
Metaheuristic Algorithms - Lecture 2 1

Trajectory based Search Algorithms
(I)

• Motivation: local vs global optimization
• General structure of the local search algorithms

• Local Search Deterministic Methods:
– Pattern Search
– Nelder Mead

• Local Search Random Methods :
– Matyas
– Solis-Wets

• Metaheuristics for global search:
– Local search with random restarts
– Iterated local search

Metaheuristic Algorithms - Lecture 2 2

Local vs Global Optimization
Local optimization (minimization): find x* such that f(x*)<=f(x) for all x in V(x*)

(V(x*)=neighborhood of x);
Rmk: it requires the knowledge of an initial approximation and the search will
focus on the neighborhood of this initial approximation

Global optimization:
• Find x* such that f(x*)<=f(x), for any x (from the entire search domain)
• If the objective function has local optima then the local search methods (e.g.

gradient methods) can get stuck in such a local optimum

5101520

1

2

3

4

5

Global optimum
Local optimum

3

Local Optimization
Discrete search space:

- The neighborhood of an element is
a finite set which can be completely
explored

Particular case (permutation-like
solutions):
- s=(s1,s2,...,sn) si from {1,....,n}
- V(s)={s’|s’ can be obtained from s

by interchanging two elements}
- Card V(s)=n(n-1)/2

Example (n=4)
s =(2,4,1,3)
s’=(1,4,2,3)

Continuous search space:
a) The objective function is
differentiable – the search direction is
established based on the changes in
the objective function -> direction of
increase (minimization) or decrease
(maximization)
- Gradient method (first order

derivatives-> first order methods)
- Newton-like methods (second order

derivatives -> second order
methods)

b) The objective function is not
differentiable (or even discontinuous)
- Direct search methods(ex: Nelder

Mead)
- Methods based on small random

perturbations
(no derivatives are used -> zero-order
methods)

Metaheuristic Algorithms - Lecture 2 4

Local search: general structure
Notations:
S – search space
f – objective function
S* - set of local/global optima
s=(s1,s2,..., sn) : element of S/
configuration/ candidate solution
s* = the best element discovered up
to the current step
s* = optimal solution

Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping condition>

Remarks:
1. The initial approximation can be selected randomly or constructed based on a

simple heuristic (e.g. greedy)
2. The perturbation can be deterministic (e.g. gradient based) or random
3. The replacement of s with s’ can be done also when f(s’)=f(s) (the condition is

in this case f(s’)<=f(s))
4. Stopping condition:

(a) No improvement during the previous K iterations;
(b) Maximal number of iterations or of number of objective function evaluations

Metaheuristic Algorithms - Lecture 2 5

Local search: variants (I)
Local search algorithm:

s = initial approximation
repeat

s’=perturb(s)
if f(s’)<f(s) then

s=s’
until <stopping
condition>

Remarks:
1. The search is more explorative – at each iteration there are several

candidates which are analyzed
2. Each objective function evaluation should be counted (if the stopping

condition uses the number of evaluations)

More candidates:

s = initial approximation
repeat

[s1,…, sm]= MultiplePerturb(s)
s’=bestOf([s1,…, sm])
if f(s’)<f(s) then s=s’

until < stopping condition >

Metaheuristic Algorithms - Lecture 2 6

Local search: variants (II)

Remarks:
1. The best out of the m candidate solutions is unconditionally accepted and is

further used to generate new candidates
2. The best candidate solution obtained up to the current moment is preserved

(ensuring the elitism of the searching process; elitism = the best configuration
so far is saved – if a good configuration is found it cannot be lost)

More candidates – other variant:

s = initial approximation
best = s
repeat

[s1,…, sm]=MultiplePerturb(s)
s=bestOf([s1,…, sm])
if f(s)<f(best) then best=s

until <stopping condition>
return best

More candidates:

s = initial approximation
repeat

[s1,…, sm]= MultiplePerturb(s)
s’=bestOf([s1,…, sm])
if f(s’)<f(s) then s=s’

until <stopping condition>
Return s

Metaheuristic Algorithms - Lecture 2 7

Local search: perturbation variants
• Aim of the perturbation: constructing a new candidate solution starting

from the existing one

• Perturbation types (depending on the nature of the perturbation):
– Deterministic (e.g. hill climbing = choose the best configuration in the

neighborhood)
– Random (e.g. random walk = choose a random configuration from the

neighborhood)

