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Trajectory based Search Algorithms 
(I)

• Motivation: local vs global optimization
• General structure of the local search algorithms

• Local Search Deterministic Methods:  
– Pattern Search
– Nelder Mead

• Local Search Random Methods : 
– Matyas
– Solis-Wets

• Metaheuristics for global search:
– Local search with random restarts 
– Iterated local search
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Local vs Global Optimization
Local optimization (minimization):  find  x* such that f(x*)<=f(x) for all x in V(x*)

(V(x*)=neighborhood of x); 
Rmk:  it requires the knowledge of an initial approximation and the search will 
focus on the neighborhood of this initial approximation

Global optimization:  
• Find x* such that f(x*)<=f(x), for any x (from the entire search domain)
• If the objective function has local optima then the local search methods (e.g. 

gradient methods) can get stuck in such a local optimum
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Local Optimization
Discrete search space:

- The neighborhood of an element is 
a finite set which can be completely 
explored 

Particular case (permutation-like 
solutions):
- s=(s1,s2,...,sn)  si from {1,....,n}
- V(s)={s’|s’ can be obtained from s 

by interchanging two elements}
- Card V(s)=n(n-1)/2

Example (n=4)
s =(2,4,1,3)
s’=(1,4,2,3)

Continuous search space:
a) The objective function is 
differentiable – the search direction is 
established based on the changes in 
the objective function -> direction of 
increase (minimization) or decrease 
(maximization)
- Gradient method (first order 

derivatives-> first order methods)
- Newton-like methods (second order 

derivatives -> second order 
methods)

b) The objective function is not 
differentiable (or even discontinuous)
- Direct search methods(ex: Nelder 

Mead)
- Methods based on small random 

perturbations
(no derivatives are used -> zero-order 
methods)
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Local search: general structure
Notations:
S – search space
f – objective function
S* - set of local/global optima
s=(s1,s2,..., sn) : element of S/ 
configuration/  candidate solution  
s* = the best element discovered up 
to the current step
s* = optimal solution

Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping condition>

Remarks:
1. The initial approximation can be selected randomly or constructed based on a 

simple heuristic (e.g. greedy) 
2. The perturbation can be deterministic (e.g. gradient based) or random
3. The replacement of s with s’ can be done also when f(s’)=f(s) (the condition is 

in this case f(s’)<=f(s) ) 
4. Stopping condition: 

(a) No improvement during the previous K iterations; 
(b) Maximal number of iterations or of number of objective function evaluations
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Local search: variants (I)
Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping 
condition>

Remarks:  
1. The search is more explorative – at each iteration there are several 

candidates which are analyzed
2. Each objective function evaluation should be counted (if the stopping 

condition uses the number of evaluations)

More candidates:

s = initial approximation
repeat

[s1,…, sm]= MultiplePerturb(s)
s’=bestOf([s1,…, sm])
if f(s’)<f(s) then s=s’

until < stopping condition >
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Local search: variants (II)

Remarks:  
1. The best out of the m candidate solutions is unconditionally accepted and is 

further used to generate new candidates
2. The best candidate solution obtained up to the current moment is preserved 

(ensuring the elitism of the searching process; elitism = the best configuration 
so far is saved – if a good configuration is found it cannot be lost)

More candidates – other variant:

s = initial approximation 
best = s
repeat

[s1,…, sm]=MultiplePerturb(s)
s=bestOf([s1,…, sm])
if f(s)<f(best) then best=s

until <stopping condition>
return best

More candidates:

s = initial approximation
repeat

[s1,…, sm]= MultiplePerturb(s)
s’=bestOf([s1,…, sm])
if f(s’)<f(s) then s=s’

until <stopping condition>
Return s
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Local search: perturbation variants
• Aim of the perturbation:   constructing a new candidate solution starting 

from the existing one

• Perturbation types (depending on the nature of the perturbation):
– Deterministic (e.g. hill climbing = choose the best configuration in the 

neighborhood)
– Random (e.g. random walk = choose a random configuration from the 

neighborhood)

