhood is variable
4. The best element is preserved
(ensures the elitism of the search process)

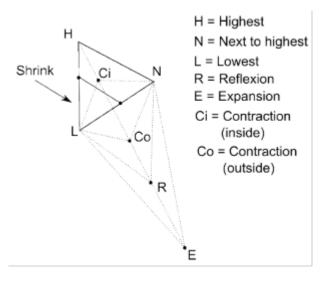
Local search: Nelder-Mead algorithm

Idea: the search is based on a simplex in Rⁿ (set of (n+1) points in Rⁿ) and on some transformations which allow to "explore" the search space

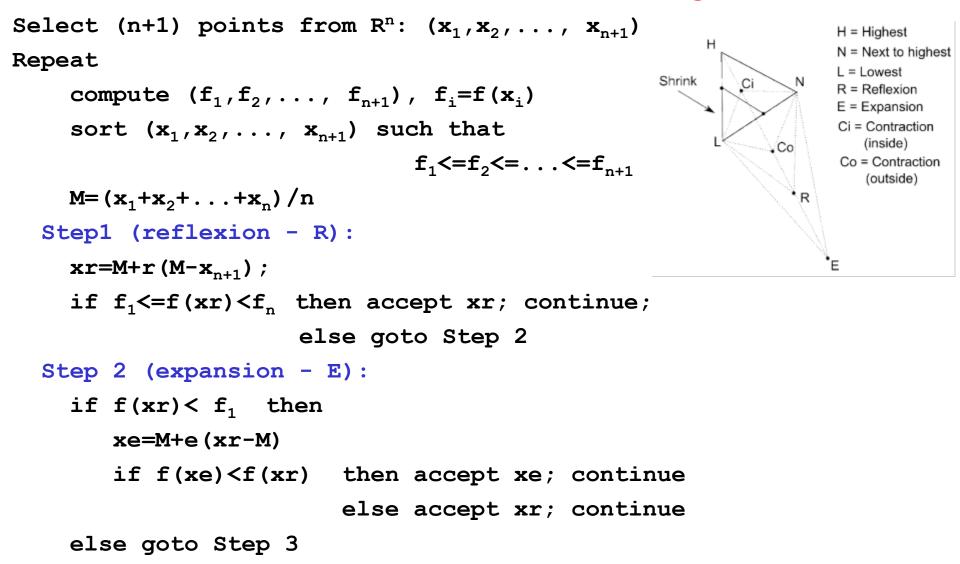
The transformations are based on:

- 1. Sort the simplex elements increasingly by the objective function value (for a minimization problem)
- 2. Compute the average, $M(x_1,...,x_n)$, of the best n elements from the simplex
- 3. Successive construction of new elements by: reflexion, expansion, contraction (interior, exterior), shrinking

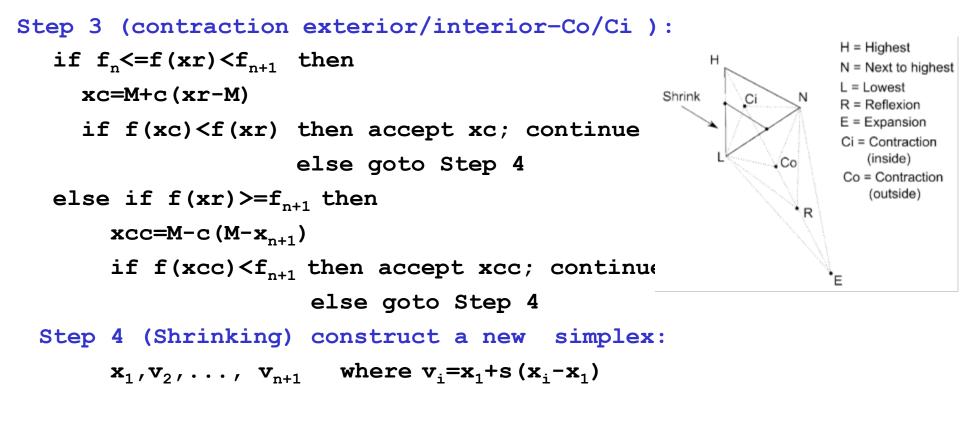
[J.G. Lagarias et.al; Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM J. Optim., 1998]