• Perturbation types (depending on the perturbation intensity):
– Local (small) -> exploitation (intensification of search)
– Global (large) -> exploration (diversification of the search)

• Perturbation types (depending on the search space):
– Discrete search space (replacement of one or several components)
– Continuous search space (adding a perturbing term to the current configuration)

Metaheuristic Algorithms - Lecture 2 8

Local search: perturbation variants
Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current configuration by applying some transformations
which are typical to the problem to be solved

Example 1: TSP (Travelling Salesman Problem)
• Generating a new configuration (2-opt transformation)

A

B

C
D

E

F

G

ABCFEDG

A

B

C
D

E

F
G

ABCFEDG ABCDEFG

Implementation:

1. Random choice of two
positions

2. Reverse the order of
elements between the
two selected positions

Metaheuristic Algorithms - Lecture 2 9

Local search: perturbation variants
Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current configuration by applying some transformations
which are typical to the problem to be solved

Example 1: TSP (Travelling Salesman Problem)
• Generating a new configuration (2-opt transformation)

A

B

C
D

E

F

G

ABCFEDG

A

B

C
D

E

F

G

ABCFEDG ABCDEFG

What kind of perturbation?

• Random
• Local (?)
• Based on a finite

neighborhood (discrete
search space)

Metaheuristic Algorithms - Lecture 2 10

Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved
Example 2: Timetabling
• Remove conflicts (violated constraints) by moving or exchanging elements

• Current configuration perturbation:
– Move an event which violates a

constraint in a free slot

E1

E2

E3

E4

E5

E6

E7

E8

E9

S1 S2 S3
T1 E1 E3 E9
T2 E4 E8
T3 E2 E5
T4 E6 E7

S1 S2 S3
T1 E1 E9
T2 E4 E3 E8
T3 E2 E5
T4 E6 E7 Conflicts graph

Metaheuristic Algorithms - Lecture 2 11

Local search: perturbation variants

Combinatorial optimization problems: the new configuration is chosen in the
neighborhood of the current one by applying some transformations which are
typical to the problem to be solved
Example 2: Timetabling
• Remove conflicts (violated constraints) by moving or exchanging elements

• Current configuration perturbation:
– Exchange two events

E1

E2

E3

E4

E5

E6

E7

E8

E9

S1 S2 S3
T1 E1 E9
T2 E4 E3 E8
T3 E2 E5
T4 E6 E7

S1 S2 S3
T1 E1 E9
T2 E4 E3 E8
T3 E6 E5
T4 E2 E7 Conflicts graph

Metaheuristic Algorithms - Lecture 2 12

Local search: perturbation variants
Optimization in continuous domains

Random perturbation

Perturb(s,p,inf,sup,r)
for i=1:n
if rand(0,1)<=p then
repeat
pert=rand(-r,r)

until inf<=si+pert<=sup
si=si+pert
end if

end for
return s

Deterministic perturbation by direct
search (it does not use derivatives)

• Pattern Search (Hooke -Jeeves)
• Nelder - Mead

Notations:
s=the candidate solution to be perturbed
p=perturbation probability
r=perturbation „radius”
[inf, sup] = search range
n = problem size (number of

components of a solution
rand(a,b) = random value uniformly

distributed on [a,b]

13

Local search: pattern search
Idea: successive modifications of the components of

the current configuration
PatternSearch(s,r)

s=initial approximation
r=initial value
best=s
repeat

s’=s
for i=1:n
if f(s+r*ei)< f(s’) then s’=s+r*ei
if f(s-r*ei)< f(s’) then s’=s-r*ei

end for
if s==s’ then r=r/2

else s=s’
end
if f(s)<f(best) then best=s

until <stopping condition>
return best

T.G. Kolda et al., Optimization by direct
search: new perspectives on some classical
and modern methods, SIAM Review, 45(3),
385-482, 2003

Remark:
1. ei=(0,0,...,0,1,0,...,0) (1 on position i)
2. At each iteration are constructed 2n
candidates out of which the best one
is selected