• Perturbation types (depending on the perturbation intensity):
– Local (small) -> exploitation (intensification of search)
– Global (large) -> exploration (diversification of the search)

• Perturbation types (depending on the search space):
– Discrete search space (replacement of one or several components)
– Continuous search space (adding a perturbing term to the current configuration)
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Local search: perturbation variants
Combinatorial optimization problems:  the new configuration is chosen in the 
neighborhood of the current configuration by applying some transformations 
which are typical to the problem to be solved

Example 1:  TSP (Travelling Salesman Problem)
• Generating a new configuration (2-opt transformation)
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Implementation:

1. Random choice of two 
positions

2. Reverse the order of 
elements between the 
two selected positions
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Local search: perturbation variants
Combinatorial optimization problems:  the new configuration is chosen in the 
neighborhood of the current configuration by applying some transformations 
which are typical to the problem to be solved

Example 1:  TSP (Travelling Salesman Problem)
• Generating a new configuration (2-opt transformation)
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What kind of perturbation?

• Random
• Local (?)
• Based on a finite 

neighborhood (discrete 
search space)
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Local search: perturbation variants

Combinatorial optimization problems:  the new configuration is chosen in the 
neighborhood of the current one by applying some transformations which are 
typical to the problem to be solved
Example 2:  Timetabling
• Remove conflicts (violated constraints) by moving or exchanging elements 

• Current configuration perturbation:
– Move an event which violates a 

constraint in a free slot
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Local search: perturbation variants

Combinatorial optimization problems:  the new configuration is chosen in the 
neighborhood of the current one by applying some transformations which are 
typical to the problem to be solved
Example 2:  Timetabling
• Remove conflicts (violated constraints) by moving or exchanging elements 

• Current configuration perturbation:
– Exchange two events
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Local search: perturbation variants
Optimization in continuous domains

Random perturbation

Perturb(s,p,inf,sup,r)
for i=1:n
if rand(0,1)<=p then
repeat
pert=rand(-r,r)

until inf<=si+pert<=sup
si=si+pert
end if

end for
return s 

Deterministic perturbation by direct 
search (it does not use derivatives)

• Pattern Search (Hooke -Jeeves)
• Nelder - Mead

Notations:
s=the candidate solution to be perturbed
p=perturbation probability 
r=perturbation „radius” 
[inf, sup] = search range
n = problem size (number of 

components of a solution
rand(a,b) = random value uniformly 

distributed on [a,b]
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Local search: pattern search
Idea:  successive modifications of the components of 

the current configuration
PatternSearch(s,r)

s=initial approximation
r=initial value 
best=s
repeat

s’=s
for i=1:n
if f(s+r*ei)< f(s’) then s’=s+r*ei
if f(s-r*ei)< f(s’) then s’=s-r*ei

end for
if s==s’ then r=r/2 

else s=s’
end
if f(s)<f(best) then best=s

until <stopping condition>
return best 

T.G. Kolda et al., Optimization by direct 
search: new perspectives on some classical
and modern methods, SIAM Review, 45(3), 
385-482, 2003

Remark:
1. ei=(0,0,...,0,1,0,...,0) (1 on position i)
2. At each iteration are constructed 2n 
candidates out of which the best one 
is selected
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Local search: pattern search
Idea:  successive modifications of the components of 

the current configuration
PatternSearch(s,r)

s=initial approximation
r=initial value 
best=s
repeat

s’=s
for i=1:n
if f(s+r*ei)< f(s’) then s’=s+r*ei
if f(s-r*ei)< f(s’) then s’=s-r*ei

end for
if s==s’ then r=r/2 

else s=s’
end
if f(s)<f(best) then best=s

until <stopping condition>
return best 

T.G. Kolda et al., Optimization by direct 
search: new perspectives on some classical
and modern methods, SIAM Review, 45(3), 
385-482, 2003