Local search: Nelder-Mead algorithm



Local search: Nelder-Mead algorithm



Parameters: r=1, e=2, c=1/2, s=1/2

From local to global optimization

Perturbation: use (ocasionally) some large perturbations

Example: use a infinite support probability distribution (e.g. Normal or Cauchy distribution – algoritm Matyas, Solis-Wets)

Random restart: start a new search process from a random initial configuration

Example: local search with random restarts

Exploration of the local optima set: the current local optimum is perturbed and used as a starting point for a new search process Example: iterated local search

Selection: accept (ocasionally) poorer configurations Example: simulated annealing

Example: Matyas algorithm(1960)

s = initial configuration **k=0** // iteration counter // failure counter e=0 repeat //generate a random vector z with //normally distributed components $//(z_{1},...z_{n})$ z=random vector if f(s+z) < f(s)then s=s+ze=0else e=e+1 k=k+1UNTIL (k==kmax) OR (e==emax)

Rmk. The random perturbation is usually applied to one of the components (e.g. the vector z has only one non-zero component)

Problem: how should be chosen the parameters of the distribution used to perturb the current value?

```
Example: N(0,sigma)
```

Reminder: simulation of random variables with normal distribution

Box-Muller algorithm

```
u=rand(0,1) // random value uniformly distributed on (0,1)
v=rand(0,1)
r=sqrt(-2*ln(u));
z1=r*cos(2*PI*v)
z2=r*sin(2*PI*v)
RETURN z1,z2
    // z1 and z2 can be considered as values of two
    // independent random variables with standard normal
    // distribution (N(0,1))
```

Reminder: simulation of random variables with normal distribution

Other variant of the Box-Muller algorithm:

repeat

```
u=rand(0,1)
v=rand(0,1)
w=u<sup>2</sup>+v<sup>2</sup>
until 0<w<1
y=sqrt(-2*ln(w)/w)
z1=u*y
z2=v*y
RETURN z1,z2</pre>
```

Rmk: to obtain values corresponding to a non-standard normal distribution N(m,sigma) one have to apply the transformation: m+z*sigma

Example: Solis-Wets algorithm (1981)

s(0) = initial configuration
k=0; m=0 //the average of the perturbation vector is adaptive
repeat

UNTIL (k==kmax)

Search with random restarts

Idea:

- The search process is repeated starting from random initial configurations
- The best final configuration is chosen as solution

Remarks:

- The stopping condition of the local search can be based on a random decision (e.g. the allocated time can be random)
- The search processes are independent – none of the information collected at the previous search threads is used

Random Restart

```
s=initial configuration
best=s
Repeat
  repeat
   r=perturb(s)
   if f(r)<=f(s) then s=r
   until <local search stopping
      condition>
   if f(s)<f(best) then best =s
   s=other initial configuration
      (random)
until <stopping condition>
return best
```

Iterated Local Search

Idea:

- It is based on some successive local search stages which are correlated
- The initial configuration from the next stage is chosen in a neighborhood of the local optimum identified at the current stage

Remark:

• The initial configuration of a new search stage is based on a more "aggressive" perturbation than the perturbation used for local search

Iterated Local Search (ILS)

```
s=initial configuration
s0=s; best=s
Repeat
    repeat
    r=perturbSmall(s)
    if f(r)<=f(s) then s = r
    until <local stopping condition>
    if f(s)<f(best) then best = s
    s0=choose(s0,s)
    s=perturbLarge(s0)
until <stopping condition>
return best
```

Iterated Local Search

Remarks [T. Stutzle – Tutorial on Iterated Local Search, 2003]

- The perturbation used to construct the new starting configuration (perturbLarge) should be chosen such that it is not easily undone by the local search (perturbSmall)
- ILS defines a biased walk in the search space

Summary

- Trajectory based search keeps track of only one candidate solution
- Local search small perturbation of the current configuration
 - Deterministic: choose the best element in the neighborhood
 - Random: choose an arbitrary element from the neighborhood
- Global search avoid local optima by
 - Restarting the search
 - Iterating the search
 - Combining deterministic and random perturbation
 - Changing the neighborhood size (e.g. Variable Neighborhood Search)
 - Controlling the set of visited configuration and of search intensification and diversification (e.g. Tabu Search)
 - Escaping from local optima by non-greedy acceptance (e.g. Simulated Annealing)

Next Lecture

Other global search methods:

- Variable Neighborhood Search
- Tabu Search
- Simulated Annealing
- Greedy Randomized Adaptive Search