14

Local search: pattern search
Idea: successive modifications of the components of

the current configuration
PatternSearch(s,r)

s=initial approximation
r=initial value
best=s
repeat

s’=s
for i=1:n
if f(s+r*ei)< f(s’) then s’=s+r*ei
if f(s-r*ei)< f(s’) then s’=s-r*ei

end for
if s==s’ then r=r/2

else s=s’
end
if f(s)<f(best) then best=s

until <stopping condition>
return best

T.G. Kolda et al., Optimization by direct
search: new perspectives on some classical
and modern methods, SIAM Review, 45(3),
385-482, 2003

Remarks:
3. The search neighborhood is variable
4. The best element is preserved
(ensures the elitism of the search
process)

Metaheuristic Algorithms - Lecture 2 15

Local search: Nelder-Mead algorithm
Idea: the search is based on a simplex in Rn (set of

(n+1) points in Rn) and on some transformations
which allow to „explore” the search space

The transformations are based on:
1. Sort the simplex elements increasingly by the

objective function value (for a minimization
problem)

2. Compute the average, M(x1,...,xn), of the best
n elements from the simplex

3. Successive construction of new elements by:
reflexion, expansion, contraction (interior,
exterior), shrinking

[J.G. Lagarias et.al; Convergence properties of the Nelder-Mead simplex
method in low dimensions, SIAM J. Optim., 1998]

16

Local search: Nelder-Mead algorithm
Select (n+1) points from Rn: (x1,x2,..., xn+1)
Repeat

compute (f1,f2,..., fn+1), fi=f(xi)
sort (x1,x2,..., xn+1) such that

f1<=f2<=...<=fn+1
M=(x1+x2+...+xn)/n

Step1 (reflexion - R):
xr=M+r(M-xn+1);
if f1<=f(xr)<fn then accept xr; continue;

else goto Step 2
Step 2 (expansion - E):
if f(xr)< f1 then

xe=M+e(xr-M)
if f(xe)<f(xr) then accept xe; continue

else accept xr; continue
else goto Step 3

Metaheuristic Algorithms - Lecture 2 17

Local search: Nelder-Mead algorithm
Step 3 (contraction exterior/interior–Co/Ci):

if fn<=f(xr)<fn+1 then
xc=M+c(xr-M)
if f(xc)<f(xr) then accept xc; continue

else goto Step 4
else if f(xr)>=fn+1 then

xcc=M-c(M-xn+1)
if f(xcc)<fn+1 then accept xcc; continue

else goto Step 4
Step 4 (Shrinking) construct a new simplex:

x1,v2,..., vn+1 where vi=x1+s(xi-x1)

Parameters: r=1, e=2, c=1/2, s=1/2

Metaheuristic Algorithms - Lecture 2 18

From local to global optimization

Perturbation: use (ocasionally) some large perturbations
Example: use a infinite support probability distribution (e.g. Normal or
Cauchy distribution – algoritm Matyas, Solis-Wets)

Random restart: start a new search process from a random initial
configuration
Example: local search with random restarts

Exploration of the local optima set: the current local optimum is perturbed
and used as a starting point for a new search process
Example: iterated local search

Selection: accept (ocasionally) poorer configurations
Example: simulated annealing

Metaheuristic Algorithms - Lecture 2 19

Example: Matyas algorithm(1960)
s = initial configuration
k=0 // iteration counter
e=0 // failure counter
repeat
//generate a random vector z with
//normally distributed components
//(z1,…zn)
z=random vector
if f(s+z)<f(s)

then s=s+z
e=0

else e=e+1
k=k+1

UNTIL (k==kmax) OR (e==emax)

Rmk. The random
perturbation is usually
applied to one of the
components (e.g. the
vector z has only one
non-zero component)

Problem: how should be
chosen the parameters
of the distribution used to
perturb the current
value?