Remarks:
3. The search neighborhood is variable
4. The best element is preserved 
(ensures the elitism of the search 
process)
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Local search: Nelder-Mead algorithm
Idea:  the search is based on a simplex in Rn (set of 

(n+1) points in Rn) and on some transformations 
which allow to „explore” the search space

The transformations are based on:
1. Sort the simplex elements increasingly by the 

objective function value (for a minimization
problem) 

2. Compute  the average, M(x1,...,xn),  of the best 
n elements from the simplex

3. Successive construction of new elements by: 
reflexion, expansion, contraction (interior, 
exterior), shrinking

[J.G. Lagarias et.al; Convergence properties of the Nelder-Mead simplex 
method in low dimensions, SIAM J. Optim., 1998]
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Local search: Nelder-Mead algorithm
Select (n+1) points from Rn: (x1,x2,..., xn+1)
Repeat

compute (f1,f2,..., fn+1), fi=f(xi)
sort (x1,x2,..., xn+1) such that 

f1<=f2<=...<=fn+1
M=(x1+x2+...+xn)/n

Step1 (reflexion - R): 
xr=M+r(M-xn+1);   
if f1<=f(xr)<fn  then accept xr; continue;

else goto Step 2
Step 2 (expansion - E): 
if f(xr)< f1 then 

xe=M+e(xr-M)
if f(xe)<f(xr)  then accept xe; continue

else accept xr; continue
else goto Step 3
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Local search: Nelder-Mead algorithm
Step 3 (contraction exterior/interior–Co/Ci ): 

if fn<=f(xr)<fn+1  then 
xc=M+c(xr-M)
if f(xc)<f(xr) then accept xc; continue

else goto Step 4
else if f(xr)>=fn+1 then

xcc=M-c(M-xn+1)
if f(xcc)<fn+1 then accept xcc; continue

else goto Step 4
Step 4 (Shrinking) construct a new  simplex:

x1,v2,..., vn+1    where vi=x1+s(xi-x1)

Parameters:  r=1, e=2, c=1/2, s=1/2
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From local to global optimization

Perturbation:  use (ocasionally) some large perturbations
Example:  use a infinite support probability distribution (e.g. Normal or 
Cauchy distribution – algoritm Matyas, Solis-Wets)

Random restart:  start a new search process from a random initial 
configuration 
Example:  local search with random restarts

Exploration of the local optima set: the current local optimum is perturbed 
and used as a starting point for a new search process 
Example:  iterated local search 

Selection:  accept (ocasionally) poorer configurations
Example: simulated annealing
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Example: Matyas algorithm(1960)
s = initial configuration
k=0 // iteration counter
e=0 // failure counter 
repeat
//generate a random vector z with
//normally distributed components
//(z1,…zn)
z=random vector
if  f(s+z)<f(s) 

then s=s+z
e=0

else e=e+1
k=k+1

UNTIL (k==kmax) OR (e==emax)

Rmk. The random 
perturbation is usually 
applied to one of the 
components (e.g. the 
vector z has only one 
non-zero component)

Problem: how should be 
chosen the parameters 
of the distribution used to 
perturb the current 
value?

Example: N(0,sigma)
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Reminder:  simulation of random 
variables with normal distribution

Box-Muller algorithm

u=rand(0,1)   // random value uniformly distributed on (0,1)
v=rand(0,1)
r=sqrt(-2*ln(u));
z1=r*cos(2*PI*v)
z2=r*sin(2*PI*v)
RETURN z1,z2

// z1 and z2 can be considered as values of two 
// independent random variables with standard normal 
// distribution (N(0,1))
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Reminder:  simulation of random 
variables with normal distribution