Example: N(0,sigma)

Metaheuristic Algorithms - Lecture 2 20

Reminder: simulation of random
variables with normal distribution

Box-Muller algorithm

u=rand(0,1) // random value uniformly distributed on (0,1)
v=rand(0,1)
r=sqrt(-2*ln(u));
z1=r*cos(2*PI*v)
z2=r*sin(2*PI*v)
RETURN z1,z2

// z1 and z2 can be considered as values of two
// independent random variables with standard normal
// distribution (N(0,1))

Metaheuristic Algorithms - Lecture 2 21

Reminder: simulation of random
variables with normal distribution

Other variant of the Box-Muller algorithm:
repeat

u=rand(0,1)
v=rand(0,1)
w=u2+v2

until 0<w<1
y=sqrt(-2*ln(w)/w)
z1=u*y
z2=v*y
RETURN z1,z2

Rmk: to obtain values corresponding to a non-standard normal
distribution N(m,sigma) one have to apply the transformation:
m+z*sigma

Metaheuristic Algorithms - Lecture 2 22

Example: Solis-Wets algorithm (1981)
s(0) = initial configuration
k=0; m=0 //the average of the perturbation vector is adaptive
repeat
//generate a vector (z1,…zn) with components from N(m,1)
z=random vector
if f(s+z)<f(s) then s=s+z // accept the perturbation

m=0.4*z+0.2*m // adjust the mean
if f(s-z)<min{f(s),f(s+z)} then s=s-z // accept the perturb.

m=m-0.4*z
if f(s-z)>f(s) AND f(s+z)>f(s) then m=0.5*m
k=k+1

UNTIL (k==kmax)

Metaheuristic Algorithms - Lecture 2 23

Search with random restarts
Idea:
• The search process is repeated

starting from random initial
configurations

• The best final configuration is
chosen as solution

Remarks:
• The stopping condition of the local

search can be based on a random
decision (e.g. the allocated time can
be random)

• The search processes are
independent – none of the
information collected at the
previous search threads is used

Random Restart
s=initial configuration
best=s
Repeat

repeat
r=perturb(s)
if f(r)<=f(s) then s=r

until <local search stopping
condition>

if f(s)<f(best) then best =s
s=other initial configuration
(random)

until <stopping condition>
return best

Metaheuristic Algorithms - Lecture 2 24

Iterated Local Search
Idea:
• It is based on some successive

local search stages which are
correlated

• The initial configuration from the
next stage is chosen in a
neighborhood of the local optimum
identified at the current stage

Remark:
• The initial configuration of a new

search stage is based on a more
„aggressive” perturbation than the
perturbation used for local search

Iterated Local Search (ILS)

s=initial configuration
s0=s; best=s
Repeat

repeat
r=perturbSmall(s)
if f(r)<=f(s) then s = r

until <local stopping condition>
if f(s)<f(best) then best = s
s0=choose(s0,s)
s=perturbLarge(s0)

until <stopping condition>
return best

Metaheuristic Algorithms - Lecture 2 25

Iterated Local Search
Remarks [T. Stutzle – Tutorial on Iterated Local Search, 2003]

• The perturbation used to construct the new starting configuration
(perturbLarge) should be chosen such that it is not easily undone by the
local search (perturbSmall)

• ILS defines a biased walk in the search space

Metaheuristic Algorithms - Lecture 2 26

Summary
• Trajectory based search – keeps track of only one candidate solution

• Local search – small perturbation of the current configuration
– Deterministic: choose the best element in the neighborhood
– Random: choose an arbitrary element from the neighborhood

• Global search – avoid local optima by
– Restarting the search
– Iterating the search
– Combining deterministic and random perturbation
– Changing the neighborhood size (e.g. Variable Neighborhood

Search)
– Controlling the set of visited configuration and of search

intensification and diversification (e.g. Tabu Search)
– Escaping from local optima by non-greedy acceptance (e.g.

Simulated Annealing)

Metaheuristic Algorithms - Lecture 2 27

Next Lecture
Other global search methods:

• Variable Neighborhood Search

• Tabu Search

• Simulated Annealing

• Greedy Randomized Adaptive Search

	�Trajectory based Search Algorithms (I)�
	Local vs Global Optimization
	Local Optimization
	Local search: general structure
	Local search: variants (I)
	Local search: variants (II)
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: perturbation variants
	Local search: pattern search
	Local search: pattern search
	Local search: Nelder-Mead algorithm
	Local search: Nelder-Mead algorithm
	Local search: Nelder-Mead algorithm
	From local to global optimization
	Example: Matyas algorithm(1960)
	Reminder: simulation of random variables with normal distribution
	Reminder: simulation of random variables with normal distribution
	Example: Solis-Wets algorithm (1981)
	Search with random restarts
	Iterated Local Search
	Iterated Local Search
	Summary
	Next Lecture