Other variant of the Box-Muller algorithm:
repeat

u=rand(0,1) 
v=rand(0,1)
w=u2+v2

until 0<w<1
y=sqrt(-2*ln(w)/w)
z1=u*y
z2=v*y
RETURN z1,z2

Rmk:  to obtain values corresponding to a non-standard normal 
distribution N(m,sigma) one have to apply the transformation:  
m+z*sigma
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Example: Solis-Wets algorithm (1981)
s(0) = initial configuration
k=0; m=0 //the average of the perturbation vector is adaptive
repeat
//generate a vector (z1,…zn) with components from N(m,1)
z=random vector
if f(s+z)<f(s) then s=s+z   // accept the perturbation  

m=0.4*z+0.2*m // adjust the mean
if f(s-z)<min{f(s),f(s+z)} then s=s-z // accept the perturb. 

m=m-0.4*z
if f(s-z)>f(s) AND f(s+z)>f(s) then m=0.5*m
k=k+1

UNTIL (k==kmax)
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Search with random restarts
Idea:  
• The search process is repeated 

starting from random initial 
configurations 

• The best final configuration is 
chosen as solution

Remarks:
• The stopping condition of the local 

search can be based on a random 
decision (e.g. the allocated time can 
be random)

• The search processes are 
independent – none of the 
information collected at the 
previous search threads is used

Random Restart
s=initial configuration
best=s
Repeat

repeat
r=perturb(s)
if f(r)<=f(s) then s=r

until <local search stopping 
condition>

if f(s)<f(best) then best =s
s=other initial configuration 
(random)

until  <stopping condition>
return best 
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Iterated Local Search
Idea:  
• It is based on some successive 

local search stages which are 
correlated

• The initial configuration from the 
next stage is chosen in a  
neighborhood of the local optimum 
identified at the current stage

Remark:
• The initial configuration of a new 

search stage is based on a more 
„aggressive” perturbation than the 
perturbation used for local search

Iterated Local Search (ILS)

s=initial configuration
s0=s; best=s
Repeat

repeat
r=perturbSmall(s)
if f(r)<=f(s) then s = r

until <local stopping condition>
if f(s)<f(best) then best = s
s0=choose(s0,s)
s=perturbLarge(s0)

until  <stopping condition>
return best 
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Iterated Local Search
Remarks  [T. Stutzle – Tutorial on Iterated Local Search, 2003]

• The perturbation used to construct the new starting configuration 
(perturbLarge) should be chosen such that it is not easily undone by the 
local search (perturbSmall) 

• ILS defines a biased walk in the search space
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Summary
• Trajectory based search – keeps track of only one candidate solution 

• Local search – small perturbation of the current configuration
– Deterministic:  choose the best element in the neighborhood
– Random: choose an arbitrary element from the neighborhood

• Global search – avoid local optima by 
– Restarting the search
– Iterating the search
– Combining deterministic and random perturbation
– Changing the neighborhood size (e.g. Variable Neighborhood 

Search)
– Controlling the set of visited configuration and of search 

intensification and diversification (e.g. Tabu Search)
– Escaping from local optima by non-greedy acceptance (e.g. 

Simulated Annealing)
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Next Lecture
Other global search methods:  

• Variable Neighborhood Search

• Tabu Search

• Simulated Annealing

• Greedy Randomized Adaptive Search


	�Trajectory based Search Algorithms (I)�
	Local vs Global Optimization
	Local Optimization
	Local search: general structure
	Local search: variants (I)
	Local search: variants (II)
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: pattern search
	Local search: pattern search
	Local search: Nelder-Mead algorithm
	Local search: Nelder-Mead algorithm
	Local search: Nelder-Mead algorithm
	From local to global optimization
	Example: Matyas algorithm(1960)
	Reminder:  simulation of random variables with normal distribution
	Reminder:  simulation of random variables with normal distribution
	Example: Solis-Wets algorithm (1981)
	Search with random restarts
	Iterated Local Search
	Iterated Local Search
	Summary
	Next Lecture

